
TUGboat, Volume 22 (2001), No. 4 281

Fonts

Making outline fonts from bitmap images

Karl Berry

Abstract

Tools for creating outline fonts from bitmaps have
matured significantly in past years. Our purpose
here is to describe those tools and how they fit
together in a TEX context, in a practical way.

1 Introduction

I recently had occasion to create outline fonts (Post-
Script Type 1 or TrueType; see [24]) from a scanned
bitmap image of a type specimen. I was pleasantly
surprised to find that the tools for doing this con-
version produce considerably better results than the
last time I worked in this area. This note describes
one procedure for putting the programs together,
culminating in using the result from TEX.

Happily, all of the programs mentioned here can
be compiled and installed with only minor variations
on the standard procedure [18] first specified for the
GNU project:

configure && make && make install

Web addresses for the programs are given in the
references.

We should at least touch on legal questions
[4], although a thorough discussion is far beyond
the scope of this paper—or my knowledge, for that

282 TUGboat, Volume 22 (2001), No. 4

matter. My understanding is that font designs, as
opposed to font programs, are still not copyrightable
in the United States (a few have been patented,
notably Lucida), but that designs are protected in
most European countries. As a result, in today’s
world of widespread file sharing, especially in the
TEX community, it would be unwise to attempt to
create or distribute fonts for any design created af-
ter approximately the early 1900’s, without specific
knowledge for a specific design.

On the other hand, I did receive legal advice
(from the Free Software Foundation’s lawyer) that
scanning old type specimen images, even when they
are embedded in a book still under copyright, is
defensible. Not any of the text or illustrations
prepared specifically for the book, of course, but
actual old specimens may be copied.

2 Scanned image to bitmap font: imageto

For our purposes, we will start with a single black
and white image of a font specimen of a Baskerville
type at a fairly large size (24 pt), scanned at a fairly
high resolution (1200 dpi). The image includes the
upper and lowercase alphabets, digits, and other
principal characters. The first task is to extract
these characters from the image into a bitmap font.

Not coincidentally, one of the programs in the
GNU font utilities [3], written a decade or so ago
by Kathryn Hargreaves and myself, does precisely
this. This program is called imageto. There may
be other programs to accomplish the same task, but
since I knew about this one (for obvious reasons), I
just used it.

The output from the scanner (a Xerox 9700)
is in an unusual image format that can’t be read
directly by any modern program. (The scanning
was also done a decade ago.) So, to see the image
I was working with, I converted it to Encapsulated
PostScript (EPSF [24]) and viewed it with gv [13],
at its smallest scale factor (0.1):

imageto --epsf gbvr
gv gbvr.eps

Here’s the resulting picture of the starting image
(clipped to approximately the left half due to the
small TUGboat column width), so we can see what
we’re dealing with:

The font name gbvr, by the way, stands for
GNU Baskerville roman, according to the Fontname
scheme [2]. (This whole project started under the
aegis of GNU [19].)

imageto considers the input image as a series
of ‘image rows’. Each image row consists of all
the scanlines between a nonblank scanline and the
next entirely blank scanline. (A ‘scanline’ is a single
horizontal row of pixels in the image.) Within each
image row, imageto looks top-to-bottom, left-to-
right, for ‘bounding boxes’: closed contours, i.e., an
area whose edge you can trace with a pencil without
lifting it. For example, an ‘i’ has two bounding
boxes, while an ‘a’ has one.

In practice, scanned images have plenty of im-
perfections; for instance, a small printing blotch is
seen as a bounding box which we have to ignore.
Baselines jump up and down due to the printing pro-
cess, as well as the natural baseline adjustments for
characters with descenders or o-corrections (curved
characters such as ‘o’ whose bottom point is slightly
below the baseline). So we have to describe all of
these special cases.

To extract characters from the bitmap, it’s nec-
essary to supply all of this descriptive information
to imageto in a simple line-oriented text file, called
an ifi file (image font information). The details
of this file’s syntax aren’t important here — the full
manual (and source code) for Fontutils are available
at the url given in the references.

For the sake of example, the final command line
to process this image ended up being:

imageto --designsize=24 \
--encoding=8r \
--baselines=72,59,58 \
--print-guidelines \
--print-clean-info \
gbvr

mv gbvr24.1200gf gbvr.1200gf

The result is a bitmap font in GF format [9]
(same as METAFONT). So, from gbvr.img, we now
have gbvr.1200gf. We explicitly remove the 24 in
the filename because we want to make an outline
font, named without a design size.

