
Literate plain Source is Available!

W lodek Bzyl
Instytut Matematyki
Uniwersytet Gdański
Wita Stwosza 57
80–952 Gdańsk
Poland
Email: matwb@univ.gda.pl

Abstract

Based on Norman Ramsey’s NOWEB system a new literate tool for the TEX
language has been built. The new system was used to create a ‘literate plain’
source. Although the resulting file is principally plain.tex code interleaved with
documentation, borrowed mainly from The TEXbook, it presents the whole code
from a different perspective. The documentation is organized around the macros
as they appear in the plain.tex file rather than around the topics as in The
TEXbook. This means that the typeset plain.dvi is not a user manual, even
though many notions are explained there.

Introduction

When it was introduced, literate programming was
synonymous with WEB, a system for writing literate
Pascal programs. Since then many different WEBs,
each aiming at a particular programming language
(or small group of related languages), have been cre-
ated. Each WEB is constructed of two separate parts,
one called TANGLE, the other WEAVE. Typically each
part consists of just one program performing many
tasks — it expands macros, prettyprints code, gener-
ates and sorts an index, etc. This makes adaptation
of the existing WEB to another language extremely
difficult.

Another approach to literate programming was
presented by Norman Ramsey, in NOWEB. He de-
signed and realized the TANGLE/WEAVE pair as UNIX

pipes. By extending and/or replacing parts of pipes
with programs, written in AWK, ICON, Flex, Perl, C,
TEXorMETAFONT, a new tool could be created with
relatively small effort. As a result, with NOWEB, it
was possible to create a simple TEX-WEB system by
writing an AWK script and a new TEX format.

WEB for everyone?

WEB is a powerful tool. The strength of literate
programs lies in their ability to produce high-quality
typeset documentation. The strength of literate pro-
gramming lies in allowing you to write code where
you are telling humans what the computer should
do, instead of telling computer what should be done.
Obviously we are more efficient and precise when

communicating with humans than computers. Thus
literate programs are more easily written and main-
tained than ordinary ones.

WEB is a complex tool. A literate program con-
sists of pieces of documentation and named chunks
containing code and references to other chunks. The
pieces are arranged in an order which helps to ex-
plain (and understand) the program as a whole. The
WEB system consists of two processors: TANGLE and
WEAVE.

TANGLE is used to extract a program by replac-
ing one named chunk by its definition. The pro-
cess of replacement is recursive; it continues until no
named chunks remain. From one WEB source many
programs could be extracted (by presenting TANGLE

with different chunks).
WEAVE is used to convert WEB markup into TEX

markup as described and coded in a separate for-
mat file. It handles numerous typographical details
of typeset documentation and provides support for
typical tasks such as cross-referencing, preparation
of indexes, bibliography. Formats for long and short
documents will be different. To typeset a converted
file you will need TEX running on your system. Er-
rors can creep into TEX code. Getting TEX code
working with other formats could end with a short
trip into the TEX language (this will be needed if
you plan your literate program to form part of an
article, a report, or a book).

We learn by reading: why not read ‘literate
books’? There are a few such books already and
more will appear. We learn by writing too: why

TUGboat, Volume 16 (1995), No. 3 — Proceedings of the 1995 Annual Meeting 297



W lodek Bzyl

not try one of the existing tools? The C/C++/For-

tran programmer could try CWEB or FWEB. Pro-
grammers writing in other languages could check the
CTAN directory /tex-archive/web for other possi-
ble tools. If your language is not on the list, or you
are not able to express yourself within the style of-
fered, then you are welcome to join the province of
those who build their own tools. This territory is
growing fast due to the efforts of Norman Ramsey,
who established a base for creating simple and ex-
tensible literate tools.

Presenting a new tool: TEX-WEB

Norman Ramsey was the first to attempt to cre-
ate a generic literate tool, not aimed at a particular
language. Such a tool would (of itself) be useless
because of its generality — the key to the useful-
ness of NOWEB lies in its extensibility. The tasks
for TANGLE and WEAVE were divided among stand-
alone programs. To simplify tangling and weaving
a front end was introduced. It performs a kind of
lexical analysis of the source, a task previously per-
formed by both processors separately. The front end
provided with NOWEB is called markup because it
marks each line of source as line of text, as begin-
ning/end of code/documentation, as definition/use
of named chunks, etc.1

WEAVE

markup foo.tw |

awk -f web2tex.awk > foo.tex

With markup as its front end, WEAVE was built
as a pipeline where AWK, obeying commands from
the script web2tex.awk, reads a marked source line
by line and performs actions depending on the line
type. Most of the time it inserts a bunch of TEX
macros, for example inserting index macros.

The format tweb.sty provides support for cross
references, indexes, and multicolumn output. There
you find macros \chapter, \[sub[sub]]section,
\paragraph2, \printcontents, \title.

TANGLE

markup foo.tw | nt > foo.sty

markup foo.tw | nt -R’Chunk B’ > foo.sty

markup foo.tw | mnt ’Chunk B’ ’Chunk A’

Here we have several possibilities. We can extract
code beginning from the chunk named ‘<<*>>’, or
from ‘Chunk B’ (see template file below). Finally,

1 There is unmarkup which works in the opposite way. I
also borrowed two more programs: nt (tangle) and mnt (mul-
tiple tangle) from NOWEB.

2 These macros should not be overused. Usually the chunk
name alone is a better choice.

‘Chunk A’ and ‘Chunk B’ could be simultaneously
extracted to the files with the same names.

