
Outline font extensions for Arabic typesetting

Karel Ṕı̌ska
Institute of Physics, Academy of Sciences
182 21 Prague, Czech Republic
piska (at) fzu dot cz

Abstract

The contribution demonstrates applications of the programs FontForge (by
George Williams) and MetaType1 (by Bogus law Jackowski et al.) for develop-
ment and maintenance of outline versions of Arabic fonts and shows tools for
glyph transformations. Generating of stretchable glyphs is also discussed. Build-
ing of Type 1 fonts for Arabic typesetting with MetaType1 (“LM-ization”) is
under development process.

1 Introduction

The current text describes selected “technical tech-
niques” of creating, modifying and maintaining out-
line fonts for use with Arabic typography.

We start with some font adaptations and modi-
fications using FontForge for relatively simple glyph
transformations. Executing more complex changes
would be inefficient.

The next examples demonstrate representation
of glyphs in MetaType1 (in fact, it is METAPOST),
font modifications and some results of Type 1 fonts
dynamically generated by MetaType1.

2 Font transformations with FontForge

The open source font editor FontForge [15], devel-
oped by George Williams, contains many commands
for the creation and modification of fonts in numer-
ous standard formats. Along with its interactive
facilities, FontForge has a scripting language which
allows automatic batch processing. Thus, existing
fonts, e.g., Computer Modern Type 1 mathemat-
ical fonts, can be adapted into fonts oriented to
Arabic presentation by executing appropriate glyph
transformation commands. The example in fig. 1
demonstrates how to flip (reverse, mirror) a sym-
bol to achieve the effect described in the paper on
‘Dynamic Arabic Mathematical Fonts’ ([11], fig. 1)
in our Type 1 representation. The original sym-
bol (left) has been flipped horizontally (middle) and
then vertically (right):
#!/usr/local/bin/fontforge
Open("cmex10.pfb");
Select("summationtext");
HFlip(CharInfo("Width")/2); VFlip();
CorrectDirection();
SetFontNames("amcmex10",\
"ArabicComputerModern",\

Figure 1: Flip twice or rotate.

"ArabicMathCMEX10");
Generate("amcmex10.pfb","",0x240000);
# no flex hints, hints, round,
# no afm, no tfm

The identical transformation could be done by rota-
tion:

Select("summationtext");
Rotate(180);

3 Font development with MetaType1

MetaType1 [6], developed by Bogus law Jackowski,
Janusz M. Nowacki, and Piotr Strzelczyk, is a META-
POST-based package for producing, auditing, en-
hancing and otherwise handling outline PostScript
fonts in the Type 1 format. One part of the package
is a converter from Type 1 to MetaType1 source. A
practical approach to maintaining a font with Meta-
Type1 is to start from an existing Type 1 font or
from a font just converted into Type 1 (e.g., from
METAFONT sources). In the present case for Ara-
bic we can and want to use as a base (for further
modifications, extensions, etc.) the xnsh14 font in
the Naskhi style available from the ArabTEX distri-
bution [9].

The most important ideas of the MetaType1
package are:

234 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting



Outline font extensions for Arabic typesetting

• programmable font description in source form,
(the language is METAPOST with extensions for
font support);

• the glyphs are defined in their outline represen-
tation (the recommended approach);

• very simple definition of composite glyphs, es-
pecially glyphs with accents, which is significant
for all Latin fonts;

• automatic generation of glyph and metric files
(pfb, afm, tfm, pfm) from scratch;

• the glyphs are (may be and must be) denoted
by (PostScript) names, therefore the number of
glyphs is not limited, although the Type 1, tfm
output and encodings are restricted (no more
than 256 encoded characters available);

• the glyph definitions also contain metric data:
dimensions (width, height, depth, italic correc-
tion), ligatures, kerning pairs and other infor-
mation, to allow for easier further conversion
into OpenType or Type 3.
These features have been applied during the de-

velopment of the Latin Modern collection [7] and
other fonts produced by the authors. Similar “LM-
ization” could be executed for Arabic because there
is no fundamental difference between Latin accents
and Arabic diacritic marks.

