
20 TUGboat, Volume 20 (1999), No. 1

TEXLive CD-ROM

An introduction to TEX Live 4

Editor: Sebastian Rahtz
sebastian.rahtz@oucs.ox.ac.uk

1 Introduction

This article1 is rewritten from that published in
TUGboat for TEX Live 3 in 1998 and describes
the main features of the TEX Live 4 CD-ROM—
a TEX/LATEX distribution for Unix, Linux, Win-
dows32 (and other) systems, and a wide-ranging set
of macros, fonts and documentation conforming to

1 The guide to kpathsea and web2c was written by Michel
Goossens, and Fabrice Popineau wrote the section on Win-
dows installation and use. The TEX Live CD-ROM distribution
is a joint effort by the TEX Users Group, and the UK,
French, German, Czech/Slovak, Dutch, Indian and Polish
user groups. For the 1999 edition, we are particularly grateful
to:

• Karl Berry, who provided the original Web2c distri-
bution, and has continued to give invaluable advice,
encouragement, and help;

• Mimi Burbank, who arranged access at the Florida
State University Supercomputer Research Institute to
a slew of different computers to compile TEX on, and
acted as an essential guinea-pig whenever asked;

• Kaja Christiansen, who provided essential feedback and
documentation preparation;

• Thomas Esser, without whose marvelous teTEX package
this CD-ROM would certainly not exist, and whose
continual help makes it a better product;

• Eitan Gurari, whose TEX4ht was used to create the
HTML version of this documentation, and who worked
tirelessly to improve it at short notice;

• Art Ogawa and Pat Monohon, who coordinated this
release for TUG;

• Petr Oľsák, who coordinated and checked all the
Czech/Slovak material very carefully;

• Fabrice Popineau, who has has worked away unceasingly
at the Win32 part of the package (especially the setup!)
and contributed in many different ways with ideas,
advice and code;

• Walter Schmidt, who checked the emTEX and OS/2
material, and found other horrors;

• Staszek Wawrykiewicz, who provided great checking
feedback, and coordinated the Polish contributions;

• Olaf Weber, for his patient assembly and maintenance
of Web2c 7.3;

• Graham Williams, on whose work the catalogue of
packages depends.

Alain Rabaute, Pascal Quignon, Gerhard Wilhelms, Fab-
rice Popineau, Libor Skarvada, Staszek Wawrykiewicz, Erik
Frambach, and Ulrik Vieth kindly translated documentation
into their respective languages, checked other documentation,
and provided very welcome feedback.

the TEX Directory Standard (TDS)—which can be
used with nearly every TEX setup.

The CD-ROM bundled with this issue of TUG-
boat is being provided as a benefit of 1999 TUG
membership. To keep up-to-date on the the TEX Live
project, please visit its Web page.2 The TEX Users
Group recognizes the importance of the TEX Live CD-

ROM and supports its development and production.
Volunteers to assist with this work are encouraged
to contact tex-live@tug.org.

A fuller version of this document (in English,
French, German and Slovak) can be found on the
CD-ROM in tldoc.

1.1 Changes since TEX Live 3

Although there have been no structural changes,
a very great many changes have been made, some
more visible than others. Changes that users should
know about include:

1. The main TEX programs are based on Web2c
version 7.3;

2. Both Unix and Win32 versions are identical to
teTEX 0.9 (as of the end of March 1999), and
simply add more programs, and a much larger
support tree;

3. New programs include dvipdfm (DVI to PDF

driver) and tth (TEX to HTML converter), as
well as new versions of pdfTEX, Ω, and ε-TEX;

4. The ‘December 1998’ (actually March 1999)
LATEX is included;

5. A brand new Windows install program is pro-
vided;

6. A great many font and macro packages have
been updated;

7. Packages are now starting to be classified as
‘free’ or ‘non-free’ (according to the Debian Free
Software Guidelines3) and we expect during the
coming year to complete this work, and be able
to offer a genuinely ‘free’ TEX CD-ROM at the
start of 2000.

Naturally, much effort has been expended on testing
the structural integrity of the texmf tree (in par-
ticular, checking it against what teTEX does, and
checking the licensing conditions of packages).

We very strongly urge any package authors
reading this to consider looking at how their work

2 http://www.tug.org/tex-live.html
3 http://www.debian.org/intro/free

TUGboat, Volume 20 (1999), No. 1 21

is arranged on the CD-ROM, and contacting us with
any problem. But most importantly, look at the
Catalogue maintained by Graham Williams4 and
check your details in there, especially the licensing!
Future versions of TEX Live will rely more and more
on the Catalogue.

2 Structure and contents of the CD-ROM

The important CD-ROM top-level directories are
listed below.
bin The TEX family programs, arranged in separate

platform directories;
tldoc Documentation for TEX Live;
FAQ Frequently Asked Questions, in English, French,

and German;
info Documentation in GNU ‘info’ format for the

TEX system;
man Documentation in the form of Unix man pages

for the TEX system;
source The source of all programs, including the

main Web2c, TEX, and METAFONT distribu-
tions – stored in a compressed tar archive;

support Various bits of TEX-related software which
are not installed by default, such as MusixTEX,
support programs, and a complete distribution
of Ghostscript version 5.50;

systems Packaged TEX systems which are separate
from the main TEX Live. Subdirectories in here
are:
macintosh The CMacTeX package ready to

install;
msdos The emTEX package for MS-Dos;
os2 The OS/2 TEX package emTEX/TDS and

the EPMTFE TEX shell for the EPM editor.
texmf The main support tree of macros, fonts and

documentation;
usergrps Material about TEX User Groups.

2.1 The TDS tree

The TEX Live texmf tree consists of various ‘col-
lections’, each of which has a set of ‘packages’, of
which there are over 400 on the CD-ROM. Normal
installation allows the user to copy all of a collection
to a local hard disk from the CD-ROM, but it is also
possible to install just one package of a collection.
The collections are:
ams The American Mathematical Society macro

packages and fonts.
bibtex BibTEX styles and databases.

4 http://www.cmis.csiro.au/Graham.Williams/TeX/

catalogue.html

doc General guides and documentation in various
formats, including HTML and PDF.

dvips Support for Rokicki’s DVI-to-PostScript driver.
etex Support for ε-TEX.
fonts Font sources, metrics, PostScript and bitmap

forms.
formats Eplain, RevTEX, phyzzx, texsis, alatex,

text1, lollipop, etc.
generic Extra macros for use with any format.
graphics Macro packages for graphics.
lang Support for non-English languages.
latex LATEX, including official tools and all LATEX2ε

contributed packages.
metapost Support for MetaPost.
omega Support for Ω.
pdftex Support for pdfTEX
plain Macros for plain TEX.
systems Binaries for Unix and Win32 platforms.
texlive Basic material for the distribution.

Each of the collections is divided into basic (1),
recommended (2), and other (3). Thus all pack-
ages in collection latex1 are what one must have
to get started with LATEX, packages in latex2 are
recommended for most users, and latex3 contains
optional packages. The directory texmf/lists con-
tains lists of all files in each package (used by the in-
stallation programs). Graham William’s Catalogue
lists all the packages, noting whether they are in
TEXLive, and giving details.

3 Installation and use under Unix

You can use the TEX Live CD-ROM in three ways:

1. You can mount the CD-ROM on your file sys-
tem, adjust your PATH, and run everything off
the CD-ROM; this takes very little disk space,
and gives you immediate access to everything
on the CD-ROM; although the performance will
not be optimal, it is perfectly acceptable on, for
instance, PCs running Linux.

2. You can install all or part of the system to
your local hard disk; this is the best method for
many people, if they have enough disk space to
spare (a minimum of about 10 megabytes, or
100 megabytes for a recommended good-sized
system).

3. You can install selected packages to work either
with your existing TEX system or a TEX Live
system you installed earlier.

Each of these methods is described in more detail in
the following sections.

22 TUGboat, Volume 20 (1999), No. 1

Warning: This CD-ROM is in ISO 9660
(High Sierra) format, with Rock Ridge and Joliet
extensions. In order to take full advantage of the
CD-ROM on a Unix system, your system needs to
be able to use the Rock Ridge extensions. Please
consult the documentation for your mount command
to see if it is possible. If you have several different
machines on a local network, see if you can mount
the CD-ROM on one which does support Rock Ridge,
and use this with the others.

3.1 Running from the CD-ROM under
Unix

The organisation of Web2c means that you can
run programs simply by adding the appropriate
directory under bin on the CD-ROM to your PATH,
and the support files will all be found with no
further ado. The following shows the list of available
systems and the corresponding directories.
DEC Alpha OSF/1 alpha-osf4.0
HP9000 HPUX hppa11-hpux10.10
Intel Linux i386-linux

i386-linux-libc5
SGI IRIX mips-irix6.2
IBM RS 6000 AIX rs6000-aix4.1.4
Sun Sparc Solaris sparc-solaris2.5.1
Windows 95 or NT (Intel) win32

You may worry that when you subsequently
make fonts or change configuration, things will go
wrong because you cannot change files on the CD-

ROM. However, you can maintain a parallel, write-
able, TEX tree on your hard disk; this is searched
before the main tree on the CD-ROM. The default
location is texmf-localconfig on the CD-ROM

(which does not exist!), so you must override this
by setting the VARTEXMF environment variable.

Thus sh or bash users on an Intel PC running
Linux can mount the TEX Live CD-ROM on /cdrom
by issuing the command:

>> mount -t iso9660 /dev/cdrom /cdrom

Then they should include the directory containing
the binaries for the given architecture into the search
path by updating the PATH variable.

PATH=/cdrom/bin/i386-linux:$PATH
export PATH
VARTEXMF=/usr/TeX.local
export VARTEXMF

For convenience, these statements can also be en-
tered into the .profile script.

If in doubt, ask your local system support guru
to help you work out how to mount your CD-ROM

or which directory to use for your system.

Appropriate support files will be installed on
your hard disk the first time you need them. It is a
good idea to immediately run the texconfig script
to initialise things, and check it all works.

3.2 Installing to a hard disk

All of the necessary steps to install all or part of
the distribution on your hard disk are achieved by
mounting the CD-ROM, changing to the top-level
directory, and typing:

>> sh install-cd.sh

(On some Unix systems, you may need to use sh5
or bash.) This script works by accessing lists of
collections and packages from the CD-ROM, and
trying to guess what sort of computer system you
are on. It should start by displaying the following:
Initializing collections... Done initializing.

Counting selected collections... Done counting.

Calculating disk space requirements for collections...

Done calculating that.

Initializing system packages...

Done initializing system.

It will then show the main control screen (Figure 1),
which lets you change four things:

1. the type of system you are on, or want to install
for;

2. the collections you want to install, at the basic,
recommended or other level;

3. the location on your hard disk to put the files;
4. some runtime behaviour features.

