TUGBoOAT
Volume 37, Number 3 / 2016

General Delivery 255 President’s note / Jim Hefferon

256 Editorial comments / Barbara Beeton
R.I.P. Kris Rose, 1965-2016; A book fair...and another passing;
Some typography links to follow; Another honor for Don Knuth;
A fitting memorial for Sebastian Rahtz;
Second annual Updike Prize for student type design; Talk by Fiona Ross

259 Interview with Federico Garcia-De Castro / David Walden
Typography 264 Typographers’ Inn / Peter Flynn
Software & Tools 267 LuaTgX version 1.0.0 / Hans Hagen
269 LuaTgX 0.82 OpenType math enhancements / Hans Hagen

Electronic 275 Introducing LaTeX Base / Gareth Aye
Documents 277 Computer Modern Roman fonts for ebooks / Martin Ruckert

Graphics 281 When (image) size matters / Peter Willadt
Survey 284 A survey of the history of musical notation / Werner Lemberg

Fonts 305 Colorful emojis via Unicode and OpenType / Hans Hagen
306 Cowfont (koeieletters) update / Taco Hoekwater and Hans Hagen
311 Corrections for slanted stems in METAFONT and METAPOST / Linus Romer
317 GUST e-foundry font projects /
Bogustaw Jackowski, Piotr Strzelczyk, Piotr Pianowski

IATEX 337 Localisation of TEX documents: tracklang / Nicola Talbot
352 Glisterings: Index headers; Numerations; Real number comparison / Peter Wilson

Macros 357 Messing with endnotes / David Walden
358 Tracing paragraphs / Udo Wermuth

Hints & Tricks 374 The treasure chest / Karl Berry
Cartoon 376 An asterisk’s lament / John Atkinson
Abstracts 377 Die TEpXnische Komdédie: Contents of issues 2-3/2016

TUG Business 254 TUGboat editorial information
254 TUG institutional members
378 TUG 2015 election

Advertisements 379 TEX consulting and production services

News 380 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: http://tug.org/TUGboat.

Individual memberships
2017 dues for individual members are as follows:

= Regular members: $105.

» Special rate: $75.
The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Also, anyone joining or re-
newing before March 31 receives a $20 discount:

= Regular members (early bird): $85.

= Special rate (early bird): $55.
Members also have the option to receive TUGboat
and other benefits electronically, for an additional
discount.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions

TUGboat subscriptions (non-voting) are available to
organizations and others wishing to receive TUG-
boat in a name other than that of an individual.
The subscription rate for 2017 is $110.

Institutional memberships

Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and the TEX Users Group. It also provides a dis-
counted membership rate, site-wide electronic ac-
cess, and other benefits. For further information,
see http://tug.org/instmem.html or contact the
TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following list
of trademarks which commonly appear in TUGboat
should not be considered complete.

TEX is a trademark of American Mathematical Society.
METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.

[printing date: November 2016]
Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana’
Jim Hefferon, President*

Boris Veytsman*, Vice President

Klaus Hoppner*, Treasurer

Susan DeMeritt*, Secretary

Barbara Beeton

Karl Berry

Kaja Christiansen

Michael Doob

Steve Grathwohl

Steve Peter

Cheryl Ponchin

Geoffrey Poore

Norbert Preining

Arthur Reutenauer

Michael Sofka

Raymond Goucher, Founding Ezxecutive Director?
Hermann Zapf (1918-2015), Wizard of Fonts
*member of executive committee

fhonorary

See http://tug.org/board.html for a roster of all past
and present board members, and other official positions.

Addresses Electronic Mail
TEX Users Group General correspondence,
P.O. Box 2311 membership, subscriptions:
Portland, OR 97208-2311 office@tug.org
U.S.A.

