
44 TUGboat, Volume 35 (2014), No. 1

An overview of Pandoc

Massimiliano Dominici

Abstract

This paper is a short overview of Pandoc, a utility
for the conversion of Markdown-formatted texts to
many output formats, including LATEX and HTML.

1 Introduction

Pandoc is software, written in Haskell, whose aim
is to facilitate conversion between some lightweight
markup languages and the most widespread ‘final’
document formats.1 On the program’s website [3],
Pandoc is described as a sort of ‘swiss army knife’ for
converting between different formats, and in fact it
is able to read simple files written in LATEX or HTML;
but it is of lesser use when trying to translate LATEX
documents with non-trivial constructs such as com-
mands defined by the user or by a dedicated package.

Pandoc shows its real utility, in my opinion,
when what is needed is to obtain several output
formats from a single source, as in the case of a docu-
ment distributed online (HTML), in print form (PDF

via LATEX) and for viewing on tablets or ebook read-
ers (EPUB). In such cases one may find that writing
the document in a rich format (e.g. LATEX) and con-
verting later to other markup languages often poses
significant problems because of the different ‘philoso-
phies’ that underlie each language. It is advisable, in-
stead, to choose as a starting point a language that is
‘neutral’ by design. A good candidate for this role is a
lightweight markup language, and in particular Mark-
down, of which Pandoc is an excellent interpreter.

In this article we will briefly discuss the concept
of a ‘lightweight markup language’ with particular
reference to Markdown (§ 2), and then we will re-
view Pandoc in more details (§ 3) before drawing our
conclusions (§ 5).

2 Lightweight markup languages:
Markdown

Before getting to the heart of the matter, it is advis-
able to say a few words about lightweight markup
languages (LML) in general. They are designed with
the explicit goal of minimizing the impact of the
markup instructions within the document, with a
particular emphasis on the readability of the text by
a human being, even when the latter does not know

Translation by the author from his original in ArsTEXnica
#15, April 2013, “Una panoramica su Pandoc”, pp. 31–38.

1 Strictly speaking, LATEX isn’t a ‘final’ document format
in the same way PDF, ODF, DOC, EPUB, etc. are. But, from
the point of view of a Pandoc user, LATEX is a ‘final’ — or
intermediate, at least — product.

the (few) conventions that the program follows in
order to format the document.

These languages are mainly used in two fields:
documentation of code (reStructuredText, AsciiDoc,
etc.) and management of contents for the web (Mark-
down, Textile, etc.). In the case of code documenta-
tion, the use of an LML is a good choice, because the
documentation is interspersed in the code itself, so it
should be easy to read by a developer perusing the
code; but at the same time it should be able to be
converted to presentation formats (PDF and HTML,
traditionally, but today many IDEs include some
form of visualization for the internal documentation).
In the case of web content, the emphasis is placed
on the ease of writing for the user. Many content
management systems already provide plugins for one
or more of those languages and the same is true for
static site generators2 that are usually built around
one of them and often provide support for others.
The various wiki dialects can be considered another
instance of LML.

The actual ‘lightness’ of an LML depends greatly
on its ultimate purpose. In general, an LML con-
ceived for code documentation will be more complex
and less readable than one conceived for web content
management, which in turn will often not be capable
of general semantic markup. A paradigmatic exam-
ple of this second category is Markdown that, in its
original version, stays rigorously close to the mini-
malistic approach of the first LMLs. The following
citation from its author, John Gruber, explains his
intentions in designing Markdown:

Markdown is intended to be as easy-to-read
and easy-to-write as is feasible. Readabil-
ity, however, is emphasized above all else.
A Markdown-formatted document should be
publishable as-is, as plain text, without look-
ing like it’s been marked up with tags or for-
matting instructions.3

The only output format targeted by the refer-
ence implementation of Markdown is HTML; indeed,
Markdown also allows raw HTML code. Gruber has

2 Static site generators are a category of programs that
build a website in HTML starting from source files written in
a different format. The HTML pages are produced beforehand,
usually on a local computer, and then loaded on the server.
Websites built this way share a great resemblance with old
websites written directly in HTML, but unlike those, in the
building process it is possible to use templates, share metadata
across pages, and create structure and content programmati-
cally. Static site generators constitute an alternative to the
more popular dynamic server applications.

3 [1], http://daringfireball.net/projects/markdown/
syntax#philosophy. A significant contribution to the
design of Markdown was made by Aaron Swartz.