3 Bitmap font to outlines: autotrace

The best program I know of to fit outlines (i.e.,
Bézier curves) to bitmaps is autotrace [23]. (I
found an alternative program ttf2pt1 [1], but it did
not seem as well developed). Some fairly intense
mathematics is involved in doing the fitting [17];
fortunately, we don’t need to go into that in order
to use the program effectively.

TUGboat, Volume 22 (2001), No. 4 283

The main barrier to using autotrace to convert
fonts is that it reads images (such as PBM files [14]),
and writes EPSF (among other formats); it has no
knowledge of font formats. So our basic strategy is:

1. Convert each character in the bitmap font to an
image in PBM format.

2. Run autotrace on that image.

3. Convert the PostScript output, which uses stan-
dard graphics operators such as rmoveto and
rrcurveto, to Type 1 opcodes.

4. Reassemble the characters into a font.

This procedure is implemented by mftrace [11],
a Python [22] program which pulls the pieces to-
gether: it uses gf2pbm [12] to convert individual
characters from the GF font to bitmap images; calls
autotrace with assorted options to do the fitting;
and finally uses t1asm from t1utils [7] to assemble
the output into a font again.

mftrace requires an encoding file to run, and
since it does not do path searching, the encoding
file must be present in the current directory. The
default encoding is tex256.enc, and can be changed
with the -e option. (If you don’t happen to have
tex256.enc on your system, it’s available at http:
//tug.org/fontname/tex256.enc. It is another
name for the T1 (Cork) encoding.)

Type 1 fonts have two equivalent formats: pfa
(printer font ASCII), which uses only normal plain
text characters; and pfb (printer font binary), which
is partly binary. As you might expect, pfb files
are noticeably smaller, since the font shapes can be
compressed more when all eight bits can be used.
TEX and friends are happy with either one, so we
might as well use pfb.1

Here is a first approximation to our command
line:

mftrace --pfb \
--gffile=gbvr.1200gf gbvr

The result is gbvr.pfb. Here are two of the resulting
outline characters showing the main control points:

1 Warning: I found out to my sorrow that it does not work
to directly edit the contents of a pfb file in any way, including
the header comments; it becomes internally inconsistent and
dvips will complain about a a ‘non-MSDOS header’.

There is an alternative program textrace [20],
which seems equally worthy. I worked with mftrace
only because it was easier for me to install and
understand. Each program has its own drawbacks
and benefits.

Historical aside: I was happy to see that auto-
trace is partially based on limn, another of the
old Fontutils programs; so that work wasn’t entirely
wasted. It does a vastly better job than limn ever
did, which I am even happier to see!

4 Testing the new font from TEX

The above does the real work of converting bitmaps
to outlines. Now, to use the result in TEX, we have
many configuration details to work out.

4.1 Scaling: mftrace

First, we need metrics to go along with the outlines,
which mftrace will generate as an afm file (Adobe
Font Metrics [24]), if we specify the --afm option.

We also have to convert between different coor-
dinate systems. When we create a Type 1 font, the
so-called ‘character coordinate space’ uses a 1000 to
1 scaling matrix. That is, 1000 character space units
transform into one user space unit (one PostScript
point, usually). Put another way, Type 1 expects a
resolution of 1000 pixels in the design size, and the
PostScript design size is simply 1. This is a much
higher resolution than our scanned images have.

It’s easiest to explain the scaling factor by
looking at a concrete example. Our example image
was scanned at a resolution of 1200 dpi, which comes
to about 16.6 pixels per point (1200/72.27). Our
design size is 24 pt. Therefore, we have about 399
pixels per design size (16.6 ∗ 24). We give this value
to the mftrace as the magnification (same concept
of magnification as in TEX).

mftrace will then scale all the numbers in the
outlines by 1000/399 = 2.506. For example, the
image of our capital ‘A’ is 275 pixels wide. This
becomes about 690 in character space coordinates.
As a check, the device-independent width in TEX
terms turns out to be 6.9 on a 10 pt designsize; yay.

http://tug.org/fontname/tex256.enc
http://tug.org/fontname/tex256.enc

284 TUGboat, Volume 22 (2001), No. 4

Bottom line, the magic number is the image de-
sign size multiplied by the image resolution in pixels
per point. Here’s the resulting mftrace command
line (this is the real one, no approximation):

mftrace --pfb \
--afm --magnification=399 \
--gffile=gbvr.1200gf gbvr

We now have two files: gbvr.pfb and gbvr.afm.

