
Typesetting the Byzantine Cappelli

Philip Taylor
The Computer Centre, Royal Holloway,
University of London, TW20 0EX,
United Kingdom
mailto :P.Taylor@Rhul.Ac.Uk

Abstract

An overview of the author’s rôle in the preparation of the forthcoming Lexicon of
Abbreviations & Ligatures in Greek Minuscule Hands, with particular emphasis
on two challenges : sorting TEX markup for polytonic Greek using multiple con-
current keys, and deriving statistical data which could be used to provide input
to the book design.

Introduction

One of the greatest pleasures that I get from my po-
sition as Webmaster at Royal Holloway, University
of London, is the only-too-rare opportunity to work
with truly gifted and dedicated scholars. For the
last few years, I have been truly privileged to be able
to work with Miss Julian Chrysostomides, Director
of our Hellenic Institute, and with Dr Charalambos
Dendrinos, a Research Fellow within the same In-
stitute. These two extraordinary scholars have both
devoted a considerable portion of their lives to the
collection, collation and preparation of material for
a Lexicon of Abbreviations & Ligatures in Greek Mi-
nuscule Hands which is intended to do for Byzan-
tine scholarship what Adriano Cappelli’s Dizionario
di Abbreviature latine ed italiane has been doing for
Latin scholarship for the past 100 years.

Figure 1: A fragment from Cappelli’s Dizionario

For both Latin and Byzantine scholars, the task of
deciphering manuscripts which may be more than
a thousand years old is not simply one of reading
a long-dead scribe’s handwriting : far more difficult
is the task of identifying and correctly interpreting
the various abbreviations, ligatures and other scribal
shorthand notations that he or she may have used.
Even a skilled palæographer may have difficulty in

deciphering these, although for Latin scholars Cap-
pelli’s Dizionario provides an invaluable tool.

Only too aware of the difficulties that their stu-
dents were experiencing in attempting to decipher
Byzantine manuscripts, Julian & Charalambos de-
cided to compile a Byzantine dictionary that would
provide their students, and future scholars, with a
key to those scribal notations which were most likely
to cause problems in interpretation. For over five
years, these two scholars have been painstakingly re-
searching and deciphering hundreds if not thousands
of individual manuscripts and recording the results
of their work, initially using fairly primitive technol-
ogy such as Windows 3.1’s Cardfile and Eberhard
Mattes’ emTEX but more recently using spread-
sheet technology (Microsoft’s Excel) and the TEX
Live Windows implementation of Hàn Thế Thành’s
Pdf(LA)TEX by Fabrice Popineau.

The Work of the Scholars

Although locating and obtaining copies of the man-
uscripts requires a not-insignificant amount of time,
I will concentrate here on the tasks which the schol-
ars undertake once the copies have been received.
Each scribal notation that is potentially of inter-
est is identified and scanned, and any artifacts that
might serve to confuse are eliminated using a light
pen and suitable software (JASC’s Paintshop PRO).
The resulting “clean” image is then stored as a PDF

file using a fixed naming convention, and a corre-
sponding entry made in an Excel spreadsheet : this
entry contains the filename, the transcription, an
explanation (if the notation is an abbreviation or
similar) and the provenance (typically the date, but
occasionally a more detailed provenance where this
is felt to be important). Lest this create the impres-
sion that the rôle of the scholars is trivial, let me

142 TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting

Typesetting the Byzantine Cappelli

emphasise that the task of deciphering and inter-
preting the scribal notations is one requiring much
skill and many many years of experience !

Scanning and transcription take place in
batches, following which proofing takes place. Dur-
ing the proofing stage, the size and relative position
of each scanned image is adjusted to ensure that
all scanned images reproduce at approximately the
same height and with the same vertical offset from
the notional baseline. As will be seen later, ensur-
ing that all images reproduce at the same height has
only a limited effect on their widths : as a result,
a statistical analysis of the widths of the scanned
images will later be needed to allow an accurate as-
sessment of the proportion of images that would fit
without problem were a particular book design to
be adopted. The scaling and offset parameters are
stored within the Excel spreadsheet.

As far as is possible, syntax errors are identified
and corrected at the proofing stage, although some
may sneak through and require further intervention
at the galley or page-proof stages. Because of the
complexity of the markup used to represent tran-
scriptions and explanations, such errors can easily
creep in — these frequently involve braces, either as
mismatched pairs or through the accidental use of
non-brace symbols such as parentheses or brackets.