You choose options by typing a letter or number
and pressing ‘return’. In the example, a Linux ELF
system has been detected, the default of all collec-
tions to recommended level has been chosen, and the
default installation directory is /usr/TeX; note that
the disk space required for the current installation
configuration is also displayed. If you make a sug-
gested setup, you need about 100 megabytes of disk
free; however, the basic setup will only take about
10 megabytes, and you can enhance it with selected
packages as you need them.

Under the directory you choose for installation,
the installation script will put the binaries in a
subdirectory of bin, and the support tree in texmf.

The options item lets you decide whether to
make new fonts be created in another location (if
you want the main package mounted read-only for
most users), and whether to make symbolic links
for the man and GNU info pages in the ‘standard’
locations; you’ll need ‘root’ permissions for tasks to
do this, of course.

When you choose <C> for ‘collections’, you will
see the display of available collections, the level of

TUGboat, Volume 20 (1999), No. 1 23

===================> TeX Live installation procedure <==================

===> Note: Letters/digits in <angle brackets> indicate menu items <===

===> for commands or configurable options <===

Proposed platform: Intel x86 with GNU/Linux

<P> over-ride system detection and choose platform

<C> collections: 24 out of 34, disk space required: 9812099 kB

<S> systems: 1 out of 8, disk space required: 7925 kB

total disk space required: 9820024 kB

<L> install level (1: basic, 2: recommended, 3: all): 2

<D> directories:

TEXDIR (The main TeX directory) : /usr/TeX

TEXMFLOCAL (TeX directory for local styles etc): /var/TeX-local

<O> options:

[] alternate directory for generated fonts ()

[] alternate directory for configuration ()

[] create symlinks in standard directories

[] do not install macro/font doc tree

[] do not install macro/font source tree

[] only install free software

<I> start installation, <H> help, <Q> quit

Enter command:

Figure 1: Main control screen

name selection size

<1> bibtex [recommended] 7597 kB

<2> doc [recommended] 21152 kB

<3> dvips [recommended] 430 kB

<4> etex [recommended] 102 kB

<5> fonts [recommended] 51447 kB

<6> formats [recommended] 14651 kB

<7> generic [recommended] 459 kB

<8> graphics [recommended] 9674 kB

<9> lang [recommended] 19618 kB

<U> latex [recommended] 23429 kB

<V> metapost [recommended] 1443 kB

<W> omega [recommended] 4986 kB

<X> pdftex [recommended] 471 kB

<Y> plain [recommended] 1113 kB

<Z> texlive [recommended] 10155 kB

SUM: 166829 kB

==

global commands: select <N>one / asic / R<E>commended / <A>ll

for all collections

<R> return to platform menu

<Q> quit

Figure 2: Selecting collections

24 TUGboat, Volume 20 (1999), No. 1

Collection: Fonts

==

Fonts, including metrics, virtual fonts and sources

==

<N> No packages

 Basic packages [1023 kB]

<E> Basic + Recommended packages [51447 kB]

<A> All packages [127417 kB]

==

<R> return to collection menu

<Q> quit

Enter command:

Figure 3: Customizing a collection

installation selected, and the disk space required
(Figure 2). You can set alternative levels of instal-
lation for each collection, ranging from none to all.
You can either set this for all collections at once,
or choose a particular collection and set its level
(Figure 3).

When you are finished, return to the main
screen, and ask the installation to start. It will
take each of the collections and systems that you
requested, consult the list of files on the CD-ROM,
and build a master list of files to transfer. These will
then be copied to your hard disk. If you installed
a system, an initialisation sequence is now run (cre-
ating format files, etc.). When this has finished, all
you need do is add the correct subdirectory of bin
in the TEX installation to your path, and start using
TEX. If you want, you can move the binaries up one
level, e.g., from /usr/local/bin/alpha-osf3.2 to
/usr/local/bin; if you do this, however, you must
edit texmf/web2c/texmf.cnf (see Appendix 7) and
change the line near the start which reads

TEXMFMAIN = $SELFAUTOPARENT

to

TEXMFMAIN = $SELFAUTODIR

If you move the whole installation to another di-
rectory tree entirely, you need to edit TEXMFMAIN to
specify the support tree explicitly, and set TEXMFCNF
in your environment to $TEXMFMAIN/texmf/web2c.

3.3 Installing individual packages to a hard
disk

You may want to use the TEX Live CD-ROM to
either update an existing setup, or add features
to an earlier installation from the CD-ROM. The

main installation program is intended for the first
time only, and subsequently you should use the
install-pkg.sh script on the CD-ROM. Run this
by mounting the CD-ROM, changing to the mounted
directory, and typing

>> sh install-pkg.sh options

The script supports nine options; the first four
let you set the individual package you want to
install, the whole collection (i.e., ams2), the name
of the mounted CD-ROM directory, and the name of
the directory containing the list files (normally these
latter two will be set automatically):

--package=name
--collection=name
--cddir=name
--listdir=name

What actually happens is controlled by four
more switches; the first two allow you to exclude
documentation or source files from the installa-
tion, the third stops the default action of running
mktexlsr on completion to rebuild the file database,
and the last does nothing but list the files that would
be installed:

--nodoc
--nosrc
--nohash
--listonly

Finally, you can specify that, instead of in-
stalling the files, the script should make a tar archive
in a specified location:

--archive=name
Thus, if we simply wanted to see the files that

make up the package fancyhdr before we installed it,
our command and output would be as follows:

TUGboat, Volume 20 (1999), No. 1 25

>> sh install-pkg.sh --package=fancyhdr \

>> --listonly

texmf/doc/latex/fancyhdr/fancyhdr.dvi

texmf/doc/latex/fancyhdr/fancyhdr.tex

texmf/lists/free/latex3/fancyhdr

texmf/source/latex/fancyhdr/README

texmf/tex/latex/fancyhdr/extramarks.sty

texmf/tex/latex/fancyhdr/fancyhdr.sty

texmf/tex/latex/fancyhdr/fixmarks.sty

Other examples of usage are:
• Install the LATEX package natbib:

>> sh install-pkg.sh --package=natbib

• Install the LATEX package alg with no source files
and no documentation:

>> sh install-pkg.sh --package=alg \

>> --nosrc --nodoc

• Install all the packages available in the other Plain
TEX collection:

>> sh install-pkg.sh --collection=plain3

• Place all files which are needed for PSTricks in a
tar file in /tmp:

>> sh install-pkg.sh --package=pstricks \

>> --archive=/tmp/pstricks.tar

3.4 The texconfig program

After the installation program has copied all files to
their final locations, you can use a program called
texconfig that allows you to configure the system to
fit your local needs. This can be called at any other
time to change your setup, with a full-screen (which
requires the dialog program, included as part of
the binary packages) or command-line interface. It
should be used for all maintenance, such as changes
of installed printers, or rebuilding the file database.
Both modes have help text to guide you through the
facilities.

4 Installation and use under Windows

This section only applies to systems running Win-
dows 9x or NT. If you run Windows 3.1, you will
have to install emtex from the top level systems
directory by hand.

It is also necessary to have your Windows set
up so that it uses the Microsoft Joliet extensions for
reading CD-ROMs; simply look at the CD-ROM in
Windows Explorer and see whether it shows long,
mixed-case file names. If it does not, you cannot
use the ready-to-run system on the CD-ROM.

4.1 What is fpTEX?

The system on the CD-ROM for Windows is Fabrice
Popineau’s fpTEX. This is a port to Windows 9x
and Windows NT– referred to as Win32 – of the well
known distribution teTEX for Unix. More precisely,
given obvious differences between Unix and Win32,
some things behave differently under fpTEX, some
are still missing, some are just different, but the
large majority behave just the same as under Unix.

4.2 What is in this port

This version includes all the same programs as the
Unix side of TEX Live, with some additions which
can be installed.

Among the programs, there are a few DLLs:
• the ones that begin with msvc are the Microsoft

C library targeted for multi-threaded applica-
tions,

• the Kpathsea dynamic-linked library,
• zlib.dll (compress library) and libpng.dll

(Portable Network Graphics) for pdfTEX and a
few other programs,

• tex.dll, pdftex.dll and a few others refer to
TEX engines – see the explanation below.
All the various TEX engines are distributed in

the form of a .dll file for the core, and a .exe file
for the front-end. This is the answer to the problem
of link files that do not exist on Win32 platforms.
For example, the TEX engine is made up of:
11/19/98 11:07a 217,088 tex.dll
11/19/98 11:07a 16,384 tex.exe

and the latex.exe file is nothing but a rough copy
of tex.exe using the same core tex.dll. The
same approach is used for the mktex*.exe family of
programs which are linked to the mktex.dll library.

4.3 Running from the CD-ROM

You can run all the TEX programs directly off the
CD-ROM, and have access to all the macros and
fonts immediately, at the price of a slower perfor-
mance than if you install on the hard disk. To do
this, you must add the bin/win32 directory of the
CD-ROM to your PATH, using the Windows configu-
ration software. Now you can run the programs at
a command prompt, or use the shareware WinEdt
editor, which runs the programs from convenient
menus.

4.4 How to install it

When you put TEX Live in your computer, the setup
should run automatically; if it does not, run the pro-
gram autorun.exe. Now follow the instructions—
here are some hints:

26 TUGboat, Volume 20 (1999), No. 1

• Choose a root for your installation, c:\TeX is
proposed by default, but you can change it
because you will need lots of disk space: more
than 300Mb for a full installation, and beware
that the cluster size on FAT partitions will make
the package appear even bigger;

• Do not use any path with embedded ‘space’
character: TEX won’t like that. The setup.exe
checks for that anyway;

• Your main texmf tree will be root/texmf and
designated by the variable $TEXMFMAIN;

• You have the opportunity to add some more
texmf trees:

– one local texmf tree, which is designated
by the variable $TEXMFLOCAL and is by
default root/texmf.local. It is intended
to store your site local macros and style
files, and also any locally generated font
files. If you do not specify a local texmf
tree, you will be asked to set the variable
VARTEXFONTS to point to some directory
where those fonts will be stored. If you
specify a local texmf tree, it will be used
for those fonts.

– one home texmf tree, which is designated
by the variable $HOMETEXMF and is by de-
fault $HOME/texmf. This is meaningful
only under Windows NT, where users have
a $HOME. Usually, Windows 9x users do not
have a $HOME, so they should leave this
place empty;

These locations can be edited manually by
looking for their variables names in the file
texmf/web2c/texmf.cnf.