4.2 Metrics: afm2tfm

Our next job is to convert gbvr.afm into TEX font
metric files. The easiest way I know of to do this is
to use afm2tfm’s -T option, which lets us get away
without using virtual fonts [26]:

afm2tfm gbvr.afm -v gbvr.vpl \
-T tex256.enc >gbvr.xmap

pltotf gbvr.vpl gbvr.tfm

pltotf will issue warnings about unknown VTITLE
and MAPFONT properties, but no harm is done. We
don’t need all the TEX virtual font machinery [5],
since we’re not actually combining multiple fonts,
just reencoding a single font.

4.3 Running TEX and dvips

Ok, let’s run TEX (testfont.tex is a standard file
from Knuth):

tex testfont
...
Name of the font to test = gbvr at 24pt
Now type a test command...
*\text\bye
...
Output written on testfont.dvi...
Transcript written on testfont.log.

We’re almost ready to look at some output. Our last
preliminary step is to specify downloading gbvr.pfb
when the font is used. For dvips [15], this is done
in a one-line .map file. afm2tfm gave us the initial
line, we just append the download instruction:

sed -e ’s/$/ <gbvr.pfb/’ gbvr.xmap \
>gbvr.map

Finally, we tell dvips [15] to use that map file and
process the document:

dvips -u +gbvr.map testfont.dvi -o

The output is testfont.ps:

There are some artifacts in that image due to
the conversion process from the screen capture. My

apologies, but the main point is the process, after all,
not the particular image we used for an example.

The most obvious other problem is that there
is no letter spacing. Some methods for addressing
that are mentioned in the next section.

5 Final outline output: frontline, pfaedit

We’ve gone through the process of making a new
outline font and typesetting with it in TEX. Now
comes the truly hard part: actually making the font
as good as it can be. Although autotrace does a
very respectable job with its default settings, it’s
inevitable that hand editing of the outlines will be
required for best results.

One method for doing this is to change the
(numerous) parameters to autotrace itself. This
can be done from the command line (use --help to
get a list of options). In addition, a graphical front-
end to autotrace named frontline exists to make
experimenting with the option setting easier; it is
available from the autotrace home page [23].

The other method is to use an outline font
editor; the best one I know of is pfaedit [25]. As
well as straightforward outline editing, pfaedit has
numerous other significant features:

• Bitmap editing (supports GF and PK [16] for-
mats).

• TrueType output. The option --truetype to
mftrace will call pfaedit to get TrueType
output, if that’s desired.

• Metrics editing: getting the character spacing
is as important to the final outcome as the char-
acter shapes [8, 21]. pfaedit can supply initial
side bearings and kerns via the Auto Width
and Auto Kern options on the Metrics menu.
This is nice, since scanned images generally lack
any useful side bearing specifications. (Alter-
natively, the Fontutils program charspace is
a non-interactive way of preparing initial side
bearings.)

• Autohinting.

As it turns out, the mftrace --afm option that
we used above also implies --simplify, which runs
the font through pfaedit in order to simplify and
autohint the outlines. Thus, no additional options
are needed to take advantage of those features.

Additional files and procedures are needed to
use new fonts with LATEX [6, 10]. Those articles
also describe creating oblique, small caps, and other
variants.

Happy fontmaking!

TUGboat, Volume 22 (2001), No. 4 285

References

[1] Sergey Babkin. ttf2pt1.
http://ttf2pt1.sourceforge.net.

[2] Karl Berry. Fontname: Filenames for TEX
fonts. http://tug.org/fontname.

[3] Karl Berry and Kathryn Hargreaves. GNU
fontutils. http://www.gnu.org/software/
fontutils.

[4] Charles Bigelow. Notes on typeface protection.
TUGboat, 7(3):146–151, October 1986.

[5] Robin Fairbairns. Virtual fonts.
http://www.tex.ac.uk/cgi-bin/
texfaq2html?label=virtualfonts.

[6] Peter Flynn. Installing PostScript fonts.
http://www.silmaril.ie/downloads/
documents/installpsfonts.pdf.

[7] I. Lee Hetherington and Eddie Kohler. Type 1
utilities (t1utils).
http://www.lcdf.org/~eddietwo/type.

[8] David Kindersley. Optical Letter Spacing for
New Printing Systems. Wynkyn de Worde Soci-
ety, distributed by Lund Humphries Publishers
Ltd., 26 Litchfield St. London WC2, 1976.

[9] Donald E. Knuth. GF (generic font) format.
http://www.ctan.org/tex-archive/
systems/knuth/mfware/gftype.web (among
other programs).

[10] Philipp Lehman. The font installation guide.
http://www.ctan.org/tex-archive/info/
Type1fonts/fontinstallationguide.pdf.