Markup and Syntax

Each entry in the spreadsheet consists of a number
of fields, most of which are destined to become in-
corporated in a TEX document. Each record in the
resulting TEX file conforms to the following pattern :
\Byzantine

<scale>
<y-offset>

<filename>
<transcription>

<explanation>
<provenance>

of which an example might read
\Byzantine

-0.2
-0.5

abr-qwrafion2
{{q\raise {f}}}

{{qwr’afion}}
{{1430}}

The \Byzantine command is used to introduce each
record, and its meaning is redefined in various pro-
grams used to process the data. The first two pa-
rameters represent the scaling to be used (a neg-
ative value implies shrinkage rather than magni-

fication) and the offset from the horizontal axis
(a negative value implies lowering rather than rais-
ing). The third parameter is the filename, the por-
tion preceding the hyphen indicating into which of
about ten general classifications the record should
be subsumed. The fourth parameter is the tran-
scription, marked up according to Silvio Levy’s en-
coding scheme for polytonic Greek with additional
commands required to indicate scribal ornamenta-
tions such as \raise {}, \overbar {}, etc. The
fifth parameter is the explanation, again marked up
using Levy’s scheme (this time with no extensions) ;
and the sixth and final field is the provenance.

Sorting the Data

Although the data are coarsely pre-sorted by virtue
of the prefix element of the filename, the actual lex-
icographic sorting needed before the data can be in-
corporated in the final lexicon is considerably more
complex. Not only is it necessary to sort — by
Greek collating rules — the latin transliteration of
the Greek characters originally used, it is also nec-
essary to ensure that the sorting takes into account
all of the additional orthographic devices which may
occur : breathings, accents, iota subscripts, orna-
ments (raised [groups of] letters, overbars), diareses
and of course case-differences themselves. Further-
more, it is necessary to sort initially by transcrip-
tion, but if — for a given record — the translitera-
tion is absent, or identical to another transcription,
then sorting must instead be by explanation, and if
two or more records are found still to be identical
after all of these criteria have been considered, then
the date (provenance) and finally the original order
in the spreadsheet must be taken into account (this
last fallback key ensures that no manual sorting will
ever be required once the data have been correctly
entered in the spreadsheet).

Needless to say, sorting of this complexity is a
task for which TEX is rather less than ideally suited.
Even though earlier workers (e.g., Kees van der
Laan, 1993 ; Bernd Raichle, 1994) have shewn
that TEX is perfectly capable of performing sorting,
the magnitude of the data (some 4000 records) and
the complexity of the sorting required suggest that a
more appropriate tool be used. The problem, how-
ever, is that the TEX markup used is fairly complex,
and in order to parse it effectively, TEX itself is re-
ally required. Thus we appeared to be on the horns
of a dilemma : on the one hand, TEX was felt to be
unsuitable for the task of sorting, yet on the other
TEX was considered to be essential if the markup
were to be correctly parsed and interpreted. This

TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting 143

Philip Taylor

impasse was finally resolved during discussions at a
EuroTEX conference with Professor Klaus Lagally,
who had experience of similar problems when try-
ing to sort Arabic text in TEX : his solution, which
proved to be absolutely ideal, was that we should
treat the task as two separate problems — (1) pars-
ing the TEX markup, and (2) sorting the data. The
key to the solution lay in his suggestion that, during
the sorting phase, TEX be asked to output far sim-
pler keys (e.g., purely numeric) which could then be
easily interpreted by any conventional sorting rou-
tine.

Parsing in TEX

With Klaus’s suggestions firmly in mind, work
started on writing the TEX parser. Although it
would have been possible to write all keys to a sin-
gle file, it was decided to associate each key with a
unique file :
\immediate \openout \TRAccents

= Transcription.accents
. . .

\immediate \openout \TROrnaments
= Explanation.ornaments

\immediate \openout \EXAccents
= Transcription.accents
. . .

\immediate \openout \EXOrnaments
= Explanation.ornaments

\immediate \openout \Dates
= Byz-data.dates

\immediate \openout \Sequence
= Byz-data.sequence

Note that accents, breathings, cases, diareses, iotas,
letters and ornaments are replicated for transcrip-
tion and explanation but that dates and sequence
numbers require only a single instance of each.