• You will be asked if you want to install:
– PK fonts,
– only free packages, in which case some

packages will even disappear from the list
for a custom installation,

– if you want the documentation accompa-
nying each of the packages being installed;
guides and general documentation will al-
ways be installed, but not the material
that is provided with some specific pack-
age;

– idem for source files.
• Choose your setup from basic, recommended

and full. If you already know what you want
to install, you can also choose to do a custom
setup. In this case, you will be presented with a
list of collections of packages. Each collection is
(de)selectable by itself, and so is each package

individually. A short description is provided for
many packages, thanks to the Web catalogue of
Graham Williams.

• Ignore the ‘setup’ collection in the list of col-
lections. It refers to the files in the \setupw32
on the CD-ROM and should have been made
invisible;

• You will have the opportunity to add some
more special packages, namely Ghostscript and
Ghostview, the Postscript interpreter and pre-
viewer, ImageMagick which allows for image
manipulations and conversions, WinEdt which
is a good shareware environment for editing and
typesetting with TEX, and texshell which does
quite the same as WinEdt (free but less fancy).

• You can review your installation settings, and
if everything is okay, the file transfer will begin;

• Once it is done, the installers for Ghostview
and WinEdt will be called if selected. The
installation and configuration of everything else
is handled by setup.exe. It is completely
automatic. The last step is the build of ‘ls-R’
files;

• Eventually, the setup will be over and the doc-
umentation displayed using your default Web
browser. Windows 9x users will need to reboot
before being able to run anything.
A number of items will appear under the Start->

Programs->TeXLive menu.

4.5 What does the setup hide from me ?

If you want to hack the configuration by yourself,
here is a more detailed description of what the setup
does — and what it does not. Your PATH is modified
to make the programs installed accessible. It is
checked for any older version of fpTEX or TEX-Live,
and if one is found, its entry in PATH is removed.
This is done by looking for the file kpathsea.dll
along your PATH.

If Ghostscript installation has been requested,
the location of gs5.50 is added to your PATH be-
cause the files gswin32c.exe (command line inter-
face to Ghostscript) and gsdll32.dll (dll embedded
Ghostscript) are accessed by several programs of the
distribution. Ghostscript uses the registry now (ver-
sion 5.50) and so does not need any other setting to
find the relevant files. Previous or customized in-
stallations might require to set the GS_LIB variable.
See the appropriate documentation.

ImageMagick is also added to your PATH if it
has been selected. Moreover, the right delegates.mk
file is copied according to your platform (Windows 9x
or Windows NT). See ImageMagick documentation
for more details.

TUGboat, Volume 20 (1999), No. 1 27

Your main <root>/texmf/web2c/texmf.cnffile
is edited to reflect the texmf trees you have specified,
and the location of locally generated fonts. The
variables $TEXMF, $TEXMFLOCAL, $HOMETEXMF, and
$VARTEXFONTS are modified.

The file <root>/texmf/web2c/mktex.cnf is
edited to add the feature ‘varfonts’, which will
force any locally generated font to be stored in
$VARTEXFONTS.

The configuration for tex4ht is undertaken by
editing <root>/texmf/tex4ht/base. The only rel-
evant part is that it needs to run the convert.exe
tool of ImageMagick, so the full path to access it is
provided.

4.6 Testing the installation

A valuable tool to test the installation now is the
program kpsewhich.

As a first step, you should check if Web2C
correctly identifies the location of your texmf tree.
Open a command prompt window and type

kpsewhich -expand-path=$TEXMF

The answer should be the location of your
texmf tree (e.g., c:/TeX/texmf if you unpacked the
archive files as in the example above —note that the
answer is a Unix style path, i.e., the MS-Dos style \\
is substituted by /; you don’t have to worry about
this). If you do not get the right answer you have
probably changed the default directory structure. In
this case you have to set the variable TEXMFmanually
to the root directory of your texmf tree.

If you want to be on the safe side, you may
type in mktexlsr to update the ls-R database, even
though a proper ls-R file should be provided after
installation.

4.7 Network installation and filesystem
considerations

All the support files, everything except the files in
bin/win32, are shareable with a Unix installation.
This means you can use Samba either to mount from
a Windows NT server to a Unix workstation or the
converse. Several strategies are possible:

• Put everything on the server. Just add each
set of files for the operating system and ar-
chitecture you want to use in the bin direc-
tory. That means for example bin/win32 and
bin/i386-linux.

• Install a local copy of the binaries and format
files. In this case, assign $TEXMFMAIN to the
main texmf tree that will lie on the network.

These schemes should have been handled by the
InstallShield installer. But so many problems arose
with this installer that these features have been
delayed to the next version of the setup program.

Win32 supports multiple filesystems:

• MS-Dos FAT, 8.3 and uppercase filenames
• Protected mode FAT, long filenames, but case-

insensitive
• NTFS, long filenames and case-sensitive
• ISO9660 CD-ROM, 8.3 and uppercase filenames

Moreover, Win32 calls which refer to filenames
are case-insensitive, and there are several other fea-
tures in NTFS that Win32 can’t use for the moment.
Another dimension is the use of different directory
separators: / or \, but Win32 calls accept both.

So what difficulties may arise ?
Most likely, you will have some style files with

long filenames. If you are running on a filesystem
which supports them,5 there is no problem and you
have nothing to do. Otherwise, you will need to use
the alias feature of Kpathsea. Suppose, for instance,
you are trying to install texmf on a FAT partition
and you have the style file named longtable.sty
in your tree. The filename will be truncated to its
8.3 form: longtabl.sty. In this case, you will need
to create a file named aliases in the same place as
the ls-R file in your texmf tree. This file should
contain the following line:

longtabl.sty longtable.sty

All references to longtable.sty will be redirected
to longtabl.sty if the long filename is not found.

Otherwise, if you think you have trouble with
filenames, consider doing the following:

• paths in config files and environment variables
should be written using / rather than \;

• ls-R databases should be in lower case, even if
you are running on FAT or CD-ROM;

• use the debug feature of Kpathsea and kpsewhich
to demonstrate your problem and email us the
results of your investigations.

5 Building on a new Unix platform

If you have a platform for which we have not pro-
vided binary sources, you will need to compile TEX
and friends from scratch. This is not as hard as it
sounds. What you need is all in the directory source
on the CD-ROM.

You should first install the support tree from
the TEX Live CD-ROM (do a basic install, with no
system binaries chosen).

5 For example, NTFS but not FAT!

28 TUGboat, Volume 20 (1999), No. 1

5.1 Prerequisites

You will need about 100 megabytes of disk space
to compile all of TEX and its support programs.
You’ll also need an ANSI C compiler, a make utility,
a lexical scanner, and a parser generator. The GNU

utilities (gcc, GNU make, m4, flex, bison) are the
most widely tested on different platforms. gcc-
2.7.* flex-2.4.7 and GNU make-3.72.1 or newer should
work well. You may be able to work with other C
compilers and make programs, but you will need
a good understanding of building Unix programs
to sort out problems. The command uname must
return a sensible value.

5.2 Configuration

First, unpack the source from the compressed tar
file in the directory source to your disk and change
directory to where you placed it. Decide where
the ‘root’ of the installation will be, e.g., /var/TeX
or /usr/TeX. Obviously you should use the same
location that you specified when you installed the
support tree.

Now, start the build process by running config-
ure with a command-line like
>> ./configure -prefix=/usr/TeX

The ‘prefix’ directory is the one where you
installed the support tree; the directory layout that
will be used is as follows (where $TEXDIR stands
for the directory you chose):
$TEXDIR/man Unix manual pages
$TEXDIR/share/texmf main tree with fonts,

macros, etc
$TEXDIR/info GNU ‘info’ manuals
$TEXDIR/bin/$PLATFORM binaries

You can omit the use of ‘share/’ part for the
texmf directory if you want, as $TEXDIR/share/
texmf and $TEXDIR/texmf are auto-detected by
configure. If you choose something different, you
have to specify that directory with the --datadir
option of configure.

If you want to leave out the $PLATFORM di-
rectory level (that is, put binaries directly into
$TEXDIR/bin), you can use the configure option
--disable-multiplatform.

Have a look at the output of ./configure
--help for more options you can use (such as omit-
ting optional packages such as Ω or ε-TEX).

5.3 Running make

Make sure the shell variable noclobber is not set,
and then type

>> make world

and relax. . . .
It could also be useful to log all the output, e.g.,

by typing

>> sh -c "make world >world.log 2>&1" &

Before you think that everything is okay, please
check the log file for errors (GNU make always uses
the string “Error:” whenever a command returns
an error code) and check if all binaries are built:

>> cd /usr/TeX/bin/i586-pc-linux-gnu

>> ls | wc

The result should be 204. make world is equivalent
to make all install strip

If you need special privileges for make install,
you can run two make jobs in separate runs:

>> make all

>> su

>> make install strip

5.4 Final configuration steps

Set up your PATH to include the directory con-
taining the just-installed binaries (e.g., /usr/TeX/
bin/mips-sgi-irix6.3); similarly, MANPATH and
INFOPATH to include the relevant newly installed
subdirectories, i.e., $TEXDIR/man and $TEXDIR/info.

The program texconfig allows you to set the de-
faults for hyphenation, paper size, print command,
METAFONT mode, etc. You can run this command
interactively and see what options it offers, or type

>> texconfig help

For example, if you are not using A4 format
paper, you can make ‘lettersize’ the default using:

>> texconfig dvips paper letter

>> texconfig xdvi paper us

6 A user’s guide to the Web2c system

Web2c contains a set of TEX-related programs, i.e.,
TEX itself, METAFONT, MetaPost, BibTEX, etc; it
works on Unix, Windows 3.1, 9x/NT, DOS, and
other operating systems. It uses Knuth’s original
sources for TEX and other basic programs written
in web and translates them into C source code.
Moreover, the system offers a large set of macros and
functions developed to augment the original TEX
software. The core TEX family components are:

bibtex Maintaining bibliographies;
dmp troff to MPX (MetaPost pictures);
dvicopy Produces modified copy of DVI file;
dvitomp DVI to MPX (MetaPost pictures);

TUGboat, Volume 20 (1999), No. 1 29

dvitype DVI to human-readable text;
gftodvi Generic font proofsheets;
gftopk Generic to packed fonts;
gftype GF to human-readable text;
makempx MetaPost label typesetting;
mf Creating typeface families;
mft Prettyprinting METAFONT source;
mpost Creating technical diagrams;
mpto MetaPost label extraction;
newer Compare modification times;
patgen Creating hyphenation patterns;
pktogf Packed to generic fonts;
pktype PK to human-readable text;
pltotf Property list to TFM;
pooltype Display web pool files;
tangle web to Pascal;
tex Typesetting;
tftopl TFM to property list;
vftovp Virtual font to virtual property list;
vptovf Virtual property list to virtual font;
weave web to TEX.
The precise functions and syntax of these programs
are described in the documentation of the individual
packages or of Web2c itself. However, knowing a few
principles governing the whole family of programs
will help you to benefit optimally from your Web2c
installation.