The following example and fig. 2 illustrate pro-
ducing composite Arabic glyphs with MetaType1.
def mark_down(text glyh_acc_,glyh_,acc_) =

standard_introduce(glyh_acc_);

beginglyph(glyh_acc_);

use_glyph(glyh_);

use_glyph(acc_) % offset of the accent =

(round((wd.uni_name(glyh_)-wd.uni_name(acc_))/2),

dp.uni_name(glyh_)-ht.uni_name(acc_));

% recalculation of metrics

wd.uni_name(glyh_acc_)=wd.uni_name(glyh_);

ht.uni_name(glyh_acc_)=ht.uni_name(glyh_);

dp.uni_name(glyh_acc_)=dp.uni_name(glyh_)

-ht.uni_name(acc_)+dp.uni_name(acc_);

fix_hsbw(wd.uni_name(glyh_acc_),0,0);

endglyph;

enddef;

mark_down("bah")("bah_s")("one_dot_down");

mark_down("pah")("bah_s")("three_dots_down");

% definition of "mark_up" macro is similar

mark_up("tah")("bah_s")("two_dots_up");

The next example shows an excerpt from the
Type 1 representation in the readable form disas-
sembled by t1disasm from the t1utils package. The
dot mark in nun is omitted.
/nun.fin {

0 433 hsbw

-278 70 hstem

0 71 hstem

0 35 vstem

Figure 2: Composite glyphs: b — p — t.

356 36 vstem

451 67 rmoveto

-11 4 rlineto

-27 0 -19 13 -22 22 rrcurveto

-11 4 rlineto

-24 -67 rlineto

13 -38 6 -40 0 -40 rrcurveto

0 -13 -1 -12 -2 -13 rrcurveto

-49 -84 -78 -11 -34 0 rrcurveto

[...]

closepath

endchar

} ND

The result of conversion into the METAPOST/
MetaType1 representation (in an absolute coordi-
nate system!) is:
beginglyph(_nun.fin);

save p; path p[];

z0 0=(451,67);

z0 1=(440,71); z0 1a=(413,71); z0 2b=(394,84);

z0 2=(372,106);

z0 3=(361,110);

z0 4=(337,43); z0 4a=(350,5); z0 5b=(356,-35);

z0 5=(356,-75); z0 5a=(356,-88); z0 6b=(355,-100);

z0 6=(353,-113); z0 6a=(304,-197); z0 7b=(226,-208);

[...]

z0 21=(426,0);

p0=compose_path.z0(21); Fill p0;

fix_hstem(71)(p0) candidate_list(y)(0, 71);

[...]

standard_exact_hsbw("nun.fin");

endglyph;

And my subsequent conversion of the path def-
inition into relative coordinates, as it will be neces-
sary to eliminate the dependence on absolute coor-
dinate values:
def nunf_z(suffix nz) =

z.nz 0=(451,67);

z.nz 1=z.nz 0+(-11,4);

z.nz 1a=z.nz 1+(-28,0); z.nz 2b=z.nz 1a+(-17,12);

z.nz 2=z.nz 2b+(-23,23);

[...]

z.nz 7=z.nz 7b+(-34,0);

z.nz 7a=z.nz 7+(-61,0);

z.nz 8b=z.nz 7a+(-70,35);

[...]

z.nz 15=z.nz 15b+(111,0);

z.nz 15a=z.nz 15+(111,0);

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 235



Karel Ṕı̌ska

[...]

z.nz 22=z.nz 0;

enddef;

This path has been slightly modified and will be
further adapted in an extended stretchable defini-
tion of the letter nun in the final position (without
the dot) — see later.

The METAPOST macro definitions may define
glyphs or their parts, and we can use them to de-
scribe glyphs already present in a font or to compose
modified or new glyphs.