The main loop of the program iterates over its
input file :
\loop

\read \source to \buffer
\ifeof \source

\repeatfalse
\else

\expandafter
\parse \buffer \endparse

\advance \entry by 1
\repeattrue

\fi
\ifrepeat
\repeat

Before parsing the transcription and the explana-
tion, we re-define the output files as being \TR...
or \EX... as appropriate :
\def \Usetranscription

{%
\let \Accents = \TRAccents
. . .
\let \Ornaments = \TROrnaments

}

\def \Useexplanation
{%
\let \Accents = \EXAccents
. . .
\let \Ornaments = \EXOrnaments

}

Remembering that each input record consists of the
control word \Byzantine followed by six parame-
ters, we define \parse to call the analysis routine
twice, passing first the transcription and then the
explanation :
\def \parse \Byzantine

#1 #2 #3-#4 #5#6#7\endparse
{%
\reset
\transcription = {#5}
\Usetranscription
\analyse #5\endparse \endanalyse
\print

\reset
\Useexplanation
\explanation = {#6}
\analyse #6\endparse \endanalyse
\print

}

The apparent difference between the earlier state-
ment that the transcription forms the fourth pa-
rameter (and the explanation the fifth parameter)
and the code above, which appears to refer to them
as the fifth and sixth parameters respectively, is ex-
plained by the fact that during parsing we treat the
filename as two separate parameters separated by
a hyphen : this allows the prefix (representing the
general category into which the entry fits) to be
extracted and used to qualify the date, since the
lexicon is macro-ordered by general category, and
micro-ordered by the sorting criteria currently be-
ing described.

The analysis code itself is fairly straightforward :
\def \analyse #1#2\endanalyse

{\ifx #1\endparse
\else

144 TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting

Typesetting the Byzantine Cappelli

\def \flag {#2}
\advance \index by 1
\process {#1}
\analyse #2\endanalyse

\fi
}

all of the complexity being delegated to the \process
{} routine :
\def \process #1%

{
\csname +\string #1\endcsname

}

Before \process {} can be understood, it is first
necessary to explain how the parser identifies into
which category each token fits. The program starts
by listing the various categories :
\newentity {accent}
\newentity {breathing}
\newentity {diaresis}
\newentity {grouping}
\newentity {iota}
\newentity {letter}
\newentity {ornamentation}

Then, for each category, the tokens which compose
that category are enumerated. Here, for example,
the possible accents are enumerated :
\newaccent ‘
\newaccent ’
\newaccent ~

To avoid the risk of human error, we interrogate an
internal counter to find how many elements there
are in each category :
\numberof \accents = \valueof ~
\advance \accents by 1 %%% null accent

Now take a deep breath, because we need to discuss
how \newentity {} is defined :
1 \def \newentity #1
2 {\expandafter \NewCount
3 \csname #1\endcsname
4 \expandafter \def \csname
5 new#1\endcsname ##1%
6 {\advance \csname #1\endcsname by 1
7 \expandafter \edef \csname
8 +\string ##1\endcsname
9 {\expandafter \noexpand
10 \csname #1token\endcsname
11 {\string ##1}
12 {\the \csname #1\endcsname}%
14 }
15 }
16 }

As this code is somewhat opaque, let’s make
life simpler by considering what happens when
\newentity {} is called with a parameter, as in
\newentity {accent}. Lines 2 to 3 expand to
yield \NewCount \accent. \NewCount can be used
in macro expansions but is otherwise identical to
Plain’s \newcount. Lines 4 onwards expand to
yield a definition for the single-parameter macro
\newaccent {} ; the definition is equivalent to the
following pseudo-TEX code :
\def \newaccent #1

{\advance \accent by 1
\edef \+#1%

{\accenttoken {#1}{\the \accent}
}

Again it will be simpler to understand through
the medium of an example, so we will consider
what happens when \newaccent {} is called with
parameter ~, as in \newaccent ~. The counter
\accent is incremented by one (it starts life at
zero), and the control sequence \+~ is defined to
expand to \accenttoken {~}{<current value of
\accent>}. The sole function of the + prefix used
in constructing the name of the control sequence is
to reduce the risk of a namespace clash.