All programs honor the standard GNU options:
--help print basic usage summary.
--verbose print detailed progress report.
--version print version information, then exit.

For locating files the Web2c programs use the
path searching library Kpathsea. This library uses
a combination of environment variables and a few
configuration files to optimize searching the TEX
directory tree. Web2c 7.3 can handle more than
one directory tree simultaneously, which is useful if
one wants to maintain TEX’s standard distribution
and local extensions in two distinct trees. To speed
up file searches the root of each tree has a file, ls-R,
containing an entry showing the name and relative
pathname for all files “hanging” under that root.

6.1 Kpathsea path searching

Let us first describe the generic path searching
mechanism of the Kpathsea library.

We call a search path a colon- or semicolon-
separated list of path elements, which are basically
directory names. A search path can come from (a
combination of) many sources. To look up a file

“my-file” along a path “.:/dir”, Kpathsea checks
each element of the path in turn: first ./my-file,
then /dir/my-file, returning the first match (or
possibly all matches).

In order to adapt optimally to all operating sys-
tems’ conventions, on non-Unix systems Kpathsea
can use filename separators different from “colon”
(“:”) and “slash” (“/”).

To check a particular path element p, Kpathsea
first checks if a prebuilt database (see “Filename
database” on page 31) applies to p, i.e., if the
database is in a directory that is a prefix of p. If
so, the path specification is matched against the
contents of the database.

If the database does not exist, or does not apply
to this path element, or contains no matches, the
filesystem is searched (if this was not forbidden by
a specification starting with “!!” and if the file
being searched for must exist). Kpathsea constructs
the list of directories that correspond to this path
element, and then checks in each for the file being
sought.

The “file must exist” condition comes into play
with “.vf” files and input files read by TEX’s
\openin command. Such files may not exist (e.g.,
cmr10.vf), and so it would be wrong to search the
disk for them. Therefore, if you fail to update ls-R
when you install a new “.vf” file, it will never be
found. Each path element is checked in turn: first
the database, then the disk. If a match is found, the
search stops and the result is returned.

Although the simplest and most common path
element is a directory name, Kpathsea supports ad-
ditional features in search paths: layered default val-
ues, environment variable names, config file values,
users’ home directories, and recursive subdirectory
searching. Thus, we say that Kpathsea expands a
path element, meaning it transforms all the specifi-
cations into basic directory name or names. This is
described in the following sections in the same order
as it takes place.

Note that if the filename being searched for is
absolute or explicitly relative, i.e., starts with “/” or
“./” or “../”, Kpathsea simply checks if that file
exists.

6.1.1 Path sources

A search path can come from many sources. In the
order in which Kpathsea uses them:

1. A user-set environment variable, for instance,
TEXINPUTS. Environment variables with a pe-
riod and a program name appended override;
e.g., if “latex” is the name of the program

30 TUGboat, Volume 20 (1999), No. 1

TEXMF = {$TEXMFLOCAL;!!$TEXMFMAIN}

TEXINPUTS.latex = .;$TEXMF/tex/{latex;generic;}//

TEXINPUTS.fontinst = .;$TEXMF/tex//;$TEXMF/fonts/afm//

% e-TeX related files

TEXINPUTS.elatex = .;$TEXMF/{etex;tex}/{latex;generic;}//

TEXINPUTS.etex = .;$TEXMF/{etex;tex}/{eplain;plain;generic;}//

Figure 4: An illustrative configuration file sample

being run, then TEXINPUTS.latex will override
TEXINPUTS.

2. A program-specific configuration file, for exam-
ple, a line “S /a:/b” in dvips’s config.ps.

3. A Kpathsea configuration file texmf.cnf, con-
taining a line like “TEXINPUTS=/c:/d” (see be-
low).

4. The compile-time default.

You can see each of these values for a given search
path by using the debugging options (see “Debug-
ging actions” on page 33).

6.1.2 Config files

Kpathsea reads runtime configuration files named
texmf.cnf for search path and other definitions.
The search path used to look for these files is
named TEXMFCNF (by default such a file lives in the
texmf/web2c subdirectory). All texmf.cnf files
in the search path will be read and definitions in
earlier files override those in later files. Thus, with a
search path of .:$TEXMF, values from ./texmf.cnf
override those from $TEXMF/texmf.cnf.

While reading the description of the format
of the file texmf.cnf below, please also refer to
appendix 7, starting on page 37, which lists the
texmf.cnf file on the CD-ROM.

• Comments start with “%” and continue to the
end of the line.

• Blank lines are ignored.
• A \ at the end of a line acts as a continua-

tion character, i.e., the next line is appended.
Whitespace at the beginning of continuation
lines is not ignored.

• Each remaining line has the form:

variable [.progname] [=] value

where the “=” and surrounding whitespace are
optional.

• The “variable” name may contain any char-
acter other than whitespace, “=”, or “.”, but
sticking to “A-Za-z ” is safest.

• If “.progname” is present, the definition only
applies if the program that is running is named

progname or progname.exe. This allows dif-
ferent flavors of TEX to have different search
paths, for example.

• “value” may contain any characters except “%”
and “@”. The “$var.prog” feature is not avail-
able on the right-hand side; instead, you must
use an additional variable. A “;” in “value”
is translated to “:” if running under Unix; this
is useful to be able to have a single texmf.cnf
for Unix, MS-Dos and Windows systems.

• All definitions are read before anything is ex-
panded, so variables can be referenced before
they are defined.

A configuration file fragment illustrating most of
these points is shown in Figure 4.

6.1.3 Path expansion

Kpathsea recognizes certain special characters and
constructions in search paths, similar to those avail-
able in Unix shells. As a general example, the
complex path, ~$USER/{foo,bar}//baz, expands
to all subdirectories under directories foo and bar
in $USER’s home directory that contain a directory
or file baz. These expansions are explained in the
sections below.

6.1.4 Default expansion

If the highest-priority search path (see “Path
sources” on page 29) contains an extra colon (i.e.,
leading, trailing, or doubled), Kpathsea inserts at
that point the next-highest-priority search path that
is defined. If that inserted path has an extra colon,
the same happens with the next highest. For exam-
ple, given an environment variable setting
>> setenv TEXINPUTS /home/karl:

and a TEXINPUTS value from texmf.cnf of
.:\$TEXMF//tex

then the final value used for searching will be:
/home/karl:.:\$TEXMF//tex

Since it would be useless to insert the default
value in more than one place, Kpathsea changes only
one extra “:” and leaves any others in place: it
checks first for a leading “:”, then a trailing “:”,
then a doubled “:”.

TUGboat, Volume 20 (1999), No. 1 31

6.1.5 Brace expansion

A useful feature is brace expansion, which means
that, for instance, v{a,b}w expands to vaw:vbw.
Nesting is allowed. This can be used to implement
multiple TEX hierarchies, by assigning a brace list
to $TEXMF. For example, in texmf.cnf, you find the
following definition (on one line!):
TEXMF = {$HOMETEXMF,$TEXMFLOCAL,

!!$VARTEXMF,!!$TEXMFMAIN}

Using this you can then write something like
TEXINPUTS = .;$TEXMF/tex//

which means that, after looking in the current
directory, the $HOMETEXMF/tex, $TEXMFLOCAL/tex,
$VARTEXMF/tex and $TEXMFMAIN/tex trees only)
will be searched (the last two use using ls-R data
base files). It is a convenient way for running two
parallel TEX structures, one “frozen” (on a CD-

ROM, for instance) and the other being continuously
updated with new versions as they become available.
By using the $TEXMF variable in all definitions, one
is sure to always search the up-to-date tree first.

6.1.6 Subdirectory expansion

Two or more consecutive slashes in a path element
following a directory d is replaced by all subdirecto-
ries of d : first those subdirectories directly under d,
then the subsubdirectories under those, and so on.
At each level, the order in which the directories are
searched is unspecified.

If you specify any filename components after
the “//”, only subdirectories with matching compo-
nents are included. For example, “/a//b” expands
into directories /a/1/b, /a/2/b, /a/1/1/b, and so
on, but not /a/b/c or /a/1.

Multiple “//” constructs in a path are possible,
but “//” at the beginning of a path is ignored.

6.1.7 List of special characters and their
meaning: a summary

The following list summarises the meaning of special
characters in Kpathsea configuration files.
: Separator in path specification; at the be-

ginning or the end of a path it substitutes the
default path expansion.

; Separator on non-Unix systems (acts like :).
$ Variable expansion.
~ Represents the user’s home directory.
{...} Brace expansion, e.g., a{1,2}b will become

a1b:a2b.
// Subdirectory expansion (can occur anywhere

in a path, except at its begining).
% Start of comment.

\ Continuation character (allows multi-line en-
tries).

!! Search only database to locate file, do not
search the disk.

6.2 Filename databases

Kpathsea goes to some lengths to minimize disk
accesses for searches. Nevertheless, at installations
with enough directories, searching each possible di-
rectory for a given file can take an excessively long
time (this is especially true if many hundreds of
font directories have to be traversed.) Therefore,
Kpathsea can use an externally-built “database”
file named ls-R that maps files to directories, thus
avoiding the need to exhaustively search the disk.

A second database file aliases allows you to
give additional names to the files listed in ls-R. This
can be helpful to adapt to DOS-like “8.3” filename
conventions in source files.

6.2.1 The filename database

As explained above, the name of the main filename
database must be ls-R. You can put one at the root
of each TEX hierarchy in your installation that you
wish to be searched ($TEXMF by default); most sites
have only one hierarchy. Kpathsea looks for ls-R
files along the TEXMFDBS path.

The recommended way to create and main-
tain “ls-R” is to run the mktexlsr script included
with the distribution. It is invoked by the various
“mktex”. . . scripts. In principle, this script just runs
the command
cd /your/texmf/root && ls -LAR ./ >ls-R

presuming your system’s ls produces the right out-
put format (GNU’s ls is all right). To ensure that
the database is always up-to-date, it is easiest to
rebuild it regularly via cron, so that for changes in
the installed files—perhaps after installing or updat-
ing a LATEX package—the file ls-R is automatically
updated.

If a file is not found in the database, by default
Kpathsea goes ahead and searches the disk. If a
particular path element begins with “!!”, however,
only the database will be searched for that element,
never the disk.

6.2.2 kpsewhich: Standalone path
searching

The kpsewhich program exercises path searching
independent of any particular application. This
can be useful as a sort of find program to locate
files in TEX hierarchies (this is used heavily in the
distributed “mktex”. . . scripts).

