
What tools do ConTEXt users have?
HANS HAGEN
Pragma ADE, Hasselt
pragma (at) wxs dot nl

A bit of history
When we started working on ConTEXt, MS Windows
(and before that 4Dos) was our main platform; it still
is for development (we use Unix on the web and file
servers and the Mac for fun). So, when ConTEXt
was integrated into the TEX distributions we faced
the problem of portability. Since one needs auxiliary
programs1 for e.g. sorting an index, we had written
TEXutil, and the lack of a commandline handler made
us come up with TEXexec. Both were written in Mod-
ula but were rewritten in Perl in order to be usable
on platforms other than MS Windows. It was easier
to maintain a Perl version than to deal with low-level
platform issues indefinitely.

As both our own and user demands grew, we
wrote more tools and found out that they could best
be written in Ruby. In the meantime TEXexec has
been rewritten in Ruby, and relevant parts of TEXutil
have been merged into it.

Launching scripts
Starting a script on an MS Windows box can be done
using a so-called stub, a small program or command
file with the same name that locates a similarly named
script. On Unix some shell magic can be used to do
the same or one can fall back on a magic preamble (a
Bash/Perl mixture) fooling the operating system into
locating and spawning the script using the right in-
terpreter. By now, MS Windows has a convenient file
association mechanism (but one has to activate it first)
while Unix needs a (nowadays less path sensitive) she-
bang line and a suffixless copy of the script.

Nevertheless we decided to come up with a less
sensitive approach which also gave us the opportunity
to accomplish a few more things: TEXMFstart. This
script locates and executes a script (or program) in the
TEX tree and executes it.
texmfstart texexec somefile.tex

1We will use the terms ‘scripts’ and ‘programs’ interchangeably.

When you incorporate TEX in workflows, call-
ing TEXexec this way is rather future safe. Actually,
because of this method, we could make the transition
from TEXexec being a Perl script to being a Ruby pro-
gram without too much trouble. A side effect of this
way of lunching scripts is that nested calls are faster
because some information is passed on to child runs.

The script is also able to sort out a couple of
things, for instance where files reside. Nowadays one
will seldom use TEX alone and not all text processing
(or related) programs have a clear concept of resource
management and/or can work well with a TDS con-
forming tree.
texmfstart bin:xsltproc --output=new.xml \

kpse:how.xsl old.xml

This2 will locate the file how.xsl in the TEX tree
and expand the filename to the full path. That way
one can keep XSLT scripts organized as well. There
are a few more such prefixes.

Other features are locating and showing documen-
tation and launching editors with files located in the
tree. The following call will open the texmf.cnf file
that is currently used.
texmfstart --edit kpse:texmf.cnf

The script can initialize a tree so one can effec-
tively run multiple trees in parallel. It does so by
loading (when present) a file with variable specifica-
tions (more later about that).
texmfstart --tree=e:/tex-2003 \

texexec somefile.tex

We often use a different tree for each project be-
cause commercial fonts may be project related and this
way we can move a tree around without running into
copyright problems (read: installing all fonts on each
box).
texmfstart --tree=e:/tex-2003 \

texexec somefile.tex

2The backslash at the end of line denotes a continued line.

38 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

What tools do ConTEXt users have?

Another handy feature is conditional processing.
In the following case the test file will only be processed
when it has changed.
texmfstart --ifchanged=test.r --direct R \

"-q --save --restore < test.r"

In a similar fashion one can make running depen-
dent on time stamp comparison. More details can be
found in the manual.

Managing ConTEXt runs
The TEXexec script manages a user’s TEX run. There
are many factors that influence such a run:

• Since ConTEXt uses the same format for all back-
ends, it depends on loading the relevant backend
driver modules. Although one has complete con-
trol, life can be made easier when this is done
automatically.

• A first pass may generate data needed in a succes-
sive pass. There may be references, tables of con-
tents, indices, etc. so we need a way to manage
multiple runs. We have to make sure that neither
fewer nor more runs than needed take place.

• A run may demand further action between runs,
like graphic manipulations or delayed MetaPost
execution.

• We may want to run different TEX engines, ap-
ply different backends, use different user inter-
faces. Also, the name and way of calling TEX
may change over time, something that we don’t
want users to be bothered with.

• We may want to process a TEX or XML file un-
der different style regimes or enable style-specific
modes.

• The document may need an additional page im-
position pass, managed in such a way that no aux-
iliary data gets messed up.

• We may want to close and open the result in a
viewer after the run is done.

This and a bit more is handled by TEXexec. When
dealing with ConTEXt files the script will do a few
things users are normally not aware of, like making
sure that the random seed is frozen for a run, bugs
in programs are caught (as long as needed) and that

omissions in the texmf.cnf settings are compensated
for. In addition TEXexec provides a few features for
combining and manipulating PDF files.

The latest versions of TEXexec also support so-
called ctx files. These are files in XML format that
describe a process, additional pre- and postprocessing
needed, styles and modules to be used, etc.3 This
means that one can easily configure projects with-
out the need to tweak source files or editor setups
or give explicit commands. Think of situations where
an XML file (or bunch of files) has to be converted
to another variant in order to be processed. TEXexec
will only do that conversion when needed. In Fig-
ure 1 we show the file that is used in the MathAdore
project.4 The source file contains OpenMath and what
we call ‘shortcut math’ and after normalizing this to
OpenMath (first conversion) we convert the math to
content MathML (second conversion).