We will next need to look at \accenttoken {},
which as we see below is just one of a family of
identically treated control sequences :
\def \accenttoken #1#2%

{\do {Accent}{#1}{#2}}
\def \breathingtoken #1#2%

{\do {Breathing}{#1}{#2}}
\def \diaresistoken #1#2%

{\do {Diaresis}{#1}{#2}}
\def \groupingtoken #1#2%

{\do {Grouping}{#1}{#2}}
\def \iotatoken #1#2%

{\do {Iota}{#1}{#2}}
\def \lettertoken #1#2%

{\do {Letter}{#1}{#2}}
\def \ornamentationtoken #1#2%

{\do {Ornament}{#1}{#2}}

after which we need to examine \do {} :
\def \do #1#2#3%

{%
\csname #1\endcsname {#2} {#3}

}

Since parameters 1 & 2 of \accenttoken {} become
parameters 2 & 3 of \do {}, we can see that when
\do {} is launched from \accenttoken {} the ex-
pansion is :
\Accent {<accent-token>}{<numeric-value>}

TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting 145

Philip Taylor

Remembering that TEX is case-sensitive, it should
be clear that \accent and \Accent {} are totally
different entities — the former is an integer register
(declared with \NewCount {}), whilst the latter is
explained below :
\def \Accent #1#2%

{
\lastaccent = #2
}

Thus the sole effect of \Accent {} is to store the
numeric value associated with the accent (its ordi-
nal) in \lastaccent ; most of the entities analogous
to \Accent {} behave in a similar way, with the
key exception of \Letter {} at which we must next
look :
1 \def \Letter #1#2%
2 {%
3 \lettervalue = #2
4 \ifodd \lettervalue
5 \edef \Caseskey {\Caseskey 1}
6 \advance \lettervalue by 1
7 \else
8 \edef \Caseskey {\Caseskey 0}
9 \fi
10 \edef \Accentskey
11 {\Accentskey \the \lastaccent}
12 \edef \Breathingskey
13 {\Breathingskey
14 \the \lastbreathing}
15 \edef \Diareseskey
16 {\Diareseskey
17 \the \lastdiaresis}
18 \edef \Iotaskey
19 {\Iotaskey 0}
20 \edef \Letterskey
21 {\Letterskey \expandafter
22 \expandafter \expandafter
23 \twodigits \expandafter
24 0\the \lettervalue
25 \sentinel
26 }
27 \edef \Ornamentskey
28 {\Ornamentskey
29 \the \lastornament}
30 \lastaccent = 0
31 \lastbreathing = 0
32 \lastdiaresis = 0
33 }

It is, in fact \Letter {} (which is triggered by the
parser detecting a letter, as opposed to any dia-
critic or other orthographic mark) that is at the
heart of the TEX parser under discussion. Remem-
ber that \Letter {} will be called with the actual

letter as parameter 1 and the ordinal of that letter
as parameter 2. At line 3, the ordinal is saved in
\lettervalue. At lines 4 to 9, a test is made to
see whether this is odd or even, a simple test which
discriminates between upper- and lower-case letters.
If the result is odd (uppercase), \lettervalue is
rounded upwards to renormalise it as lowercase af-
ter noting the fact that it was originally upper-
case. Note carefully the \edefs at lines 5 & 9,
which append a zero or a one to the current value
of \Caseskey : this same mechanism is used from
lines 10 to 29 to append the last (accent, breathing,
diaresis, or ornament) ordinal to the corresponding
key.

Here at last we begin to see the results of all of
our efforts : the various keys are extended (by a fixed
amount) each time a letter is encountered in the in-
put record to capture, as a set of sequences of fixed-
length integers, the possible features which may be
used to differentiate each letter from an otherwise
identical letter when sorting finally takes place.

After parsing the transcription, and again after
parsing the explanation, we write each of the seven
keys to the associated file :

\def \print
{
\immediate \write \Accents

{\Accentskey}
...