Massimiliano Dominici

TUGboat, Volume 35 (2014), No. 1 45

Table 1: Markdown syntax: inline elements.

Element Markdown LATEX HTML

Links [link](http://example.net) \href{link}{%

http://example.net}

link

Emphasis _emphasis_ \emph{emphasis} emphasis

emphasis \emph{emphasis} emphasis

Strong emphasis __strong__ \textbf{strong} strong

strong \textbf{strong} strong

Verbatim ‘printf()‘ \verb|printf()| <code>printf()</code>

Images ![Alt](/path/to/img.jpg) \includegraphics{img} <img src="/path/to/img.jpg"

alt="Alt" />

Table 2: Markdown syntax: block elements.

Element Markdown LATEX HTML

Sections # Title #

Title

. . .

\section{Title}

\subsection{Title}

. . .

<h1>Title</h1>

<h2>Title</h2>

. . .

Quotation > This paragraph

> will show

> as quote.

\begin{quote}

This paragraph

will show

as quote.

\end{quote}

<blockquote><p>

This paragraph

will show

as quote.

</p></blockquote>

Itemize * First item

* Second item

* Third item

\begin{itemize}

\item First item

\item Second item

\item Third item

\end{itemize}

First item

Second item

Third item

Enumeration 1. First item

2. Second item

3. Third item

\begin{enumerate}

\item First item

\item Second item

\item Third item

\end{enumerate}

First item

Second item

Third item

Verbatim Text paragraph.

grep -i ’\$’ <file

Text paragraph.

\begin{verbatim}

grep -i ’\$’ <file

\end{verbatim}

<p>Text paragraph.</p>

<pre><code>

grep -i ’\$’ <file

</code></pre>

always adhered to these initial premises and has
consistently refused to extend the language beyond
the original specifications. This stance has caused a
proliferation of variants, so that every single imple-
mentation constitutes an ‘enhanced’ version. Famous
websites like GitHub, reddit and Stack Overflow, all
support their own Markdown flavour; and the same
is true for conversion programs like MultiMarkdown
or Pandoc itself, which also introduce new output
formats. It’s not necessary, here, to examine the
details of the different flavours; the reader can get an
idea of the basic formatting rules from tables 1 and 2.

Of course, in the reference implementation there is
no LATEX output, so I have provided the most logical
translation. In the following sections we will see how
Pandoc works in practice.

3 An overview of Pandoc

As mentioned in the introduction, Pandoc is pri-
marily a Markdown interpreter with several output
formats: HTML, LATEX, ConTEXt, DocBook, ODF,
OOXML, other LMLs such as AsciiDoc, reStructured-
Text and Textile (a complete list can be found in [3]).
Pandoc can also convert, with severe restrictions,

An overview of Pandoc

46 TUGboat, Volume 35 (2014), No. 1

a source file in LATEX, HTML, DocBook, Textile
or reStructuredText to one of the aforementioned
output formats. Moreover it extends the syntax of
Markdown, introducing new elements and providing
customization for the elements already available in
the reference implementation.

3.1 Markdown syntax extensions

Markdown provides, by design, a very limited set
of elements. Tables, footnotes, formulas, and biblio-
graphic references have no specific markup in Mark-
down. The author’s intent is that all markup exceed-
ing the limits of the language should be expressed
in HTML. Pandoc maintains this approach (and, for
LATEX or ConTEXt output, allows the use of raw TEX
code) but makes it unnecessary, since it introduces
many extensions, giving the user proper markup for
each of the elements mentioned above. In the follow-
ing paragraphs we’ll take a look at these extensions.

Metadata Metadata for title, author and date can
be included at the beginning of the file, in a text
block, each preceded by the character %, as in the
following example.

% Title

% First Author; Second Author

% 17/02/2013

The content for any of these elements can be
omitted, but then the respective line must be left
blank (unless it is the last element, i.e. the date).

% Title

%

% 17/02/2013

%

% First Author; Second Author

% 17/02/2013

% Title

% First Author; Second Author

Since version 1.12 metadata support has been
substantially extended. Now Pandoc accepts multi-
ple metadata blocks in YAML format, delimited by
a line of three hyphens (---) at the top and a line
of three hyphens (---) or three dots (...) at the
bottom.4 This gives the user a high level of flexibil-
ity in setting and using variables for templates (see
section 3.1).