The transformations we saw in fig. 1 can be ex-
pressed in METAPOST to produce the same results:

numeric l,d; l:=wd._summationtext;
d=dp._summationtext;

% Horizontal Flip:
p0=compose_path.z0(22)
reflectedabout((l/2,0),(l/2,1));

correct_path_directions(p0)(p);

% Horizontal and Vertical Flip:
p1=compose_path.z0(22)
reflectedabout((l/2,0),(l/2,1))
reflectedabout((0,d/2),(1,d/2));

correct_path_directions(p1)(p);

% Rotation
p2=compose_path.z0(22)
rotated 180 shifted (l,d);

4 Glyph stretching with MetaType1

Azzeddine Lazrek et al., in the papers about type-
setting Arabic (RyDArab [12] and CurExt packages
[10] and dynamic fonts [11]), describe the use of dy-
namic Type 3 fonts and corresponding tfm, map and
enc files for generating final PostScript documents
with (LA)TEX and dvips. The supported version of
MetaType1 supports producing only Type 1 fonts,
and Type 1 (and also metric) files cannot be dy-
namic.

But tfm (as the RyDArab system does) and
Type 1 can be generated dynamically. As the next
consecutive step after generating metrics we can pro-
duce (dynamically with MetaType1) the Type 1 font
corresponding to the equivalent Type 3 font and sub-
stituting it.

The variable-width kashida is demonstrated in
fig. 3. The Type 3 commands from [11] were rewrit-
ten into METAPOST macros giving the similar com-
mands in Type 1 where, of course, each glyph should
have its own charstring definition. Glyphs, like met-
rics, can be generated on the fly for a given width.

Figure 3: Stretchable kashida in Type 1.

Figure 4: Stretchable glyph with an hrule filler.

Fig. 4 shows a primitive glyph elongation where
only a horizontal rule as the filler is inserted and
the right and left part of the glyph nun in the final
position (without dot) are shifted.

The following METAPOST commands and fig. 5
demonstrate a more sophisticated elongation algo-
rithm: the parameter addwx changes control points
and control vectors. The solution was inspired by
methods described by Daniel M. Berry [1]. Here we
have decided to preserve glyph heights and also their
right and left parts. Probably more complex outline
contour curves could be defined.

def nunf_z(suffix nz)(expr addwx) =

addwxa:=round(addwx/2);
z.nz 0=(451,67)+(addwx,0);
z.nz 1=z.nz 0+(-11,4);

z.nz 1a=z.nz 1+(-28,0); z.nz 2b=z.nz 1a+(-17,12);

[...]

z.nz 7=z.nz 7b+(-34,0)-(addwxa,0);
z.nz 7a=z.nz 7+(-61,0)-(addwxa,0);
z.nz 8b=z.nz 7a+(-70,35);

[...]

z.nz 15=z.nz 15b+(111,0)+(addwxa,0);
z.nz 15a=z.nz 15+(111,0)+(addwxa,0);
[...]

z.nz 22=z.nz 0;

enddef;

def nun_fin_v(suffix code)(expr addx) =

standard_introduce("nun.fin_v" & decimal(code));

wd._nun.fin_v.code:=wd._nun.fin+addx;
ht._nun.fin_v.code:=ht._nun.fin;

dp._nun.fin_v.code:=dp._nun.fin;

beginglyph(_nun.fin_v.code);

save p; path p[];

nunf_z(0)(addx); p0=compose_path.z0(21);

Fill p0;

standard_exact_hsbw("nun.fin_v" & decimal(code));

endglyph;

enddef;

nun_fin_v(300)(+300);

Figure 5: Stretchable glyph.

236 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting



Outline font extensions for Arabic typesetting

D. Berry [1] and A. Lazrek [11] propose to use
PostScript Type 3 fonts and W. Bzyl [2, 3] reintro-
duced Type 3 fonts and showed how to extend the
MetaType1 package to produce Type 3 (but it did
not find the support in recent MetaType1 distribu-
tions). For me the future of Type 3 fonts is not clear,
screen rendering algorithms for Type 3 are worse
than for other font formats, probably nobody is go-
ing to improve them, and I do not include Type 3
in my contribution.