\immediate \write \Ornaments
{\Ornamentskey}

}

After the keys for the transcription and explanation
have been written to file, the date (with filename
prefix prepended) and sequence number are simi-
larly recorded :

\immediate \write \Dates {#3-#7}
\immediate \write \Sequence {\the \entry}

The Results

The end result of all of this is a series of files, each of
which consist of n records, where n is the number of
records in the original data set. Each record in each
file will be of length K × l, where l is the number of
letters in the corresponding input record and K is
a constant which varies from file to file (some keys
can be represented as a single digit per character,
some require two digits per character, and so on).
A short fragment of a typical input file, and the cor-
responding extracts from sample key files, are shewn
on the following pages ; the samples are intended to
illustrate most of the scribal devices used.

146 TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting

Typesetting the Byzantine Cappelli

byz-data.dat
\Byzantine -0.5 0.4 abr-adelfou

{{>ad\raise {e}}} {{>adelfo~u}}
{{Thebes}}

\Byzantine -0.4 0.4 abr-adelfous
{{>ad\raise {o‘us}}} {{>adelfo‘us}}

{{1374}}
\Byzantine -0.3 0 abr-adelfwn

{{>adelf}} {{>adelf~wn}}
{{1374}}

\Byzantine -0.3 -0.2 abr-aer
{{a\raise {e}r}} {{>’aer}}

{{15\th c.}}
\Byzantine -0.2 -0.2 abr-aer1

{{a\raise {e}r}} {{>’aer}}
{{1492}}

\Byzantine -0.3 -0.5 abr-afierwthrion
{{>af"I\raise {e}rw\raise {tr}}}

{{>afierwt’hrion}} {{1420}}
\Byzantine -0.3 -0.2

abr-afrodith-fwsforos-qalkos {{}}
{{>Afrod’ith fwsf’oros / qalk‘os}}

{{16\th c.}}

transcription.letters
041012
0410324638
0410122448
041236
041236
0448201236544436
<blank>

transcription.accents
000
00010
00000
000
000
00000000
<blank>

transcription.breathings
100
10000
10000
000
000
10000000
<blank>

transcription.cases
000
00000
00000

000
000
00100000
<blank>

transcription.diareses
000
00000
00000
000
000
00100000
<blank>

transcription.ornaments
001
00111
00000
010
010
00010011
<blank>

explanation.letters
04101224483246
0410122448324638
04101224485428
041236
041236
044820123654441636203228
0448363210204416485438483236323850042422...

explanation.accents
0000003
00000010
0000030
200
200
000000020000
0000020000002000000010

explanation.breathings
1000000
10000000
1000000
100
100
100000000000
1000000000000000000000

explanation.cases
0000000
00000000
0000000
000

TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting 147

Philip Taylor

000
000000000000
1000000000000000000000

explanation.diareses
0000000
00000000
0000000
000
000
000000000000
0000000000000000000000

explanation.ornaments
0000000
00000000
0000000
000
000
000000000000
0000000000000000000000

Sorting in Perl

After the complexities of the TEX coding required to
implement the parser, the matching Perl code will
come as something of a relief ! We start by opening
or creating a few files :
$Data = "Byz-Data.dat" ;
open Data or die

"File $Data cannot be opened :
$!\n" ;

@data = <Data> ;

$TRAccents = "Transcription.Accents" ;
open TRAccents or die

"File $TRAccents cannot be opened :
$!\n" ;

@TRaccents = <TRAccents> ;

. . .

$EXOrnaments = "Explanation.Ornaments" ;
open EXOrnaments or die

"File $EXOrnaments cannot be opened :
$!\n" ;

@EXornaments = <EXOrnaments> ;

$Dates = "Byz-Data.dates" ;
open Dates or die

"File $Dates cannot be opened :
$!\n" ;

@dates = <Dates> ;

$Sequence = "Byz-Data.Sequence" ;

open Sequence or die
"File $Sequence cannot be opened :

$!\n" ;
@sequence = <Sequence> ;

$Sink = ">Byz-Data.Srt" ;
open Sink or die

"File $Sink cannot be created :
$!\n" ;

We then enumerate the keys that will be used for
sorting :
@key11 = @TRletters ;
@key12 = @TRbreathings ;
@key13 = @TRaccents ;
@key14 = @TRiotas ;
@key15 = @TRornaments ;
@key16 = @TRdiareses ;
@key17 = @TRcases ;

@key21 = @EXletters ;
@key22 = @EXbreathings ;
@key23 = @EXaccents ;
@key24 = @EXiotas ;
@key25 = @EXornaments ;
@key26 = @EXdiareses ;
@key27 = @EXcases ;