YAML structures metadata in arrays, thus al-
lowing for a finer granularity. The user may specify
in his source file the following code:

author:

4 YAML Ain’t Markup Language, http://www.yaml.org/.

- name: First Author

- affiliation: First Affiliation

- name: Second Author

- affiliation: Second Affiliation

and then, in the template

$for(author)$

$if(author.name)$

$author.name$

$if(author.affiliation)$ ($author.affiliation$)

$endif$

$else$

$author$

$endif$

$endfor$

to get a list of authors with (if present) affiliations.
As we will see in section 3.1, a YAML block can

also be used to build a bibliographic database.

Footnotes Since the main purpose of Markdown
and its derivatives is readability, the mark and the
text of a footnote should usually be split. It is
recommended to write the footnote text just below
the paragraph containing the mark, but this is not
strictly required: the footnotes could be collected
at the beginning or at the end of the document, for
instance. The mark is an arbitrary label enclosed in
the following characters: [^...]. The same label,
followed by ‘:’ must precede the footnote text.

When the footnote text is short, it is possible
to write it directly inside the text, without the label.
The output from all the footnotes is collected at the
end of the document, numbered sequentially. Here
is an example of the input:

Paragraph containing[^longnote] a

footnote too long to be written directly

inside the text.

[^longnote]: A footnote too long to be

written inside the text without causing

confusion.

New paragraph.^[A short note.]

Tables Again, syntax for tables is based on consid-
erations of readability of the source. The alignment
of the cells composing the table is immediately visi-
ble in the alignment of the text with respect to the
dashed line that divides the header from the rest
of the table; this line must always be present, even
when the header is void.5 When the table includes
cells with more than one line of text, it is mandatory

5 In fact, it is the header, if present, or the first line of the
table that sets the alignment of the columns. Aligning the
remaining cells is not needed, but it is recommended as an
aid for the reader.

Massimiliano Dominici

TUGboat, Volume 35 (2014), No. 1 47

to enclose it between two dashed lines. In this case
the width of each column in the source file is used to
compute the width of the equivalent column in the
output table. Multicolumn or multirow cells are not
supported. The caption can precede or follow the ta-
ble; it is introduced by the markup ‘:’ (alternatively:
Table:) and must be divided from the table itself
by a blank line:

--

Right Centered Left

------------- -------------- -------------

Text Text Text

aligned aligned aligned

right center left

New cell New cell New cell

--

Table: Alignment

There’s an alternative syntax to specify the
alignment of the individual columns: divide columns
with the character ‘|’ and use the character ‘:’ in
the dashed line below the header to specify, through
its placement, the column’s alignment, as shown in
the following example:

Right | Centered | Left

--------:|:-----------:|:-------------

Text | Text | Text

aligned | aligned | aligned

right | center | left

| |

New cell | New cell | New cell

: Alignment by ‘:’

In the examples above, the cells cannot contain
‘vertical’ material (multiple paragraphs, verbatim
blocks, lists). ‘Grid’ tables (see the example below)
allow this, at the cost of not being to specify the
column alignments.

+-------------+-------------+----------------+

| Text | Lists | Code |

+=============+=============+================+

| Paragraph. | * Item 1 | ~~~ |

| | * Item 2 | \def\PD{% |

| Paragraph. | | \emph{Pandoc} |

| | * Item 3 | ~~~ |

+-------------+-------------+----------------+

| New cell | New cell | New cell |

+-------------+-------------+----------------+

Figures As shown in table 1, Markdown allows for
the use of inline images with the following syntax:

![Alternative text](/path/image)

where ‘Alternative text’ is the description that
HTML uses when the image cannot be viewed. Pan-
doc adds to that one more feature: if the image is

divided by blank lines from the remaining text, it
will be interpreted as a floating object with its own
caption taken from the ‘Alternative text’.

Listings In standard Markdown, verbatim text is
marked by being indented by four spaces or one tab.
To that, Pandoc adds the ability to specify identifiers,
classes and attributes for a given block of ‘verbatim’
material. Pandoc will treat them in different ways,
depending on the output format and the command
line options; in some circumstances, they will sim-
ply be ignored. To achieve this, Pandoc introduces
an alternative syntax for listings of code: instead
of indented blocks, they are represented by blocks
delimited by sequences of three or more tildes (~~~)
or backticks (‘‘‘); identifiers, classes and attributes
must follow that initial ‘rule’, enclosed in braces. In
the following example6 we can see a listing of Python
code with, in this order: an identifier, the class that
marks it as Python code, another class that speci-
fies line numbering and an attribute that marks the
starting point of the numbering.

~~~ {#bank .python .numberLines startFrom="5"}

class BankAccount(object):

def __init__(self, initial_balance=0):

self.balance = initial_balance

def deposit(self, amount):

self.balance += amount

def withdraw(self, amount):

self.balance -= amount

def overdrawn(self):

return self.balance < 0

my_account = BankAccount(15)

my_account.withdraw(5)

print my_account.balance

~~~

It is possible to use identifiers, class and at-
tributes for inline code, too:

The return value of the ‘printf‘{.C} function

is of type ‘int‘.

