
136 TUGboat, Volume 32 (2011), No. 2

MetaPost 1.750: Numerical engines

Taco Hoekwater

Abstract

After two years of talks about future plans for Meta-
Post 2.0, finally real progress is being made. This
paper introduces a pre-release of MetaPost 2 that
can optionally use IEEE floating point for its internal
calculations instead of the traditional 32-bit integers.

1 Introduction

I am sure some readers are curious to know why
it is taking so long before MetaPost 2 comes out,
considering that I have been giving talks on the
subject for years now. To get started, a recap from
the initial project proposal dating back to May 2009:

In the original MetaPost library proposal we
wrote in May 2007, one of the big user-side
problem points that was mentioned was this:

• All number handling is based on frac-
tions of a 32-bit integer. User input often
hits one of the many boundaries that are
a result of that. For instance, all num-
bers must be smaller than 16384, and
there is a noticeable lack of precision in
the intersection point calculations.

The current proposal aims to resolve that
issue once and for all. The goal is to replace
the MetaPost internal 32-bit numeric values
with something more useful, and to achieve
that goal the plan is to incorporate one of
these libraries:

GNU MPFR http://www.mpfr.org

IBM decNumber http://www.alphaworks.

ibm.com/tech/decnumber

We have not decided yet which one. MPFR

will likely be faster and has a larger develop-
ment base, but decNumber is more interesting
from a user interface point of view because
decimal calculus is generally more intuitive.
For both libraries the same internal steps need
to be taken, so that decision can be safely post-
poned until a little later in the project. The
final decision will be based on a discussion to
be held on the MetaPost mailing list.

Since then, there has been a small change to that
statement; MetaPost 2 will in fact contain four dif-
ferent calculation engines at the same time:

• scaled 32-bit (a.k.a. compatibility mode)
• IEEE floating point (a.k.a. double)
• MPFR (arbitrary precision, binary)
• decNumber (arbitrary precision, decimal)

The internal structure of the program will also
allow further engines to be added in the future.

The traditional scaled 32-bit engine is the de-
fault, thus retaining backward compatibility with
older versions of MetaPost. The other engines will
be selected using a command line switch.

Working backwards from that final goal, some
sub-projects could be formulated.

• Because values in any numerical calculation li-
brary are always expressed as C pointers, it
is necessary to move away from the current
array-based memory structure with overloaded
members to a system using dynamic allocation
(using malloc()) and named structure compo-
nents everywhere, so that all internal MetaPost
values can be expressed as C pointers internally.

As a bonus, this removes the last bits of static
allocation code from MetaPost so that it will
finally be able to use all of the available RAM.

This first sub-project was a major undertaking
in itself, and was finally completed when MetaPost
1.5 was released in July 2010.

The current 1.750 release of MetaPost imple-
ments most of two other sub-project goals (in fact so
far only the PostScript backend has been updated):

• An internal application programming interface
layer will need to be added for all the internal
calculation functions and the numeric parsing
and serialization routines. All such functions
will have to be stored in an array of function
pointers, thus allowing a start-up switch be-
tween 32-bit backward-compatible calculation
and the arbitrary precision library.

As a bonus, this will make it possible to add
more numerical engines in the future.

• The SVG and PostScript back-ends need to be
updated to use double precision float values for
exported points instead of the current 32-bit
scaled integers.

In the picture export API, doubles are con-
sidered to be the best common denominator
because there is an acceptable range and preci-
sion and they are simple to manipulate in all C
code. This way, the actual SVG and PostScript
backend implementations and the Lua bindings
can remain small and simple.

So, not accounting for hunting for bugs and
fixing documentation, there is only one large step
that remains to be taken before MetaPost 2 can be
released, namely the actual integration of the two
arbitrary precision libraries. That is why the version
is set at 1.750 at the moment.

Taco Hoekwater



TUGboat, Volume 32 (2011), No. 2 137

2 Some internal stuff

One thing that is not immediately obvious from the
project goals as written above is that moving all
the core arithmetic operations into functions that
must be swappable instead of resolved at executable
compilation time meant a whole lot of editing work,
almost none of which could be automated. This is
the main reason why everything took so long. Let
me illustrate that with an example.

2.1 An example: a simple procedure

Let’s look at the trans procedure, that applies a
transform to a pair of coordinates. It calculates the
following formula:(

x′

y′

)
=

(
txx tyx
txy tyy

)
·
(
x
y

)
+

(
tx
ty

)
First, here is the original Pascal implementation

of that function:

procedure trans(p,q:pointer);

var v:scaled; {the new |x| value}

begin

v := take_scaled(mem[p].sc,txx)

+ take_scaled(mem[q].sc,txy) + tx;

mem[q].sc := take_scaled(mem[p].sc,tyx)

+ take_scaled(mem[q].sc,tyy) + ty;

mem[p].sc := v;

end;

The meaning of all those variables:
p,q The variables for the x and y coordi-

nates that have to be transformed

txx,txy,tyx

tyy,tx,ty

The six components of the transfor-
mation matrix, in global variables

v An intermediate value that is needed
because p cannot be updated imme-
diately: its old value is used in the
calculation of the new q

mem[] The statically allocated memory table
where Pascal MetaPost stored all its
variables

mem[].sc The structure object that holds the
scaled value of a variable

take_

scaled(a,b)