@key31 = @dates ;

Then we perform a detached key sort and output
the results :
@keys = sort polytonically @sequence ;
foreach $key (@keys)

{print Sink $data [$key]} ;

All that remains is to define the comparison algo-
rithm :
sub polytonically

{if (($key11 [$a]
cmp $key11 [$b]) != 0)

{return $key11 [$a]
cmp $key11 [$b]}

elsif (($key12 [$a]
cmp $key12 [$b]) != 0)

{return $key12 [$a]
cmp $key12 [$b]}

. . .

elsif (($key27 [$a]
cmp $key27 [$b]) != 0)

{return $key27 [$a]
cmp $key27 [$b]}

elsif (($key31 [$a]
cmp $key31 [$b]) != 0)

{return $key31 [$a]

148 TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting

Typesetting the Byzantine Cappelli

cmp $key31 [$b]}
else {print Errors "Warning :

duplicate entry : \n",
$sequence [$a]+1,
" : ", $data [$a],
$sequence [$b]+1,

" : ", $data
[$b], "\n"}

}

Statistical Analysis of Field Widths

As explained above, although the scanned images
are normalised for height and position, it is impos-
sible to normalise them for width since some are
inherently narrow and others are inherently wide.
The transcriptions, explanations and provenances,
too, vary widely in length. In order to gain an in-
sight into the best distribution of the available space
between the various fields (and, indeed, in order to
determine the minimum page size which would ac-
commodate the longest possible entry for one-, two-
and three-column designs), it was decided to per-
form a statistical analysis of the variation in mini-
mum width of each of the fields. For the scanned im-
ages, all that was necessary was to record the width
of each (after scaling) and to use Excel to analyse
these (the actual analysis techniques used are dis-
cussed below), but for the textual fields there was an
additional and very interesting problem : how does
one decide what is the minimum width that can be
used to typeset a given stretch of text ?

Obtaining the Statistics for Text Fields

One possible approach is to typeset the text in a
\vbox {} with \hsize = 0pt. This will forcibly
hyphenate every possible word, but the problem is
knowing how to access the results : if one examines
the dimensions of the \vbox {} after this operation,
it will have finite height and depth, but the width
will still be 0pt, and even if one unboxes it and
reboxes it, one finds that the internal \hbox {}es
that TEX constructs whilst paragraph building also
have zero width. However, all is not lost : if one
uses TEX’s box destructor primitive \lastbox, one
can gain access to the last line of the paragraph ;
unboxing and reboxing this line yields an \hbox {}
with finite width as well as finite height and depth.
Applying this technique iteratively allows access to
(the widths of) all the lines of the paragraph, and if
one then selects the largest of these, one then knows
the narrowest measure within which the stretch of
text could be typeset.

In reality, of course, this may be far too narrow
to be usable, but once one has established a lower
bound one is as least on the way to determining the
optimal width.

Sample code which can be used to perform this
operation is shewn below :
\toks 0 = {Research by the School of

Management is not confined
to for-profit corporations,
it is also a leading centre
for research into public
sector organisations. In
recognition of the rising
impact of sustainability for
business and society, the
School, together with the
Department of Geography,
have created an
inter-disciplinary Centre for
Research into Sustainability
(CRIS).
}

\newif \ifloop
\newdimen \minwidth

\def \findminwidth #1#2%
{%
\minwidth = 0 pt
\setbox 0 =
\vtop \bgroup

\hsize = 0 pt
\hfuzz = \maxdimen
#1 \noindent #2 \par
\loop

\setbox 2 = \lastbox
\ifvoid 2

\loopfalse
\else

\setbox 4 = \hbox
{\unhbox 2}

\ifdim \wd 4 > \minwidth
\global \minwidth

= \wd 4
\fi
\unskip
\unpenalty
\looptrue

\fi
\ifloop
\repeat
\egroup

\message {min-width : \the \minwidth}

TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting 149

Philip Taylor

\global \setbox 0 = \vtop
\bgroup
\hsize = \minwidth
\rightskip = 0 pt

plus \minwidth
#1 \noindent #2 \par
\egroup

}

\findminwidth {\uchyph = 1}{\the \toks 0}
\setbox 2 = \box 0
\findminwidth {\uchyph = 0}{\the \toks 0}
\setbox 4 = \box 0
\findminwidth {\hyphenchar \font = -1 }