The source file contains a reference to this ctx file
and when TEXexec is applied to the source file, it will
take the appropriate actions. Such a reference looks
like:
<?ctx-dir job ctxfile ../mathadore.ctx ?>

Here “ctx-dir” denotes a ConTEXt directive.
When dealing with a TEX file, TEXexec will scan

the first line for comments that serve a similar pur-
pose.

Handling the utility file
For a long time TEXutil was called from within
TEXexec to handle the utility file that collects the in-
dex entries, tables of contents, references, etc. Nowa-
days this functionality is integrated in TEXexec which
is more efficient. We also took the opportunity to
enhance the sorting features so that one can mix lan-
guage specific sorting rules.

The original TEXutil is also responsible for some
other manipulations, like analyzing graphics. That
kind of functionality has been moved to other scripts
and more modern ways of dealing with such issues.
Because we were in a transition stage to Ruby script-
ing, it was a good moment to say goodbye to TEXutil
and concentrate on building a more extensive set of
tools.

3Although one can use the ctx suffix for ConTEXt related TEX files,
this is normally a bad idea.
4This project will provide highly interactive math to schools and is
conducted in cooperation with the University of Eindhoven.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 39

Hans Hagen

<?xml version=’1.0’ standalone=’yes’?>
<ctx:job>

<ctx:message>mathadore</ctx:message>
<ctx:preprocess suffix=’prep’>

<ctx:processors>
<ctx:processor name=’openmath’ suffix=’om’>texmfstart

--direct xsltproc
--output <ctx:value name=’new’/>
kpse:x-sm2om.xsl <ctx:value name=’old’/>

</ctx:processor>
<ctx:processor name=’mathadore’ suffix=’prep’>texmfstart

--direct xsltproc
--output <ctx:value name=’new’/>
kpse:x-openmath.xsl
<ctx:value name=’old’/>.om

</ctx:processor>
</ctx:processors>
<ctx:files>

<ctx:file processor=’openmath,mathadore’>v*.xml</ctx:file>
<ctx:file processor=’openmath,mathadore’>h*.xml</ctx:file>
<ctx:file processor=’openmath,mathadore’>openmath*.xml</ctx:file>

</ctx:files>
</ctx:preprocess>
<ctx:process>

<ctx:resources>
<ctx:environment>o-m4all.tex</ctx:environment>

</ctx:resources>
</ctx:process>
<ctx:postprocess>
</ctx:postprocess>

</ctx:job>

Figure 1: A ctx file used in the MathAdore project

The tools collection
Instead of expanding TEXutil, we decided to spread
functionality over multiple scripts. These can be rec-
ognized by their name: they all end with tools. If
you call them using TEXMFstart there is not much
opportunity for conflicts with existing tools.

Each tool comes with a manual, so we will not
discuss details here.

ctxtools
This tool provides ConTEXt related features, like gen-
erating generic pattern files (so that we are indepen-
dent), providing editor syntax checking files derived
from the generic ConTEXt interface definition (handy
for lexers), generating documentation (from the Con-
TEXt source code), updating ConTEXt (by download-
ing an archive and regenerating formats), etc.

rlxtools
The ‘r’ represents resources, normally graphics, the ‘l’
stands for libraries, and the ‘x’ (indeed) for XML. This
tool can analyze graphic files and manipulate resources
using other programs. For instance it can be used to
downsample files at runtime, to handle special color
conversion, and to convert graphics to formats accept-
able for TEX. By using the runtime converters one
can build workflows without the need to rely on ad-
ditional scripting. There is a dedicated manual on this
topic so we will not bore you here with yet another
blob of XML.

xmltools
You can use this tool to do a simple analysis on an
XML file. Another option is to generate a directory
listing in XML format. In both cases, the result can
be fed into ConTEXt and used in the process. A more
obscure option is to generate images from MathML
snippets. This script will without doubt include more
features in the future.

40 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

What tools do ConTEXt users have?

pdftools
This is work in progress. One can for instance roughly
analyze PDF files. It also provides a way to manipulate
colors in PDF images but that feature is now supported
in ConTEXt directly.

textools
Users will seldom need this tool. It can fix things in
a TDS compliant tree (for instance when the standard
has changed), it deals with a few cross platform issues,
it can help you to create so-called TPM archives (and is
meant for ConTEXt module writers) and it can merge
updates into your tree.

mpstools
In the future this tool will host the now standalone
MetaPost to PDF wrapper (mptopdf) as well as the
cropper (both are still Perl scripts).

tmftools
This script encapsulates some of the functionality of
the Ruby based kpsewhich functionality that we use.
In the future we may completely move away from
the binary because the script is just as fast or faster
when it serializes the database. The script can act as a
kpsewhich server. The script can also analyze the tree
for duplicates.