By default, Pandoc uses a simple verbatim en-
vironment for code that doesn’t need highlighting
and the Highlighting environment, defined in the
template’s preamble (see 3.1) and based on Verbatim

from fancyvrb, when highlighting is needed. If the
option --listings is given on the command line,
Pandoc uses the lstlistings environment from list-
ings every time a code block is encountered.

Formulas Pandoc supports mathematical formu-
las quite well, using the usual TEX syntax. Expres-
sions enclosed in dollar signs will be interpreted as
inline formulas; expressions in double dollar signs

6 From http://wiki.python.org/moin/SimplePrograms.

An overview of Pandoc

48 TUGboat, Volume 35 (2014), No. 1

will be interpreted as displayed formulas. This is all
comfortably familiar to a TEX user.

The way these expressions will be treated de-
pends on the output format. For TEX (LATEX/Con-
TEXt) output, the expressions are passed without
modifications, except for the substitution of the
delimiters for display math: \[...\] instead of
$$...$$. When HTML (or similar) output is re-
quired, the behavior is controlled by command line
options. Without options, Pandoc will try to render
the formulas by means of Unicode characters. Other
options allow for the use of some of the most com-
mon JavaScript libraries for visualizing math on the
web: MathJax, LaTeXMathML and jsMath. It is
also possible, always by means of a command line
switch, to render formulas as images or to encode
them as MathML.7

Pandoc is also able to parse simple macros and
expand them in output formats different from the
supported TEX dialects. This feature, though, is only
available in the context of math rendering.

Citations Pandoc can build a bibliography (and
manage citations inside the text) using a database in
any of several common formats (BibTEX, EndNote,
ISI, etc.). The database file must always be speci-
fied as the argument of the option --bibliography.
Without other options on the command line, Pan-
doc will include citations and bibliographic entries
as plain text, formatted following the bibliographic
style ‘Chicago author–date’. The user may specify a
different style by means of the option --csl, whose
argument is the name of a CSL style file8 and may
also specify that the bibliographic apparatus will
be managed by natbib or biblatex. In this case Pan-
doc will not include in the LATEX output citations
and entries in extended form, but only the required
commands. The options to get this behavior are,
respectively, --natbib and --biblatex.

The user must type citations in the form [@key1;

@key2;...] or @key1 if the citation should not be
enclosed in round brackets. A dash preceding the
label suppresses the author’s name (when supported
by the citation format). Bibliographic references are
always placed at the end of the document.

7 The web pages for these different rendering engines for
math on the web are http://www.mathjax.org, http://math.
etsu.edu/LaTeXMathML, http://www.math.union.edu/~dpvc/
jsmath and http://www.w3.org/Math.

8 CSL (http://citationstyles.org), Citation Style Lan-
guage, is an open format, XML-based, language to describe
the formatting of citations and bibliographies. It is used in
several citation managers, such as Zotero, Mendeley, and Pa-
pers. A detailed list of the available styles can be found in
http://zotero.org/styles.

references:

- author:

family: Gruber

given:

- John

id: gruber13:_markd

issued:

year: 2013

title: Markdown

type: no-type

publisher: <http://daringfireball.net/

projects/markdown/>

- volume: 32

page: 272-277

container-title: TUGboat

author:

family: Kielhorn

given:

- Axel

id: kielhorn11:_multi

issued:

year: 2011

title: Multi-target publishing

type: article-journal

issue: 3

...

Figure 1: A YAML bibliographic database (line break
in the url is editorial).

Since version 1.12 native support for citations
has been split from the core functions of Pandoc. In
order to activate this feature, one must now use an
external filter (--filter pandoc-citeproc, to be
installed separately).9

A new feature is that bibliographic databases
can now be built using the references field in-
side a YAML block. Finding the correct encoding
for a YAML bibliographic database can be a little
tricky, so it is recommended, if possible, to convert
from an existing database in one of the formats rec-
ognized by Pandoc (among them BibTEX), using
the biblio2yaml utility, provided together with the
pandoc-citeproc filter. The YAML code for the
first two items in this article’s bibliography, created
by converting the .bib file, is shown in figure 1.