{\the \toks 0}
\setbox 6 = \box 0
\leftline

{\box 2 \quad \box 4 \quad \box 6}
\end

The test lines at the end demonstrate that differ-
ent minimum widths can be achieved depending on
whether or not hyphenation is permitted, and if per-
mitted, whether upper-case words may legitimately
be hyphenated. For the sample stretch of text used,
the three minima were 50.36124pt, 60.05573pt and
74.00015pt for the uc & lc case, the lc-only case,
and the no-hyph case respectively. Figure 2 shews
the results of typesetting the sample text to these
three measures :

Research
by the
School of
Manage-
ment is not
confined to
for-profit
corpora-
tions, it
is also a
leading
centre for
research
into public
sector
organisa-
tions. In
recognition
of the
rising
impact of
sustain-
ability for
business
and
society,
the School,
together
with the
Depart-
ment of
Geography,
have
created
an inter-
disciplinary
Centre for
Research
into Sus-
tainability
(CRIS).

Research by
the School of
Management
is not
confined to
for-profit
corporations,
it is also
a leading
centre for
research into
public sector
organisa-
tions. In
recognition
of the rising
impact of
sustainability
for business
and society,
the School,
together
with the
Department
of Geography,
have created
an inter-
disciplinary
Centre for
Research into
Sustainability
(CRIS).

Research by
the School of
Management
is not confined
to for-profit
corporations,
it is also a
leading centre
for research into
public sector
organisations. In
recognition of
the rising impact
of sustainability
for business
and society,
the School,
together with
the Department
of Geography,
have created an
inter-disciplinary
Centre for
Research into
Sustainability
(CRIS).

1

Figure 2: Typesetting to the narrowest measure :
uc & lc hyphenation, lc-only, and no hyphenation

Analysing the Statistics

For many years, I eschewed spreadsheets completely,
believing that they were yet another manifestation
of “The Emperor’s New Clothes” and offering noth-

ing whilst promising everything ... It was only when
I started chairing the TUG Bursary Committee that
I began to realise that spreadsheets did indeed have
something to offer, and so when I began to search
for a tool to help with the analysis of field widths
for the current project I started by looking at the
possibilities of Excel .

At first I was defeated by little things : Excel ,
for example, seems unfamiliar with the concept of
the point as a unit of measure, so it was unable
to deal with TEX’s 58.88902pt notation. This was
very easily dealt with once I realised that Excel ’s
Data/Text to Columns.../Delimited/Other/"p"
would do exactly what I needed — strip off the trail-
ing pt leaving only the unitless number in the source
column.

The second task was considerably more diffi-
cult : given a set of some 4000 real numbers (repre-
senting the widths of one of the fields in the Lexi-
con), I wanted to (a) sort them, and (b) derive statis-
tics which would shew what percentage were less
than each unique value. I was convinced that Ex-
cel could manage this, but none of my Excel -literate
colleagues (including my wife !) could tell me how to
persuade Excel to do the necessary.

In the end, a Google search led me to
the solution : the necessary statistical tools are
not installed by default, and it is first nec-
essary to install the appropriate options pack.
Tools/Add-Ins.../Analysis ToolPak proved to
be the required incantation, after which Tools/Data
Analysis.../Histogram/Cumulative Percentage
provided the exact statistics that I needed. Fig-
ures 3 – 4 shew a sample of the output from Excel
covering the range from 85% to 98,5%. Access to
statistics such as these for each of the four fields of
the Lexicon will prove invaluable when putting the
finishing touches to the book design, since the au-
thors will be able to see for themselves what fraction
of the entries would fit without compromise were a
particular design to be selected.

Conclusions

TEX is a superb program, capable of producing the
finest quality typeset output ; however, it is neither
the ideal tool for sorting, nor for producing statisti-
cal analyses. When used in conjunction with other
tools such as Perl (sorting) and Excel (statistics),
the combined power far exceeds the sum of the parts.
Synergies such as these are surely the key to the rôle
of TEX in the future : TEX should no longer be per-
ceived as a tool in isolation, but rather as a partner
in a whole suite of tools, each perfectly adapted to
the task for which it is used.