[11] Han-Wen Nienhuys. mftrace.
http://www.cs.uu.nl/~hanwen/mftrace.

[12] Han-Wen Nienhuys and Paul Vojta. gf2pbm.
http://www.cs.uu.nl/~hanwen/mftrace.

[13] Johannes Plass. GV: a PostScript and PDF pre-
viewer. http://wwwthep.physik.uni-mainz.
de/~plass/gv.

[14] Jef Poskanzer and Bryan Henderson et al.
Netpbm. http://netpbm.sourceforge.net.

[15] Tomas Rokicki. Dvips. http://www.ctan.
org/tex-archive/dviware/dvips.

[16] Tomas Rokicki. PK (packed font) format.
http://www.ctan.org/tex-archive/
systems/knuth/mfware/pktype.web (among
other programs).

[17] Philip J. Schneider. Phoenix: An interactive
curve design system based on the automatic
fitting of hand-sketched curves. Master’s
thesis, University of Washington, 1988.
http://autotrace.sourceforge.net/
Interactive_Curve_Design.ps.gz.

[18] Richard M. Stallman. GNU coding standards.
http://www.gnu.org/prep/standards_48.
html. Node: Managing Releases.

[19] Richard M. Stallman. Project GNU (GNU’s
Not Unix). http://www.gnu.org.

[20] Péter Szabó. textrace.
http://textrace.sourceforge.net.

[21] Walter Tracy. Letters of Credit. David R.
Godine, Publisher, Boston, MA, USA, 1986.

[22] Guido van Rossum. Python.
http://python.org.

[23] Martin Weber. Autotrace.
http://autotrace.sourceforge.net.

[24] George Williams. Font file formats.
http://pfaedit.sourceforge.net/index.
html#Formats. This has contains links to
PostScript Type 1 and AFM documents, and
both the Apple and Microsoft TrueType and
OpenType standards documents, among many
others.

[25] George Williams. Pfaedit.
http://pfaedit.sourceforge.net.

[26] Y&Y. Single TFM file for Type 1 Fonts.
http://www.yandy.com/maketfm.htm.

� Karl Berry
685 Larry Ave. N
Keizer, OR 97303
USA
karl@freefriends.org

http://freefriends.org/~karl/

http://ttf2pt1.sourceforge.net
http://tug.org/fontname
http://www.gnu.org/software/fontutils
http://www.gnu.org/software/fontutils
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=virtualfonts
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=virtualfonts
http://www.silmaril.ie/downloads/documents/installpsfonts.pdf
http://www.silmaril.ie/downloads/documents/installpsfonts.pdf
http://www.lcdf.org/~eddietwo/type
http://www.ctan.org/tex-archive/systems/knuth/mfware/gftype.web
http://www.ctan.org/tex-archive/systems/knuth/mfware/gftype.web
http://www.ctan.org/tex-archive/info/Type1fonts/fontinstallationguide.pdf
http://www.ctan.org/tex-archive/info/Type1fonts/fontinstallationguide.pdf
http://www.cs.uu.nl/~hanwen/mftrace
http://www.cs.uu.nl/~hanwen/mftrace
http://wwwthep.physik.uni-mainz.de/~plass/gv
http://wwwthep.physik.uni-mainz.de/~plass/gv
http://netpbm.sourceforge.net
http://www.ctan.org/tex-archive/dviware/dvips
http://www.ctan.org/tex-archive/dviware/dvips
http://www.ctan.org/tex-archive/systems/knuth/mfware/pktype.web
http://www.ctan.org/tex-archive/systems/knuth/mfware/pktype.web
http://autotrace.sourceforge.net/Interactive_Curve_Design.ps.gz
http://autotrace.sourceforge.net/Interactive_Curve_Design.ps.gz
http://www.gnu.org/prep/standards_48.html
http://www.gnu.org/prep/standards_48.html
http://www.gnu.org
http://textrace.sourceforge.net
http://python.org
http://autotrace.sourceforge.net
http://pfaedit.sourceforge.net/index.html#Formats
http://pfaedit.sourceforge.net/index.html#Formats
http://pfaedit.sourceforge.net
http://www.yandy.com/maketfm.htm
karl@freefriends.org
http://freefriends.org/~karl/

	Introduction
	Scanned image to bitmap font: imageto
	Bitmap font to outlines: autotrace
	Testing the new font from TeX
	Scaling: mftrace
	Metrics: afm2tfm
	Running TeX and dvips

	Final outline output: frontline, pfaedit