32 TUGboat, Volume 20 (1999), No. 1

>> kpsewhich option ... filename ...

The options specified in “option” can start with
either “-” or “--”, and any unambiguous abbrevia-
tion is accepted.

Kpathsea looks up each non-option argument
on the command line as a filename, and returns the
first file found. There is no option to return all the
files with a particular name (you can run the Unix
“find” utility for that).

The more important options are described next.
--dpi=num Set the resolution to “num ”; this only

affects “gf” and “pk” lookups. “-D” is a syn-
onym, for compatibility with dvips. Default is
600.

--format=name
Set the format for lookup to “name ”. By de-
fault, the format is guessed from the filename.
For formats which do not have an associated
unambiguous suffix, such as MetaPost support
files and dvips configuration files, you have to
specify the name as found in the first column
of Table 1 on p. 36, which lists currently recog-
nized names, a description, associated environ-
ment variables,6, and possible file extensions.

The last two entries in Table 1 are special cases,
where the paths and environment variables de-
pend on the name of the program: the vari-
able name is constructed by converting the pro-
gram name to upper case, and then appending
INPUTS.

The environment variables are set by default
in the configuration file texmf.cnf. It is only
when you want to override one or more of
the values specified in that file that you might
want to set them explicitly in your execution
environment.

Note that the “--format” and “--path” op-
tions are mutually exclusive.

--mode=string
Set the mode name to “string”; this only
affects “gf” and “pk” lookups. No default: any
mode will be found.

--must-exist
Do everything possible to find the files, notably
including searching the disk. By default, only
the ls-R database is checked, in the interest of
efficiency.

--path=string
Search along the path “string” (colon-separated

6 You can find definitions for these environment variables
in the file texmf.cnf (page 37)

as usual), instead of guessing the search path
from the filename. “//” and all the usual ex-
pansions are supported. The options “--path”
and “--format” are mutually exclusive.

--progname=name
Set the program name to “name”. This can
affect the search paths via the “.prognam”
feature in configuration files. The default is
“kpsewhich”.

--show-path=name
shows the path used for file lookups of file type
“name ”. Either a filename extension (“.pk”,
“.vf”, etc.) or a name can be used, just as
with “--format” option.

--debug=num
sets the debugging options to “num ”.

6.2.3 Examples of use

Let us now have a look at Kpathsea in action.
>> kpsewhich article.cls

/usr/texmf/tex/latex/base/article.cls

We are looking for the file article.cls. Since
the “.cls” suffix is unambiguous we do not need
to specify that we want to look for a file of type
“tex” (TEX source file directories). We find it in the
subdirectory tex/latex/base below the “TEXMF”
root directory. Similarly, all of the following are
found without problems thanks to their unambigu-
ous suffix.
>> kpsewhich array.sty

/usr/texmf/tex/latex/tools/array.sty

>> kpsewhich latin1.def

/usr/texmf/tex/latex/base/latin1.def

>> kpsewhich size10.clo

/usr/texmf/tex/latex/base/size10.clo

>> kpsewhich small2e.tex

/usr/texmf/tex/latex/base/small2e.tex

>> kpsewhich tugboat.bib

/usr/texmf/bibtex/bib/beebe/tugboat.bib

The last item is a BibTEX bibliography database for
TUGBoat articles.
>> kpsewhich cmr10.pk

Font bitmap glyph files of type .pk are used by
display programs like dvips and xdvi. Nothing is
returned in this case since there are no pre-generated
Computer Modern “.pk” files on our system (since
we use the Type1 versions on the CD-ROM).
>> kpsewhich ecrm1000.pk

/usr/texmf/fonts/pk/ljfour/jknappen/

... ec/ecrm1000.600pk

For the extended Computer Modern files we had to
generate “.pk” files, and since the default META-
FONT mode on our installation is ljfour with a

TUGboat, Volume 20 (1999), No. 1 33

base resolution of 600 dpi (dots per inch), this
instantiation is returned.
>> kpsewhich -dpi=300 ecrm1000.pk

In this case, when specifying that we are interested
in a resolution of 300dpi (-dpi=300) we see that
no such font is available on the system. In fact, a
program like dvips or xdvi would go off and actually
build the .pk files at the required resolution using
the script mktexpk.

Next we turn our attention to dvips’s header
and configuration files. We first look at one of the
commonly used files, the general prolog tex.pro
for TEX support, before turning our attention to
the generic configuration file (config.ps) and the
PostScript font map psfonts.map. As the “.ps”
suffix is ambiguous we have to specify explicitly
which type we are considering (“dvips config”) for
the file config.ps.

>> kpsewhich tex.pro

/usr/texmf/dvips/base/tex.pro

>> kpsewhich --format="dvips config" config.ps

/usr/texmf/config/config.ps

>> kpsewhich psfonts.map

/usr/texmf/dvips/base/psfonts.map

We now take a closer look at the URW Times
PostScript support files. The name for these in
Berry’s font naming scheme is “utm”. The first file
we look at is the configuration file, which contains
the name of the map file:

>> kpsewhich --format="dvips config" config.utm

/usr/texmf/dvips/psnfss/config.utm

The contents of that file is
p +utm.map

which points to the file utm.map, which we want to
locate next.
>> kpsewhich --format="dvips config" utm.map

/usr/texmf/dvips/psnfss/utm.map

This map file defines the file names of the Type1
PostScript fonts in the URW collection. Its contents
look like (we only show some of the lines):

utmb8r NimbusRomNo9L-Medi ... <utmb8a.pfb

utmbi8r NimbusRomNo9L-MediItal... <utmbi8a.pfb

utmr8r NimbusRomNo9L-Regu ... <utmr8a.pfb

utmri8r NimbusRomNo9L-ReguItal... <utmri8a.pfb

utmbo8r NimbusRomNo9L-Medi ... <utmb8a.pfb

utmro8r NimbusRomNo9L-Regu ... <utmr8a.pfb

Let us, for instance, take the Times Regular instance
utmr8a.pfb and find its position in the texmf direc-
tory tree by using a search for Type1 font files:

>> kpsewhich utmr8a.pfb

/usr/texmf/fonts/type1/

... urw/utm/utmr8a.pfb

It should be evident from these few examples
how you can easily locate the whereabouts of a given
file. This is especially important if you suspect that
the wrong version of a file is picked up somehow,
since kpsewhich will show you the first file encoun-
tered.

6.2.4 Debugging actions

Sometimes it is necessary to investigate how a pro-
gram resolves file references. To make this feasible
in a convenient way, Kpathsea offers various debug
levels:
1 stat calls (file tests). When running with an

up-to-date ls-R database this should almost
give no output.

2 References to hash tables (like ls-R database,
map files, configuration files).

4 File open and close operations.
8 General path information for file types searched

by Kpathsea. This is useful to find out where a
particular path for the file was defined.

16 Directory list for each path element (only rele-
vant for searches on disk).

32 File searches.
A value of -1 will set all the above options; in
practice you will probably always use these levels
if you need any debugging.

Similarly, with the dvips program, by setting
a combination of debug switches, one can follow in
detail where files are being picked up from. Alter-
natively, when a file is not found, the debug trace
shows in which directories the program looks for the
given file, so that one can get an indication what the
problem is.

Generally speaking, as most programs call the
Kpathsea library internally, one can select a debug
option by using the KPATHSEA DEBUG environment
variable, and setting it to (a combination of) values
as described in the above list.

Let us consider, as an example, a small LATEX
source file, hello-world.tex, which contains the
following input.

\documentclass{article}
\begin{document}
Hello World!
\end{document}

This little file uses only the font cmr10, so let us
look how dvips prepares the PostScript file (we want

34 TUGboat, Volume 20 (1999), No. 1

to use the Type1 version of the Computer Modern
fonts, hence the option -Pcms).

>> dvips -d4100 hello-world -Pcms -o

In this case we have combined dvips’s debug class
4 (font paths) with Kpathsea’s path element expan-
sion (see dvips Reference Manual, texmf/doc/html/
dvips/dvips_toc.html). The output (slightly re-
arranged) appears in Figure 5. dvips starts by lo-
cating its working files. First, texmf.cnf is found,
which gives the definitions of the search paths for the
other files, then the file database ls-R (to optimize
file searching) and the file aliases, which makes it
possible to declare several names (e.g., a short DOS-
like “8.3” and a more natural longer version) for the
same file. Then dvips goes on to find the generic
configuration file config.ps before looking for the
customization file .dvipsrc (which, in this case is
not found). Finally, dvips locates the config file for
the Computer Modern PostScript fonts config.cms
(this was initiated with the -Pcms option on the
dvips command). This file contains the list of the
“map” files which define the relation between the
TEX, PostScript and file system names of the fonts.

>> more /usr/texmf/dvips/cms/config.cms

p +ams.map

p +cms.map

p +cmbkm.map

p +amsbkm.map

dvips thus goes on to find all these files, plus
the generic map file psfonts.map, which is always
loaded (it contains declarations for commonly used
PostScript fonts; see the last part of Section 6.2.3 for
more details about PostScript map file handling).

At this point dvips identifies itself to the user. . .

This is dvips 5.78 Copyright 1998 Radical Eye...

then goes on to look for the prolog file texc.pro.
After having found the file in question, dvips

outputs date and time, and informs us that it will
generate the file hello-world.ps, then that it needs
the font file cmr10, and that the latter is declared
as “resident”:

TeX output 1998.02.26:1204’ -> hello-world.ps

Defining font () cmr10 at 10.0pt

Font cmr10 <CMR10> is resident.

Now the search (Figure 8) starts for cmr10.tfm,
which is found, then a few more prolog files (not
shown) are referenced, and finally the Type1 in-
stance cmr10.pfb of the font is located and included
in the output file (see last line).

6.3 Runtime options

Another of the nice features of Web2c 7.3 is its
possibility to control a number of memory param-
eters (in particular, array sizes) via the runtime
file texmf.cnf read by Kpathsea. The listing
of texmf.cnf is shown in Section 7, starting on
page 37; the settings of all parameters can be found
in Part 3 of that file. The more important control
variables are:
main memory Total words of memory available, for

TEX, METAFONT and MetaPost. You must
make a new format file for each different set-
ting. For instance, you could generate a
“huge” version of TEX, and call the format
file hugetex.fmt. Using the standard way of
specifying the program name used by Kpathsea,
the particular value of the main memory variable
will then be read from texmf.cnf (compare the
generic value and the “huge” one instantiated
by hugetex, etc.).

extra mem bot Extra space for “large” TEX data
structures: boxes, glue, breakpoints, etc. Es-
pecially useful if you use PICTEX.

font mem size Number of words for font informa-
tion available for TEX. This is more or less the
total size of all TFM files read.

hash extra Additional space for the hash table of
control sequence names. Approximately 10,000
control sequences can be stored in the main
hash table; if you have a large book with
numerous cross-references, this might not be
enough. You can see that both the hugetex and
pdflatex program invocations ask for an extra
15,000 control sequences (the default value of
hash extra is zero).