150 TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting

Typesetting the Byzantine Cappelli

43.51428 31 83.30%
44.06853 92 85.42%
44.62279 16 85.79%
45.17705 18 86.21%
45.73131 10 86.44%
46.28556 25 87.02%
46.83982 19 87.46%
47.39408 22 87.96%
47.94834 18 88.38%
48.50260 24 88.94%
49.05685 20 89.40%
49.61111 19 89.84%
50.16537 15 90.18%
50.71963 8 90.37%
51.27389 13 90.67%
51.82814 34 91.45%
52.38240 13 91.75%
52.93666 14 92.08%
53.49092 12 92.35%
54.04517 19 92.79%
54.59943 33 93.56%
55.15369 8 93.74%
55.70795 9 93.95%
56.26221 12 94.22%
56.81646 6 94.36%
57.37072 8 94.55%
57.92498 15 94.89%
58.47924 7 95.06%
59.03349 8 95.24%
59.58775 1 95.26%
60.14201 7 95.43%
60.69627 34 96.21%
61.25053 4 96.30%
61.80478 3 96.37%
62.35904 4 96.47%
62.91330 6 96.60%
63.46756 7 96.77%
64.02181 12 97.04%
64.57607 2 97.09%
65.13033 4 97.18%
65.68459 4 97.27%
66.23885 21 97.76%
66.79310 4 97.85%
67.34736 3 97.92%
67.90162 7 98.08%
68.45588 4 98.18%
69.01014 8 98.36%
69.56439 3 98.43%
70.11865 3 98.50%
70.67291 1 98.52%
71.22717 6 98.66%

Figure 3: Width, frequency & cumulative %age

Acknowledgements

The author would like to acknowledge the unwaver-
ing and unstinting affection, dedication and patience
of Miss Julian Chrysostomides and Dr Charalam-
bos Dendrinos, with whom it is truly a joy to work.
He would also like to thank Professor Klaus La-
gally for his advice on sorting non-Latin scripts,
and Claudio Beccari for his courtesy and patience
whilst the author was trying to effect the transi-
tion from Silvio Levy’s polytonic Greek fonts to the
“CB” series. Finally he would like to thank the TUG

Bursary Committee for financial support which en-
abled him to present this paper at Wu Han (China)
during the TUG 2005 conference.

43.51428 31 83.30%
44.06853 92 85.42%
44.62279 16 85.79%
45.17705 18 86.21%
45.73131 10 86.44%
46.28556 25 87.02%
46.83982 19 87.46%
47.39408 22 87.96%
47.94834 18 88.38%
48.50260 24 88.94%
49.05685 20 89.40%
49.61111 19 89.84%
50.16537 15 90.18%
50.71963 8 90.37%
51.27389 13 90.67%
51.82814 34 91.45%
52.38240 13 91.75%
52.93666 14 92.08%
53.49092 12 92.35%
54.04517 19 92.79%
54.59943 33 93.56%
55.15369 8 93.74%
55.70795 9 93.95%
56.26221 12 94.22%
56.81646 6 94.36%
57.37072 8 94.55%
57.92498 15 94.89%
58.47924 7 95.06%
59.03349 8 95.24%
59.58775 1 95.26%
60.14201 7 95.43%
60.69627 34 96.21%
61.25053 4 96.30%
61.80478 3 96.37%
62.35904 4 96.47%
62.91330 6 96.60%
63.46756 7 96.77%
64.02181 12 97.04%
64.57607 2 97.09%
65.13033 4 97.18%
65.68459 4 97.27%
66.23885 21 97.76%
66.79310 4 97.85%
67.34736 3 97.92%
67.90162 7 98.08%
68.45588 4 98.18%
69.01014 8 98.36%
69.56439 3 98.43%
70.11865 3 98.50%
70.67291 1 98.52%
71.22717 6 98.66%

Figure 4: Width, frequency & cum.%age (cont)

Bibliography

van der Laan, C.G. (“Kees”) 1993 : Sorting in
BLUe ; Minutes and Appendices (MAPS) 10, Ned-
erlandstalige TEX Gebruikersgroep (NTG).

Raichle, Bernd 1994 : Sorting in TEX’s Mouth ;
Proceedings of the 1994 EuroTEX Conference.

TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting 151