5 Conclusion

I have no detailed information about commercial
and copyrighted products of Thomas Milo [13] (and
I do not have these products). I expect the develop-
ment and use of Arabic fonts will be discussed with
authors of packages for multilingual typesetting in-
cluding Arabic: Y. Haralambous [14], H. Fahmy [4],
K. Lagally [9], J. Kew [8], A. Lazrek, and others. I
have no support for integrating dynamically gener-
ated or stretchable fonts into TEX. Some new line
breaking and justification algorithms could be de-
veloped, for example, to spread the word box to a
specified width and then to generate dynamically
the appropriate glyph instance by demand on the fly
to composite a compound “ligature”. Or to produce
glyphs only in a restricted set of point sizes and ap-
ply some variant of a micro-typographic alignment
or justification as in pdfTEX [5].

This approach uses “small” (max. 256 glyphs)
tfm and pfb files. We could convert them into Open-
Type (as the LM fonts have been converted). But
I do not know: “Could we integrate Type 3 into
OpenType?” or “Is it possible to create dynamic
OpenType?”

A limitation to one direction, the current trend
towards a single, huge and static outline OpenType
font file (for each typeface in important point sizes),
may not be wise. It’s unlikely this will be the final
termination point of font development, and thus will
not be the best solution in the future development
of computer font technology.

References

[1] Daniel M. Berry. Stretching Letter and Slanted-
baseline Formatting for Arabic, Hebrew, and
Persian with ditroff/ffortid and Dynamic Post-
Script Fonts. Software—Practice & Experience,
29(15), 1417–1457, 1999.

[2] W lodzimierz Bzyl. Reintroducing Type 3 fonts
to the world of TEX. Proceedings of the
XII European TEX Conference, pp. 219–243,
Kerkrade, the Netherlands, 23–27 September
2001, 2001.

[3] W lodzimierz Bzyl. The Tao of Fonts, TUGboat
23(1):27–40, 2002.

[4] Hossam A. H. Fahmy. AlQalam for typeset-
ting traditional Arabic texts. In this volume,
pp. 159–166.

[5] Hàn Thé̂ Thành. Micro-typographic extensions
to the TEX typesetting system. TUGboat 21(4),
317–434, 2000.

[6] Bogus law Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk. Programming PostScript Type 1
Fonts Using MetaType1: Auditing, Enhancing,
Creating. EuroTEX 2003 Proceedings, TUGboat
24(3):575–581, 2003; ftp://bop.eps.gda.pl/
pub/metatype1.

[7] Bogus law Jackowski, Janusz M. Nowacki. En-
hancing Computer Modern with accents, ac-
cents, accents. TUGboat 24(1):64–74, 2003;
CTAN:/fonts/lm.

[8] Jonathan Kew. X ETEX, the Multilingual Lion:
TEX meets Unicode and smart font technolo-
gies. TUG 2005 Conference Proceedings, TUG-
boat 26(2):115–124, 2005.

[9] Klaus Lagally. ArabTEX — Typesetting Arabic
with vowels and ligatures. EuroTEX 92: Pro-
ceedings of the 7th European TEX Conference,
ed. J. Zlatuška, pp. 152–172, Brno, Czechoslo-
vakia, 1992.

[10] Azzeddine Lazrek. CurExt, typesetting
variable-sized curved symbols. EuroTEX 2003
Proceedings, TUGboat 24(3):323–327, 2003.

[11] Mostafa Banouni, Mohamed Elyaakoubi, and
Azzeddine Lazrek. Dynamic Arabic mathemat-
ical fonts. Preprints for the 2004 Annual Meet-
ing, Xanthi, Greece, pp. 48–53, 2004.

[12] Azzeddine Lazrek. RyDArab — Typesetting
Arabic mathematical expressions. TUGboat
25(2):141–149, 2004.

[13] Thomas Milo. ALI-BABA and the 4.0 Unicode
characters — Towards the ideal Arabic work-
ing environment. EuroTEX 2003 Proceedings,
TUGboat 24(3):502–511, 2003.

[14] Yannis Haralambous and John Plaice. Multilin-
gual Typesetting with Ω, a Case Study: Arabic.
Proceedings of the International Symposium on
Multilingual Information Processing, pp. 137–
154, Tsukuba, 1997.

[15] George Williams. Font creation with Font-
Forge. EuroTEX 2003 Proceedings, TUG-
boat 24(3):531–544, 2003; http://fontforge.
sourceforge.net.

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 237