Of course, this facility is no substitute for truly
dynamic arrays and memory allocation, but since
this is extremely difficult to implement in present
TEX, these runtime parameters provide a practical
compromise allowing some flexibility.

TUGboat, Volume 20 (1999), No. 1 35

debug:start search(file=texmf.cnf, must_exist=1, find_all=1,

path=.:/usr/local/bin/texlive:/usr/local/bin:

/usr/local/bin/texmf/web2c:/usr/local:

/usr/local/texmf/web2c:/.:/./teTeX/TeX/texmf/web2c:).

kdebug:start search(file=ls-R, must_exist=1, find_all=1,

path=~/tex:/usr/local/texmf).

kdebug:search(ls-R) =>/usr/local/texmf/ls-R

kdebug:start search(file=aliases, must_exist=1, find_all=1,

path=~/tex:/usr/local/texmf).

kdebug:search(aliases) => /usr/local/texmf/aliases

kdebug:start search(file=config.ps, must_exist=0, find_all=0,

path=.:~/tex:!!/usr/local/texmf/dvips//).

kdebug:search(config.ps) => /usr/local/texmf/dvips/config/config.ps

kdebug:start search(file=/root/.dvipsrc, must_exist=0, find_all=0,

path=.:~/tex:!!/usr/local/texmf/dvips//).

search(file=/home/goossens/.dvipsrc, must_exist=1, find_all=0,

path=.:~/tex/dvips//:!!/usr/local/texmf/dvips//).

kdebug:search($HOME/.dvipsrc) =>

kdebug:start search(file=config.cms, must_exist=0, find_all=0,

path=.:~/tex/dvips//:!!/usr/local/texmf/dvips//).

kdebug:search(config.cms)

=>/usr/local/texmf/dvips/cms/config.cms

Figure 5: Finding configuration files

kdebug:start search(file=texc.pro, must exist=0, find all=0,

path=.:~/tex/dvips//:!!/usr/local/texmf/dvips//:

~/tex/fonts/type1//:!!/usr/local/texmf/fonts/type1//).

kdebug:search(texc.pro) => /usr/local/texmf/dvips/base/texc.pro

Figure 6: Finding the prolog file

kdebug:start search(file=cmr10.tfm, must exist=1, find all=0,

path=.:~/tex/fonts/tfm//:!!/usr/local/texmf/fonts/tfm//:

/var/tex/fonts/tfm//).

kdebug:search(cmr10.tfm) => /usr/local/texmf/fonts/tfm/public/cm/cmr10.tfm

kdebug:start search(file=texps.pro, must exist=0, find all=0,

...

<texps.pro>

kdebug:start search(file=cmr10.pfb, must exist=0, find all=0,

path=.:~/tex/dvips//:!!/usr/local/texmf/dvips//:

~/tex/fonts/type1//:!!/usr/local/texmf/fonts/type1//).

kdebug:search(cmr10.pfb) => /usr/local/texmf/fonts/type1/public/cm/cmr10.pfb

<cmr10.pfb>[1]

Figure 7: Finding the font file

kdebug:start search(file=cmr10.tfm, must exist=1, find all=0,

path=.:~/tex/fonts/tfm//:!!/usr/texmf/fonts/tfm//:

/var/tex/fonts/tfm//).

kdebug:search(cmr10.tfm) => /usr/texmf/fonts/tfm/public/cm/cmr10.tfm

kdebug:start search(file=texps.pro, must exist=0, find all=0,

...

<texps.pro>

kdebug:start search(file=cmr10.pfb, must exist=0, find all=0,

path=.:~/tex/dvips//:!!/usr/texmf/dvips//:

~/tex/fonts/type1//:!!/usr/texmf/fonts/type1//).

kdebug:search(cmr10.pfb) => /usr/texmf/fonts/type1/public/cm/cmr10.pfb

<cmr10.pfb>[1]

Figure 8: Finding the Type 1 font file

36 TUGboat, Volume 20 (1999), No. 1

Table 1: Kpathsea file types

Name Description Variables Suffixes

afm Adobe font metrics AFMFONTS .afm

base Metafont memory dump MFBASES, TEXMFINI .base

bib BibTEX bibliography source BIBINPUTS, TEXBIB .bib

bitmap fonts GLYPHFONTS, TEXFONTS

bst BibTEX style files BSTINPUTS .bst

cnf Runtime configuration files TEXMFCNF .cnf

dvips config dvips configuration files, e.g.,
config.ps and psfonts.map

TEXCONFIG .map

fmt TEX memory dump TEXFORMATS, TEXMFINI .fmt, .efmt,

.efm

gf generic font bitmap GFFONTS .gf

graphic/figure Encapsulated PostScript figures TEXPICTS, TEXINPUTS .eps, .epsi

ist makeindex style files TEXINDEXSTYLE, INDEXSTYLE .ist

ls-R Filename databases TEXMFDBS

map Fontmaps TEXFONTMAPS .map

mem MetaPost memory dump MPMEMS, TEXMFINI .mem

mf Metafont source MFINPUTS .mf

mfpool Metafont program strings MFPOOL, TEXMFINI .pool

mft MFT style file MFTINPUTS .mft

miscellaneous fonts MISCFONTS

mp MetaPost source MPINPUTS .mp

mppool MetaPost program strings MPPOOL, TEXMFINI .pool

MetaPost

support

MetaPost support files, used by
DMP

MPSUPPORT

ocp Ω compiled process files OCPINPUTS .ocp

ofm Ω font metrics OFMFONTS, TEXFONTS .ofm, .tfm

opl Ω property lists OPLFONTS, TEXFONTS .opl

otp Ω translation process files OTPINPUTS .otp

ovf Ω virtual fonts OVFFONTS, TEXFONTS .ovf

ovp Ω virtual property lists OVPFONTS, TEXFONTS .ovp

pk packed bitmap fonts program FONTS (program being
XDVI, etc.), PKFONTS, TEXPKS,

GLYPHFONTS, TEXFONTS

.pk

PostScript

header

downloadable PostScript TEXPSHEADERS, PSHEADERS .pro, .enc

tex TEX source TEXINPUTS .tex, .cls,

.sty, .clo,

.def

TeX system

documentation

Documentation files for the TEX
system

TEXDOCS

TeX system

sources

Source files for the TEX system TEXSOURCES

texpool TEX program strings TEXPOOL, TEXMFINI .pool

tfm TEX font metrics TFMFONTS, TEXFONTS .tfm

Troff fonts Troff fonts, used by DMP TRFONTS

truetype fonts TrueType outline fonts TTFONTS .ttf, .ttc

type1 fonts Type 1 PostScript outline fonts T1FONTS, T1INPUTS, TEXPSHEADERS,

DVIPSHEADERS

.pfa, .pfb

type42 fonts Type 42 PostScript outline fonts T42FONTS

vf virtual fonts VFFONTS, TEXFONTS .vf

web2c files Web2c support files WEB2C

other text

files

text files used by ‘foo’ FOOINPUTS

other binary

files

binary files used by ‘foo’ FOOINPUTS

TUGboat, Volume 20 (1999), No. 1 37

7 The texmf.cnf file
1 % TeX Live texmf.cnf

2 % Part 1: Search paths and directories.

3 %

4 % You can set an environment variable to override TEXMF if you’re testing

5 % a new TeX tree, without changing anything else.

6 %

7 % You may wish to use one of the $SELFAUTO... variables here so TeX will

8 % find where to look dynamically. See the manual and the definition

9 % below of TEXMFCNF.

10

11 % The main tree, which must be mentioned in $TEXMF, below:

12 TEXMFMAIN = $SELFAUTOPARENT/texmf

13

14 % A place for local additions to a "standard" texmf tree.

15 TEXMFLOCAL = $SELFAUTOPARENT/texmf-local

16

17 % User texmf trees can be catered for like this...

18 HOMETEXMF=$HOME/texmf

19

20 % A place where texconfig stores modifications (instead of the TEXMFMAIN

21 % tree). texconfig relies on the name, so don’t change it.

22 VARTEXMF = $SELFAUTOPARENT/texmf-var

23

24 % Now, list all the texmf trees. If you have multiple trees,

25 % use shell brace notation, like this:

26 % TEXMF = {$HOMETEXMF,!!$VARTEXMF,!!$TEXMFLOCAL,!!$TEXMFMAIN}

27 % The braces are necessary.

28 TEXMF = {$HOMETEXMF,$TEXMFLOCAL,!!$VARTEXMF,!!$TEXMFMAIN}

29

30 % The system trees. These are the trees that are shared by all the users.

31 SYSTEXMF = $TEXMF

32

33 % Where generated fonts may be written. This tree is used when the sources

34 % were found in a system tree and either that tree wasn’t writable, or the

35 % varfonts feature was enabled in MT_FEATURES in mktex.cnf.

36 VARTEXFONTS = /var/tmp/texfonts

37

38 % Where to look for ls-R files. There need not be an ls-R in the

39 % directories in this path, but if there is one, Kpathsea will use it.

40 TEXMFDBS = $TEXMF;$VARTEXFONTS

41

42 % It may be convenient to define TEXMF like this:

43 % TEXMF = {$HOMETEXMF,!!$TEXMFLOCAL,!!$TEXMFMAIN,$HOME}

44 % which allows users to set up entire texmf trees, and tells TeX to

45 % look in places like ~/tex and ~/bibtex. If you do this, define TEXMFDBS

46 % like this:

47 % TEXMFDBS = $HOMETEXMF;$TEXMFLOCAL;$TEXMFMAIN;$VARTEXFONTS

48 % or mktexlsr will generate an ls-R file for $HOME when called, which is

49 % rarely desirable. If you do this you’ll want to define SYSTEXMF like

50 % this:

51 % SYSTEXMF = $TEXMFLOCAL;$TEXMFMAIN

52 % so that fonts from a user’s tree won’t escape into the global trees.

53 %

54 % On some systems, there will be a system tree which contains all the font

55 % files that may be created as well as the formats. For example

56 % VARTEXMF = /var/lib/texmf

57 % is used on many Linux systems. In this case, set VARTEXFONTS like this

38 TUGboat, Volume 20 (1999), No. 1

58 % VARTEXFONTS = $VARTEXMF/fonts

59 % and do not mention it in TEXMFDBS (but _do_ mention VARTEXMF).

60 %%%

61 % Usually you will not need to edit any of the other variables in part 1. %

62 %%%

63 % WEB2C is for Web2C specific files. The current directory may not be

64 % a good place to look for them.