runtools
Because TEX is multiplatform and because we (need to)
run services on multiple platforms, we use this script
to do things normally done at the console (shell). It
just loads the given Ruby scripts with the appropriate
library. We also use this tool to generate the ConTEXt
distribution.

exatools
This is a more obscure tool. It provides some features
related to form based style control and web driven
TEX processing that we use in projects.

pstopdf
This last one is not a collection like the previous tools.
It started long ago as a wrapper for Ghostscript. It
still provides this function and over the years we’ve
added quite a bit of filtering to it (we just filter the
things that Ghostscript fails on or gets confused from).
In the meantime we cheat on the name since it also
manages the conversion of bitmap images, especially

cached downsampling, using ImageMagick as well as
conversion from SVG to PDF using Inkscape.

texfont
This script has been around for a while now and is
used to install (commercial) fonts. It generates metric
files, map files, and a demo file so that one can see
if things went right. ConTEXt does not depend on
(ever changing) map file methods and loads map files
on demand. You can generate map files for dvipdfmx
with the previously mentioned ctxtools.

More
There are a few more scripts, like concheck (simple
syntax checking) and texsync (synchronizing mini-
mal distributions) but we will not discuss them here.

Integration
When setting up multiple TEX trees, the trick is in iso-
lating them as much as possible. Because one can never
be sure how distributions set things up, we revert to
setting environment variables, which will then take
precedence over the settings in a regular texmf.cnf
file. In the TEXMFstart manual you can find more de-
tails on how we take care of this; here we only show
an example of such an file in Figure 2.

When the tree flag is given, TEXMFstart will read
this file and set the environment variables accordingly
before it launches the program it is supposed to start.
In fact, a tree specification can specify a file, but by
default the setyptex one is taken.
texmfstart \

--tree=f:/minimal/tex/setuptex.tmf \
texexec test.tex

Since TEXMFstart can load several such files, we
can also use this method to preset more environment
variables, for instance pointers to resources like graph-
ics. This is what the –env or –environment option
is for, as in:
texmfstart --tree=f:/minimal/tex \

--env=xyz.tmf texexec test.tex

The advantage of this variable setting game is that
instead of cooking up scripts with statements like:
thread.new do
ENV["something"] = "nothing"
a = "texmfstart --tree=f:/minimal/tex --"
system(a+"env=xyz.tmf texexec test.tex")

end

we can put the variable definition in a file and say:

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 41

Hans Hagen

file : setuptex.tmf (the less generic version have suffixes like cmd, sh, csh etc)
author : Hans Hagen - PRAGMA ADE - Hasselt NL - www.pragma-ade.com
usage : texmfstart --tree=f:/minimal/tex ...
#
this assumes that calling script sets TEXPATH without a trailing
slash; %VARNAME% expands to the environment variable, $VARNAME
is left untouched; we also assume that TEXOS is set.

TEXMFMAIN = %TEXPATH%/texmf
TEXMFLOCAL = %TEXPATH%/texmf-local
TEXMFFONTS = %TEXPATH%/texmf-fonts
TEXMFPROJECT = %TEXPATH%/texmf-project
VARTEXMF = %TMP%/texmf-var
HOMETEXMF =

TEXMFOS = %TEXPATH%/%TEXOS%

TEXMFCNF = %TEXPATH%/texmf{-local,}/web2c
TEXMF = {$TEXMFOS,$TEXMFPROJECT,$TEXMFFONTS,$TEXMFLOCAL,!!$TEXMFMAIN}
TEXMFDBS = $TEXMF

TEXFORMATS = %TEXMFOS%/web2c/{$engine,}
MPMEMS = %TEXFORMATS%
TEXPOOL = %TEXFORMATS%
MPPOOL = %TEXPOOL%

PATH > %TEXMFOS%/bin
PATH > %TEXMFLOCAL%/scripts/perl/context
PATH > %TEXMFLOCAL%/scripts/ruby/context

TEXINPUTS =
MPINPUTS =
MFINPUTS =

Figure 2: Example texmf.cnf file

thread.new do
a = "texmfstart --tree=f:/minimal/tex --"
system(a+"env=xyz.tmf texexec test.tex")

end

This has not only a big advantage in terms of
isolation (and maintenance) but is also more robust
since one can never be sure if another thread is not
setting the same variable too, thereby creating much
confusion for all the other threads that use the same
variable. Since TEXMFstart runs as a separate process,
it can set its variables independently.

Whenever (on the ConTEXt mailing list) you see
mentioning of something named setuptex, you can
be sure that it relates to initializing a TEX tree (prob-
ably a minimal ConTEXt tree) in an isolated way.

Conclusion
In this short article we have tried to give you an im-
pression of what is needed in order to make TEX us-
able in a diversity of today’s environments. It was not
our intention to be complete, because for that purpose
we have manuals. One thing should be made clear: al-
though TEX itself is pretty stable, the same cannot be
said for the environment that it is used in. Just telling
TEX to process a file is not enough nowadays. This
also means that ConTEXt and its tools, in order to
keep up, need to be adapted to current needs. On the
other hand, by organizing the functionality in tools,
and by using a modern and reliable scripting language
like Ruby, users don’t pay a high price for this. Most
nasty details can be hidden from them.

42 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