TEX

tex foo.tex

makeindex -s dnd.ist -o foo.dnd foo.ddx

makeindex -s und.ist -o foo.und foo.udx

makeindex -s chn.ist -o foo.chn foo.chk

tex foo.tex

Indexes are sorted by makeindex. Three very short
index style files provide formatting of the different
indexes. (MSDOS makeindx breaks on large indexes.)

Sample Makefile. To ease work with tools a sim-
ple Makefile is provided. Type make on the com-
mand line, press the Enter key, and the following
lines will appear on a terminal:

Tangling: make foo.sty

Texing: make foo.dvi

Weaving: make foo.tex

Making archive: make archive

Cleaning: make clean or veryclean

Since there are many different conventions for
where to store files in a file system, three variables
are defined in the Makefile:

• SCRIPTDIR— where web2tex and other scripts
are stored (defaults to BIN),

• INDEXDIR— where index styles are stored (de-
faults to IDXSTY),

• NOWEBDIR— where the programs markup, nt,
mnt are stored (defaults to /usr/local/lib/

noweb).

Also:

• MAKEINDEX— the name of the makeindex pro-
gram (defaults to makeindex),

deals with the fact that the command has a different
name on MSDOS systems.

Template of TEX-WEB source. The structure of a
TEX-WEB file is shown in the example below.

File name: foo.tw

\title{foo.tw -- template file}

\printcontents % if you want TOC

@

The skeleton of the file foo.tw

<<*>>=

<<Chunk A>>

<<Chunk B>>

@

Documentation for Chunk A.

<<Chunk A>>=

(TEX code / references to other chunks)

298 TUGboat, Volume 16 (1995), No. 3 — Proceedings of the 1995 Annual Meeting



Literate plain Source is Available!

@

Documentation for Chunk B.

<<Chunk B>>=

(TEX code / references to other chunks)

Documentation chunks begin with the line that
starts with @ followed by space or newline. Code
chunks begin with <<Chunk name>>= on a line by
itself. Chunks are terminated by the beginning of
another chunk or end of file.

Making changes/updates. The change file mech-
anism is not needed in the case of the TEX language.
Change files are used to incorporate system depen-
dent code into a source file, but TEX code is already
system independent: TEX code could only be ‘for-
mat dependent’. Another feature of the format file
is that it evolves with time, but the intermediate
versions are used for preparation of books, articles
etc. All these versions and configurations must be
kept well organized, otherwise you are bound to be
lost. The Revision Control System (RCS) is an ap-
propriate tool to assist with these tasks. With RCS

it is possible, with small overhead, to preserve all
the revisions which evolved from a given text docu-
ment, to merge changes made by others, to compare
different versions, and to keep a log of changes.

RCS

ci foo.tw (check-in latest version)
co foo.tw (check-out latest version)
co -r〈rev〉 foo.tw
rlog foo.tw

rcsdiff -r〈rev〉 foo.tw
rcsmerge -r〈later rev〉 -r〈earlier rev〉 foo.tw

When the first command is executed foo.tw is stored
in a group file (with default name foo.tw,v on UNIX

machines, or foo.tw% on MSDOS) as a new revi-
sion. For each revision you deposit, ci prompts for
a log message. The file foo.tw is deleted unless you
ask otherwise (ci -l foo.tw). The message “ci
error: no lock set by (login)” tells you that
RCS was configured with the ‘strict locking feature’
enabled. Locking prevents clashes between different
users’ modifications if several are working on the
same file. This feature is disabled b the command
rcs -U foo.tw; it is unnecessary if only the owner
of the file is expected to deposit revisions into it.

The next two commands are used to extract
the latest, or the specified, revision from the group
file. rlog is used to print log messages. Differ-
ent revisions of a document may be compared using
rcsdiff. The command rcsdiff foo.tw compares
the latest revision with the contents of the working
file. The differences themselves are found by the

program diff; if you do not like diff’s default out-
put, change it by passing appropriate switches to
rcsdiff. The last command undoes the changes be-
tween revisions; the file foo.tw will be overwritten.
rcsmerge incorporates changes between two revi-
sions into the working file. A similar effect could be
achieved with a stand-alone program called merge.
If files being compared are mine, older, yours then
given the command

merge mine older yours

merge tries to add to mine the result of subtracting
older from yours; if overlap occurs, i.e., both files
mine and yours have changes to the same segment of
lines in older, then merge delimits the alternatives
with

<<<<<<< mine

(lines in) mine

=======

(lines in) yours

>>>>>>> yours

and writes above to mine. Now it is up to you which
set of changes you adopt. merge -p ... sends the
result of merging to the standard output.

To keep the working directory uncluttered, all
RCS files are usually stored in the subdirectory with
the name RCS. RCS commands look first into this
directory when searching for files.

Concluding remarks

It seems that the TEX language constitutes a good
starting point for exploring the idea of literate pro-
gramming. The system is simple, because many fea-
tures present in other WEBs are not needed. The sys-
tem is extensible, which means that it is possible
to try different styles and features. And finally, pro-
grams written in TEX are not too long — plain.tex

is about 1000 lines of code — which means that you
can print the documentation of real programs your-
self and share it with others.

For those convinced by the analysis above, the
literate source of plain.tex has been submitted to
the CTAN archives, in directory web/tweb; please
read it and enjoy.

TUGboat, Volume 16 (1995), No. 3 — Proceedings of the 1995 Annual Meeting 299