65 WEB2C = $TEXMF/web2c

66

67 % TEXINPUTS is for TeX input files -- i.e., anything to be found by \input

68 % or \openin, including .sty, .eps, etc.

69

70 % LaTeX-specific macros are stored in latex.

71 TEXINPUTS.latex = .;$TEXMF/tex/{latex,generic,}//

72 TEXINPUTS.hugelatex = .;$TEXMF/tex/{latex,generic,}//

73

74 % Fontinst needs to read afm files.

75 TEXINPUTS.fontinst = .;$TEXMF/{tex{/fontinst,},fonts/afm}//

76

77 % Plain TeX. Have the command tex check all directories as a last

78 % resort, we may have plain-compatible stuff anywhere.

79 TEXINPUTS.tex = .;$TEXMF/tex/{plain,generic,}//

80 % other plain-based formats

81 TEXINPUTS.amstex = .;$TEXMF/tex/{amstex,plain,generic,}//

82 TEXINPUTS.ftex = .;$TEXMF/tex/{formate,plain,generic,}//

83 TEXINPUTS.texinfo = .;$TEXMF/tex/{texinfo,plain,generic,}//

84 TEXINPUTS.eplain = .;$TEXMF/tex/{eplain,plain,generic,}//

85 TEXINPUTS.jadetex = .;$TEXMF/tex/{jadetex,generic,plain,}//

86 TEXINPUTS.pdfjadetex = .;$TEXMF/{pdftex,tex}/{jadetex,generic,plain,}//

87

88 % e-TeX.

89 TEXINPUTS.elatex = .;$TEXMF/{etex,tex}/{latex,generic,}//

90 TEXINPUTS.etex = .;$TEXMF/{etex,tex}/{generic,plain,}//

91

92 % PDFTeX. This form of the input paths is borrowed from teTeX. A certain

93 % variant of TDS is assumed here, unaffected by the build variables.

94 TEXINPUTS.pdftexinfo = .;$TEXMF/{pdftex,tex}/{texinfo,plain,generic,}//

95 TEXINPUTS.pdflatex = .;$TEXMF/{pdftex,tex}/{latex,generic,}//

96 TEXINPUTS.pdftex = .;$TEXMF/{pdftex,tex}/{plain,generic,}//

97 TEXINPUTS.pdfelatex = .;$TEXMF/{pdfetex,pdftex,etex,tex}/{latex,generic,}//

98 TEXINPUTS.pdfetex = .;$TEXMF/{pdfetex,pdftex,etex,tex}/{plain,generic,}//

99

100 % Omega.

101 TEXINPUTS.lambda = .;$TEXMF/{omega,tex}/{lambda,latex,generic,}//

102 TEXINPUTS.omega = .;$TEXMF/{omega,tex}/{plain,generic,}//

103

104 % Context macros by Hans Hagen:

105 TEXINPUTS.context = .;$TEXMF/{pdfetex,pdftex,etex,tex}/{context,plain,generic,}//

106

107 % cstex, from Petr Olsak

108 TEXINPUTS.cslatex = .;$TEXMF/tex/{cslatex,csplain,latex,generic,}//

109 TEXINPUTS.csplain = .;$TEXMF/tex/{csplain,plain,generic,}//

110 TEXINPUTS.pdfcslatex = .:$TEXMF/{pdftex,tex}/{cslatex,csplain,latex,generic,}//

111 TEXINPUTS.pdfcsplain = .:$TEXMF/{pdftex,tex}/{csplain,plain,generic,}//

112

113 % Polish

114 TEXINPUTS.platex = .;$TEXMF/tex/{platex,latex,generic,}//

115 TEXINPUTS.pdfmex = .;$TEXMF/{pdftex,tex}/{mex,plain,generic,}//

116 TEXINPUTS.mex = .;$TEXMF/tex/{mex,plain,generic,}//

TUGboat, Volume 20 (1999), No. 1 39

117

118 % french

119 TEXINPUTS.frtex = .;$TEXMF/{mltex,tex}/{plain,generic,}//

120 TEXINPUTS.frlatex = .;$TEXMF/{mltex,tex}/{frlatex,latex,generic,}//

121

122 % MLTeX

123 TEXINPUTS.mltex = .;$TEXMF/{mltex,tex}/{plain,generic,}//

124 TEXINPUTS.mllatex = .;$TEXMF/{mltex,tex}/{latex,generic,}//

125

126 % odd formats needing their own paths

127 TEXINPUTS.lollipop = .;$TEXMF/tex/{lollipop,generic,plain,}//

128 TEXINPUTS.lamstex = .;$TEXMF/tex/{lamstex,generic,plain,}//

129

130 % Earlier entries override later ones, so put this last.

131 TEXINPUTS = .;$TEXMF/tex/{generic,}//

132

133 % Metafont, MetaPost inputs.

134 MFINPUTS = .;$TEXMF/metafont//;{$TEXMF/fonts,$VARTEXFONTS}/source//

135 MPINPUTS = .;$TEXMF/metapost//

136

137 % Dump files (fmt/base/mem) for vir{tex,mf,mp} to read (see web2c/INSTALL),

138 % and string pools (.pool) for ini{tex,mf,mp}. It is silly that we have six

139 % paths and directories here (they all resolve to a single place by default),

140 % but historically ...

141 TEXFORMATS = .;$TEXMF/web2c

142 MFBASES = .;$TEXMF/web2c

143 MPMEMS = .;$TEXMF/web2c

144 TEXPOOL = .;$TEXMF/web2c

145 MFPOOL = .;$TEXMF/web2c

146 MPPOOL = .;$TEXMF/web2c

147

148 % Device-independent font metric files.

149 VFFONTS = .;$TEXMF/fonts/vf//

150 TFMFONTS = .;{$TEXMF/fonts,$VARTEXFONTS}/tfm//

151

152 % The $MAKETEX_MODE below means the drivers will not use a cx font when

153 % the mode is ricoh. If no mode is explicitly specified, kpse_prog_init

154 % sets MAKETEX_MODE to /, so all subdirectories are searched. See the manual.

155 % The modeless part guarantees that bitmaps for PostScript fonts are found.

156 PKFONTS = .;{$TEXMF/fonts,$VARTEXFONTS}/pk/{$MAKETEX_MODE,modeless}//

157

158 % Similarly for the GF format, which only remains in existence because

159 % Metafont outputs it (and MF isn’t going to change).

160 GFFONTS = .;$TEXMF/fonts/gf/$MAKETEX_MODE//

161

162 % A backup for PKFONTS and GFFONTS. Not used for anything.

163 GLYPHFONTS = .;$TEXMF/fonts

164

165 % For texfonts.map and included map files used by mktexpk.

166 % See ftp://ftp.tug.org/tex/fontname.tar.gz.

167 TEXFONTMAPS = .;$TEXMF/fontname

168

169 % BibTeX bibliographies and style files.

170 BIBINPUTS = .;$TEXMF/bibtex/{bib,}//

171 BSTINPUTS = .;$TEXMF/bibtex/{bst,}//

172

173 % PostScript headers, prologues (.pro), encodings (.enc) and fonts;

174 % this is also where pdftex finds included figures files!

175

40 TUGboat, Volume 20 (1999), No. 1

176 TEXPSHEADERS.pdflatex = .;$TEXMF/{tex,pdftex,dvips,fonts/type1}//

177 TEXPSHEADERS.pdfelatex = .;$TEXMF/{tex,pdftex,dvips,fonts/type1}//

178 TEXPSHEADERS.pdftexinfo = .;$TEXMF/{tex,pdftex,dvips,fonts/type1}//

179 TEXPSHEADERS.pdfcslatex = .;$TEXMF/{tex,pdftex,dvips,fonts/type1}//

180 TEXPSHEADERS.pdfcsplain = .;$TEXMF/{tex,pdftex,dvips,fonts/type1}//

181 TEXPSHEADERS.pdfetex = .;$TEXMF/{tex,pdftex,dvips,fonts/type1}//

182 TEXPSHEADERS.pdfjadetex = .;$TEXMF/{tex,pdftex,dvips,fonts/type1}//

183 TEXPSHEADERS.pdfmex = .;$TEXMF/{tex,pdftex,dvips,fonts/type1}//

184 TEXPSHEADERS.pdftex = .;$TEXMF/{tex,pdftex,dvips,fonts/type1}//

185 TEXPSHEADERS.pdftexinfo = .;$TEXMF/{tex,pdftex,dvips,fonts/type1}//

186 TEXPSHEADERS.cont-de = .;$TEXMF/{tex,pdftex,dvips,fonts/type1}//

187 TEXPSHEADERS.cont-en = .;$TEXMF/{tex,pdftex,dvips,fonts/type1}//

188 TEXPSHEADERS.cont-nl = .;$TEXMF/{tex,pdftex,dvips,fonts/type1}//

189 TEXPSHEADERS.context = .;$TEXMF/{etex,tex,pdftex,dvips,fonts/type1}//

190 TEXPSHEADERS = .;$TEXMF/{dvips,fonts/type1,pdftex}//

191

192 % PostScript Type 1 outline fonts.

193 T1FONTS = .;$TEXMF/fonts/type1//

194

195 % PostScript AFM metric files.

196 AFMFONTS = .;$TEXMF/fonts/afm//

197

198 % TrueType outline fonts.

199 TTFONTS = .;$TEXMF/fonts/truetype//

200

201 % Type 42 outline fonts.

202 T42FONTS = .;$TEXMF/fonts/type42//

203

204 % A place to puth everything that doesn’t fit the other font categories.

205 MISCFONTS = .;$TEXMF/fonts/misc//

206

207 % Dvips’ config.* files (this name should not start with ‘TEX’!).

208 TEXCONFIG = .;$TEXMF/dvips//

209

210 % Makeindex style (.ist) files.

211 INDEXSTYLE = .;$TEXMF/makeindex//

212

213 % Used by DMP (ditroff-to-mpx), called by makempx -troff.

214 TRFONTS = /usr/lib/font/devpost

215 MPSUPPORT = .;$TEXMF/metapost/support

216

217 % For xdvi to find mime.types and .mailcap, if they do not exist in

218 % $HOME. These are single directories, not paths.

219 % (But the default mime.types, at least, may well suffice.)

220 MIMELIBDIR = c:/TeX/etc

221 MAILCAPLIBDIR = c:/TeX/etc

222

223 % TeX documentation and source files, for use with kpsewhich.

224 TEXDOCS = .;$TEXMF/doc//

225 TEXSOURCES = .;$TEXMF/source//

226

227 % Omega-related fonts and other files. The odd construction for OFMFONTS

228 % makes it behave in the face of a definition of TFMFONTS. Unfortunately

229 % no default substitution would take place for TFMFONTS, so an explicit

230 % path is retained.