This function calculates
p = b(a · b)/216 + 1

2c
In the conversion of MetaPost from Pascal web

to C web (in version 1.2), not that much has changed:
static void mp_trans (MP mp,pointer p, pointer q) {

scaled v; /* the new x value */

v = mp_take_scaled(mp, mp->mem[p].sc,mp->txx)

+mp_take_scaled(mp, mp->mem[q].sc,mp->txy)

+mp->tx;

mp->mem[q].sc

= mp_take_scaled(mp,mp->mem[p].sc,mp->tyx)

+mp_take_scaled(mp,mp->mem[q].sc,mp->tyy)

+mp->ty;

mp->mem[p].sc = v; }

The only big difference here is the use of a global
mp object instead of global variables. MetaPost 1.5
uses dynamic allocation instead of the mem array, and
that makes the function a lot easier to understand:

static void

mp_trans (MP mp, scaled * p, scaled * q) {

scaled v; /* the new |x| value */

v = mp_take_scaled (mp, *p, mp->txx)

+ mp_take_scaled (mp, *q, mp->txy)

+ mp->tx;

*q = mp_take_scaled (mp, *p, mp->tyx)

+ mp_take_scaled (mp, *q, mp->tyy)

+ mp->ty;

*p = v;

}

It would be great if that could stay, but unfortu-
nately, when numerical variables become objects, it
is no longer allowed to use the simple C + operator
for addition. In turn, that means that more local
variables are needed to store intermediate results. To
make matters even worse, these local variables have
to be allocated and released.

The end result is that the same function looks
like this in MetaPost 1.750:

static void

mp_number_trans (MP mp, mp_number p,

mp_number q) {

mp_number pp, qq;

mp_number r1, r2;

new_number (pp);

new_number (qq);

new_number (r1);

new_number (r2);

take_scaled (r1, p, mp->txx);

take_scaled (r2, q, mp->txy);

number_add (r1, r2);

set_number_from_addition(pp, r1, mp->tx);

take_scaled (r1, p, mp->tyx);

take_scaled (r2, q, mp->tyy);

number_add (r1, r2);

set_number_from_addition(qq, r1, mp->ty);

number_clone(p,pp);

number_clone(q,qq);

free_number (pp);

free_number (qq);

free_number (r1);

free_number (r2);

}

The variables r1, r1, pp and qq exist only for
storing intermediate results. To be honest, qq is not
really needed, but it adds a nice bit of symmetry and
the overhead is negligible.

The new arithmetic functions do not return a
value since that would force the introduction of even
more new_number and free_number calls. Instead,

MetaPost 1.750: Numerical engines



138 TUGboat, Volume 32 (2011), No. 2

they adjust their first argument. Stripped down to
only the actual actions, the function looks like this:

r1 = p * mp->txx;

r2 = q * mp->txy;

r1 = r1 + r2;

pp = r1 + mp->tx;

r1 = p * mp->tyx;

r2 = q * mp->tyy;

r1 = r1 + r2;

qq = r1 + mp->ty;

p = pp;

q = qq;

Where the first four lines match the first state-
ment in the previous versions of the function, the
next four lines the second statement, and the last
two lines do the final assignments.

In the listing above, all those identifiers like
new_number and take_scaled are not really func-
tions. Instead, they are C preprocessor macros with
definitions like this:

#define take_scaled(R,A,B) \

(mp->math->take_scaled)(mp,R,A,B)

Here the right-hand side take_scaled is one of
the function fields in the structure mp->math. Each
of the arithmetic engines defines a few dozen such
functions for its own type of mp_number. With this
new internal structure in place adding a new arith-
metic engine is not much more work than defining a
few dozen — mostly very simple — functions.

3 Using 1.750

As said, there are currently only two engines: scaled
32-bit and IEEE double. Switching to IEEE double
is done on the command-line by using

mpost --math=double mpman

3.1 Warning checks

In MetaPost 1, the parameter warningcheck can be
set to a positive value. This will downgrade the limit
on numerical ranges from 16384 to 4096, but it has
the advantage that it guards against various internal
cases of overflow.

With the double numerical engine, numerical
values can range up to 1.0E+307. The warning check
could be set at something like 2.5E+306, but that is
actually not the most important point for a warning
to take place.

Because of the way double values are stored
internally in the hardware, it is possible to store a

certain range of integers exactly . However, when
an integer value gets above a threshold (it has to
fit in 52 bits), precision is lost. For this reason,
warningcheck now kicks in a little below this limit,
and thus is set at 4.5E+15.

3.2 An example

beginfig(1);

warningcheck:=0;

path p;

p = fullcircle scaled 23.45678888E-200;

p := p scaled 1E201;

draw p;

currentpicture := currentpicture scaled .5;

endfig;

end.

3.3 Before you try . . .

• The current version is of alpha ‘quality’, so lots
of bugs are expected.

• Some internals, like intersectiontimes, do
not take advantage of the extra precision yet.

• The SVG backend is not up to speed yet: it
outputs unusable SVG files.

4 Planning

A beta release with all four engines is planned for the
Summer, then a gamma release with memory leaks
fixed (Autumn/Winter), and finally, MetaPost 2.0
(for TEX Live 2012).

� Taco Hoekwater
http://metapost.org

Taco Hoekwater