A YAML field can be used also for specifying the
CSL style for citations (csl field), or the external
bibliography file, if required (bibliography field).

Raw code (HTML or TEX) All implementations
of Markdown, of whichever flavour, allow for the use
of raw HTML code, written without modifications in
the output, as we mentioned in section 2. Pandoc
extends this feature, allowing for the use of TEX raw
code, too. Of course, this works only for LATEX/
ConTEXt output.

9 The filter is not needed when using natbib or biblatex
directly instead of the native support.

Massimiliano Dominici

TUGboat, Volume 35 (2014), No. 1 49

1 \documentclass$if(fontsize)$[$fontsize$]$endif$

2 {article}

3 \usepackage{amssymb,amsmath}

4 \usepackage{ifxetex}

5 \ifxetex

6 \usepackage{fontspec,xltxtra,xunicode}

7 \defaultfontfeatures{Mapping=tex-text,

8 Scale=MatchLowercase}

9 \else

10 \usepackage[utf8]{inputenc}

11 \fi

12 $if(natbib)$

13 \usepackage{natbib}

14 \bibliographystyle{plainnat}

15 $endif$

16 $if(biblatex)$

17 \usepackage{biblatex}

18 $if(biblio-files)$

19 \bibliography{$biblio-files$}

20 $endif$

21 $endif$

. . .

113 $body$

114

115 $if(natbib)$

116 $if(biblio-files)$

117 $if(biblio-title)$

118 $if(book-class)$

119 \renewcommand\bibname{$biblio-title$}

120 $else$

121 \renewcommand\refname{$biblio-title$}

122 $endif$

123 $endif$

124 \bibliography{$biblio-files$}

125 $endif$

126 $endif$

127 $if(biblatex)$

128 \printbibliography

129 $if(biblio-title)$[title=$biblio-title$]$endif$

130 $endif$

131 $for(include-after)$

132 $include-after$

133 $endfor$

134 \end{document}

Figure 2: Fragments of the default Pandoc v1.11
template for LATEX.

Templates One of the most interesting features
of Pandoc is the use of customized templates for
the different output formats. For HTML-derived and
TEX-derived output formats this can be achieved in
two ways. First of all, the user may generate only
the document ‘body’ and then include it inside a
‘master’ (for TEX output, with \input or \include).
In this way, an ad hoc preamble can be built be-
forehand. This is in fact the default behaviour for

Pandoc; to obtain a complete document, including a
preamble, the command line option --standalone

(or its equivalent -s) is used.
It is also possible to build more flexible tem-

plates, useful for different projects with different
features, providing for a moderate level of customiza-
tion. As the reader can see in figure 2, a template is
substantially a file in the desired output format (in
this case LATEX) interspersed with variables and con-
trol flow statements introduced by a dollar sign. The
expressions will be evaluated during the compilation
and replaced by the resulting text. For instance, at
line 113 of the listing in figure 2 we find the expres-
sion $body$, which will be replaced by the document
body. Above, at lines 12–21, we can find the se-
quence of commands that will include in the final
output all the resources needed to generate a bibli-
ography by means of natbib or biblatex. This code
will be activated only if the user has specified either
--natbib or --biblatex on the command line. The
code to print the bibliography can be found at the
end of the listing, at lines 124–130.

In this way it is possible to define all the desired
variables and the respective compiler options. The
user can thus change the default template to specify,
e.g., among the options that may be passed to the
class, not only the body font, but a generic string
containing more options.10 We would replace the
first line in the listing of figure 2 with the following:

\documentclass$if(clsopts)$[$clsopts$]$endif$

Then we can compile with the following options:

pandoc -s -t latex --template=mydefault \

-V clsopts=a4paper,12pt -o test.tex test.md

given that we saved the modified template in the
current directory by the name mydefault.latex.

Since version 1.12, ‘variables’ can be replaced by
YAML ‘metadata’, specified either inside the source
file or on the command line using the -M option.

4 Problems and limitations

We’ve seen many nice features of Pandoc. Not sur-
prisingly, Pandoc also has some limitations and short-
comings. Some of these shortcomings are tied to the
particular LML used by Pandoc. For instance, Mark-
down doesn’t allow semantic markup.11 This kind of
limitation can be addressed using an additional level

10 This can be also be achieved via the variable $fontsize.
(Since Pandoc 1.12, the default LATEX template includes sepa-
rate variables for body font size, paper size and language, and
a generic $classoption variable for other parameters.)