231 OFMFONTS = .;{$TEXMF/fonts,$VARTEXFONTS}/{ofm,tfm}//;$TFMFONTS

232 OPLFONTS = .;{$TEXMF/fonts,$VARTEXFONTS}/opl//

233 OVFFONTS = .;{$TEXMF/fonts,$VARTEXFONTS}/ovf//

234 OVPFONTS = .;{$TEXMF/fonts,$VARTEXFONTS}/ovp//

TUGboat, Volume 20 (1999), No. 1 41

235 OTPINPUTS = .;$TEXMF/omega/otp//

236 OCPINPUTS = .;$TEXMF/omega/ocp//

237

238 %% TeX4ht utility, sharing files with TeX4ht

239 T4HTINPUTS = .;$TEXMF/tex4ht//

240

241 %% The mktex* scripts rely on KPSE_DOT. Do not set it in the environment.

242 KPSE_DOT = .

243

244 % This definition isn’t used from this .cnf file itself (that would be

245 % paradoxical), but the compile-time default in paths.h is built from it.

246 % The SELFAUTO* variables are set automatically from the location of

247 % argv[0], in kpse_set_progname.

248 %

249 % About the /. construction:

250 % 1) if the variable is undefined, we’d otherwise have an empty path

251 % element in the compile-time path. This is not meaningful.

252 % 2) if we used /$VARIABLE, we’d end up with // if VARIABLE is defined,

253 % which would search the entire world.

254 %

255 % The TETEXDIR stuff isn’t likely to be relevant unless you’re using teTeX,

256 % but it doesn’t hurt.

257 %

258 TEXMFCNF = .;{$SELFAUTOLOC,$SELFAUTODIR,$SELFAUTOPARENT}\

259 {,{/share,}/texmf{.local,}/web2c};c:/TeX/texmf/web2c

260

261

262

263 % Part 2: Non-path options.

264

265 % Write .log/.dvi/etc. files here, if the current directory is unwritable.

266 % TEXMFOUTPUT = /tmp

267

268 % If a dynamic file creation fails, log the command to this file, in

269 % either the current directory or TEXMFOUTPUT. Set to the

270 % empty string or 0 to avoid logging.

271 MISSFONT_LOG = missfont.log

272

273 % Set to a colon-separated list of words specifying warnings to suppress.

274 % To suppress everything, use TEX_HUSH = all; this is equivalent to

275 % TEX_HUSH = checksum:lostchar:readable:special

276 TEX_HUSH = none

277

278 % Enable system commands via \write18{...}?

279 shell_escape = f

280

281 % Allow TeX \openout/\openin on filenames starting with ‘.’ (e.g., .rhosts)?

282 % a (any) : any file can be opened.

283 % r (restricted) : disallow opening "dotfiles".

284 % p (paranoid) : as ’r’ and disallow going to parent directories, and

285 % restrict absolute paths to be under $TEXMFOUTPUT.

286 openout_any = p

287 openin_any = a

288 % Allow TeX, MF, and MP to parse the first line of an input file for

289 % the %&format construct.

290 parse_first_line = t

291

292 % Enable the mktex... scripts by default? These must be set to 0 or 1.

293 % Particular programs can and do override these settings, for example

42 TUGboat, Volume 20 (1999), No. 1

294 % dvips’s -M option. Your first chance to specify whether the scripts

295 % are invoked by default is at configure time.

296 %

297 % These values are ignored if the script names are changed; e.g., if you

298 % set DVIPSMAKEPK to ‘foo’, what counts is the value of the environment

299 % variable/config value ‘FOO’, not the ‘MKTEXPK’ value.

300 %

301 % MKTEXTEX = 0

302 % MKTEXPK = 0

303 % MKTEXMF = 0

304 % MKTEXTFM = 0

305 % MKOCP = 0

306 % MKOFM = 0

307

308 % What MetaPost runs to make MPX files. This is passed an option -troff

309 % if MP is in troff mode. Set to ‘0’ to disable this feature.

310 MPXCOMMAND = makempx

311

312

313 % Part 3: Array and other sizes for TeX (and Metafont and MetaPost).

314 %

315 % If you want to change some of these sizes only for a certain TeX

316 % variant, the usual dot notation works, e.g.,

317 % main_memory.hugetex = 20000000

318 %

319 % If a change here appears to be ignored, try redumping the format file.

320

321 % Memory. Must be less than 8,000,000 total.

322 %

323 % main_memory is relevant only to initex, extra_mem_* only to non-ini.

324 % Thus, have to redump the .fmt file after changing main_memory; to add

325 % to existing fmt files, increase extra_mem_*. (To get an idea of how

326 % much, try \tracingstats=2 in your TeX source file;

327 % web2c/tests/memtest.tex might also be interesting.)

328 %

329 % To increase space for boxes (as might be needed by, e.g., PiCTeX),

330 % increase extra_mem_bot.

331 %

332 % For some xy-pic samples, you may need as much as 700000 words of memory.

333 % For the vast majority of documents, 60000 or less will do.

334 %

335 main_memory = 263000 % words of inimemory available; also applies to inimf&mp

336 extra_mem_top = 0 % extra high memory for chars, tokens, etc.

337 extra_mem_bot = 0 % extra low memory for boxes, glue, breakpoints, etc.

338

339 % Words of font info for TeX (total size of all TFM files, approximately).

340 font_mem_size = 200000

341

342 % Total number of fonts. Must be >= 50 and <= 2000 (without tex.ch changes).

343 font_max = 1000

344

345 % Extra space for the hash table of control sequences (which allows 10K

346 % names as distributed).

347 hash_extra = 0

348

349 % Max number of characters in all strings, including all error messages,

350 % help texts, font names, file names, control sequences.

351 % These values apply to TeX and MP.

352 pool_size = 125000

TUGboat, Volume 20 (1999), No. 1 43

353

354 % Minimum pool space after TeX/MP’s own strings; must be at least

355 % 25000 less than pool_size, but doesn’t need to be nearly that large.

356 string_vacancies = 25000

357 max_strings = 15000 % max number of strings

358 pool_free = 5000 % min pool space left after loading .fmt

359

360 % Hyphenation trie. As distributed, the maximum is 65535; this should

361 % work unless ‘unsigned short’ is not supported or is smaller than 16

362 % bits. This value should suffice for UK English, US English, French,

363 % and German (for example). To increase, you must change

364 % ‘ssup_trie_opcode’ and ‘ssup_trie_size’ in tex.ch (and rebuild TeX);

365 % the trie will then consume four bytes per entry, instead of two.

366 %

367 % US English, German, and Portuguese: 30000.

368 % German: 14000.

369 % US English: 10000.

370 %

371 trie_size = 64000

372

373 % Buffer size. TeX uses the buffer to contain input lines, but macro

374 % expansion works by writing material into the buffer and reparsing the

375 % line. As a consequence, certain constructs require the buffer to be

376 % very large. As distributed, the size is 50000; most documents can be

377 % handled within a tenth of this size.

378 buf_size = 50000

379

380 % These are Omega-specific.

381 ocp_buf_size = 20000 % character buffers for ocp filters.

382 ocp_stack_size = 10000 % stacks for ocp computations.

383 ocp_list_size = 1000 % control for multiple ocps.

384

385 % These work best if they are the same as the I/O buffer size, but it

386 % doesn’t matter much. Must be a multiple of 8.

387 dvi_buf_size = 16384 % TeX

388 gf_buf_size = 16384 % MF

389

390 % It’s probably inadvisable to change these. At any rate, we must have:

391 % 45 < error_line < 255;

392 % 30 < half_error_line < error_line - 15;

393 % 60 <= max_print_line;

394 % These apply to Metafont and MetaPost as well.

395 error_line = 79

396 half_error_line = 50

397 max_print_line = 79

398 stack_size = 300 % simultaneous input sources

399 save_size = 4000 % for saving values outside current group

400 param_size = 500 % simultaneous macro parameters

401 max_in_open = 15 % simultaneous input files and error insertions

402 hyph_size = 1000 % number of hyphenation exceptions, >610 and <32767

403 nest_size = 100 % simultaneous semantic levels (e.g., groups)

404

405 main_memory.context = 1100000

406 hash_extra.context = 25000

407 pool_size.context = 750000

408 string_vacancies.context = 45000

409 max_strings.context = 55000

410 pool_free.context = 47500

411 nest_size.context = 500

44 TUGboat, Volume 20 (1999), No. 1

412 param_size.context = 1500

413 save_size.context = 5000

414 stack_size.context = 1500

415

416 main_memory.hugetex = 1100000

417 param_size.hugetex = 1500

418 stack_size.hugetex = 1500

419 hash_extra.hugetex = 15000

420 string_vacancies.hugetex = 45000

421 pool_free.hugetex = 47500

422 nest_size.hugetex = 500

423 save_size.hugetex = 5000

424 pool_size.hugetex = 500000

425 max_strings.hugetex = 55000

426

427 main_memory.hugelatex = 1100000

428 param_size.hugelatex = 1500

429 stack_size.hugelatex = 1500

430 hash_extra.hugelatex = 15000

431 string_vacancies.hugelatex = 45000

432 pool_free.hugelatex = 47500

433 nest_size.hugelatex = 500

434 save_size.hugelatex = 5000

435 pool_size.hugelatex = 500000

436 max_strings.hugelatex = 55000

437

438 main_memory.jadetex = 1500000

439 param_size.jadetex = 1500

440 stack_size.jadetex = 1500

441 hash_extra.jadetex = 50000

442 string_vacancies.jadetex = 45000

443 pool_free.jadetex = 47500

444 nest_size.jadetex = 500

445 save_size.jadetex = 5000

446 pool_size.jadetex = 500000

447 max_strings.jadetex = 55000

448

449 main_memory.pdfjadetex = 2500000

450 param_size.pdfjadetex = 1500

451 stack_size.pdfjadetex = 1500

452 hash_extra.pdfjadetex = 50000

453 string_vacancies.pdfjadetex = 45000

454 pool_free.pdfjadetex = 47500

455 nest_size.pdfjadetex = 500

456 save_size.pdfjadetex = 5000

457 pool_size.pdfjadetex = 500000

458 max_strings.pdfjadetex = 55000

459

460 main_memory.pdflatex = 1500000

461 param_size.pdflatex = 1500

462 stack_size.pdflatex = 1500

463 hash_extra.pdflatex = 15000

464 string_vacancies.pdflatex = 45000

465 pool_free.pdflatex = 47500

466 nest_size.pdflatex = 500

467 pool_size.pdflatex = 500000

468 save_size.pdflatex = 5000

469 max_strings.pdflatex = 55000