11 This is not an issue necessarily pertinent to all LMLs
since some of them provide methods to define objects that be-
have like LATEX macros, either through pre- or post-processing
(txt2tags) or by taking advantage of conceptually close struc-
tures (the ‘class’ of a span in HTML, in Textile). In any case,

An overview of Pandoc

50 TUGboat, Volume 35 (2014), No. 1

of abstraction, using preprocessors like gpp or m4, as
illustrated by Aditya Mahajan in [4]. Of course, this
clashes with the initial purpose of readability and
introduces further complexity, though the use of m4
need not significantly increase the amount of extra
markup.

Other problems, though, unexpectedly arise in
the process of conversion to LATEX output. For in-
stance, the cross reference mechanism is calibrated
to HTML and shows all its shortcomings with regard
to the LATEX output. The cross reference is in fact
generated by means of a hypertext anchor and not
by the normal use of \label and \ref. As a typical
example, let’s consider a labelled section referenced
later in the text, as in the following:

Basic elements ## {#basic}

[...]

As we have explained in

[Basic elements](#basic)

we get this result:

\hyperdef{}{basic}{%

\subsection{Basic elements}\label{basic}

}

[...]

As we have explained in

\hyperref[basic]{Basic elements}

which is not exactly what a LATEX user would expect
. . . Of course one could directly use \label and
\ref, but they will be ignored in all non-TEX output
formats. Or, we could use a preprocessor to get
two different intermediate source files, one for HTML

and for LATEX (and maybe a third for ODF/OOXML,
etc.), but by now the original point of using Pandoc
is being lost.

Formulas, too, may cause some problems. Pan-
doc recognizes only inline and display expressions.
The latter are always translated as displaymath en-
vironments. It is not possible to specify a different
kind of environment (equation, gather, etc.) unless
one of the workarounds discussed above is employed,
with all the consequent drawbacks also noted.

It should be stressed, however, that Pandoc is a
program in active development and that several fea-
tures present in the current version were not available
a short time ago. So it is certainly possible that all or
some of the shortcomings that a LATEX user finds in
the current version of Pandoc will be addressed in the
near or mid-term. It is also possible, to some extent,
to extend or modify Pandoc’s behaviour by means of
scripts, as noted at http://johnmacfarlane.net/

pandoc/scripting.html. One major drawback, un-
til recently, was the mandatory use of Haskell for such

though, the philosophy behind LMLs doesn’t support such
markup methods.

scripts (a drawback for me, at least . . .). The current
version also allows Python, thus making easier the
task of creating such scripts.12

5 Conclusion

To conclude this overview, I consider Pandoc to be
the best choice for a project requiring multiple out-
put formats. The use of a ‘neutral’ language in
the source file makes it easier to avoid the quirks
of a specific language and the related problems of
translation to other languages. For a LATEX user in
particular, being able to type mathematical expres-
sions ‘as in LATEX’ and to use a BibTEX database for
bibliographic references are also two strong points.

One should not expect to find in Pandoc an easy
solution for every difficulty. Limitations of LMLs
in general, and some flaws specific to the program,
entail the need for workarounds, making the process
less immediate. This doesn’t change the fact that, if
the user is aware of such limitations and the project
can bear them, Pandoc makes obtaining multiple
output formats from a single source extremely easy.

References

[1] John Gruber. Markdown.
http://daringfireball.net/projects/

markdown/, 2013.

[2] Axel Kielhorn. Multi-target publishing.
TUGboat, 32(3):272–277, 2011. http://tug.

org/TUGboat/tb32-3/tb102kielhorn.pdf.

[3] John MacFarlane. Pandoc: a universal
document converter. http://johnmacfarlane.

net/pandoc/, 2013.

[4] Aditya Mahajan. How I stopped worrying and
started using Markdown like TEX. http://

randomdeterminism.wordpress.com/2012/06/

01/how-i-stopped-worring-and-started-

using-markdown-like-tex/, 2012.

[5] Wikipedia. Lightweight markup language.
http://en.wikipedia.org/wiki/

Lightweight_markup_language, 2013.

� Massimiliano Dominici
Pisa, Italy
mlgdominici (at) gmail dot com

12 Another option is writing one’s own custom ‘writer’ in
Lua. A writer is essentially a program that translates the data
structure, collected by the ‘reader’, in the format specified by
the user. Having Lua installed on the system is not required,
since a Lua interpreter is embedded in Pandoc. See http://

johnmacfarlane.net/pandoc/README.html#custom-writers.

Massimiliano Dominici