Submissions to TUGboat,
Telephone letters to the Editor:

TUGboat@tug.
+1 503 223-9994 catttug.org

Technical support for

Fax

+1 815 301-3568 TEX users:
support@tug.org

‘Web

Contact the
Board of Directors:
board@tug.org

http://tug.org/
http://tug.org/TUGboat/

Copyright © 2016 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not

be reproduced, distributed or translated without the
authors’ permission.

For the editorial and other material not ascribed to a
particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice
are preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another
language, except that the TEX Users Group must approve
translations of this permission notice itself. Lacking such
approval, the original English permission notice must

be included.

“Editors are ghouls and cannibals.”
Harriet Vane to Salcombe Hardy

Dorothy L. Sayers
Busman’s Honeymoon (A love story
with detective interruptions) (1937)

TUGBOAT

COMMUNICATIONS OF THE TgX USERS GROUP
Epitor BARBARA BEETON

VoLuME 37, NUMBER 3 . 2016
PORTLAND . OREGON . U.S.A.

254

TUGDboat editorial information
This regular issue (Vol. 37, No. 3) is the last issue of the 2016
volume year.

TUGDboat is distributed as a benefit of membership to
all current TUG members. It is also available to non-members
in printed form through the TUG store (tug.org/store), and
online at the TUGboat web site, tug.org/TUGboat. Online
publication to non-members is delayed up to one year after
print publication, to give members the benefit of early access.

Submissions to TUGboat are reviewed by volunteers
and checked by the Editor before publication. However, the
authors are assumed to be the experts. Questions regard-
ing content or accuracy should therefore be directed to the
authors, with an information copy to the Editor.

Submitting items for publication

Proposals and requests for TUGboat articles are gratefully
received. Please submit contributions by electronic mail to
TUGboat@tug.org.

The first issue for 2017 will be a regular issue, with a
deadline of February 24, 2017. The second 2017 issue will be
the proceedings of the TUG’17 conference (tug.org/tug2017).
The third issue deadline is September 1.

The TUGboat style files, for use with plain TEX and
IATEX, are available from CTAN and the TUGboat web site,
and are included in common TEX distributions. We also ac-
cept submissions using ConTEXt. Deadlines, templates, tips
for authors, and more is available at tug.org/TUGboat.

Effective with the 2005 volume year, submission of a
new manuscript implies permission to publish the article, if
accepted, on the TUGboat web site, as well as in print. Thus,
the physical address you provide in the manuscript will also
be available online. If you have any reservations about post-
ing online, please notify the editors at the time of submission
and we will be happy to make special arrangements.

TUG

Institute for Defense Analyses,
Center for Communications

TUGboat, Volume 37 (2016), No. 3

TUGDboat editorial board

Barbara Beeton, Editor-in-Chief

Karl Berry, Production Manager

Boris Veytsman, Associate Editor, Book Reviews

Production team

William Adams, Barbara Beeton, Karl Berry,

Kaja Christiansen, Robin Fairbairns, Robin Laakso,
Steve Peter, Michael Sofka, Christina Thiele

Other TUG publications
TUG is interested in considering additional manuscripts for
publication, such as manuals, instructional materials, docu-
mentation, or works on any other topic that might be useful
to the TEX community in general.

If you have such items or know of any that you would
like considered for publication, send the information to the
attention of the Publications Committee at tug-pub@tug. org.

TUGDboat advertising

For advertising rates and information, including consultant
listings, contact the TUG office, or see:
tug.org/TUGboat/advertising.html
tug.org/consultants.html

Trademarks

Many trademarked names appear in the pages of TUGboat.
If there is any question about whether a name is or is not a
trademark, prudence dictates that it should be treated as if it
is. The following list of trademarks which commonly appear
in TUGboat should not be considered complete.

METAFONT is a trademark of Addison-Wesley Inc.

PostScript is a trademark of Adobe Systems, Inc.

TEX and ApMS-TEX are trademarks of the American Mathe-
matical Society.

Stanford University,
Computer Science Department,

Institutional
Members

TUG institutional members
receive a discount on multiple
memberships, site-wide electronic
access, and other benefits:
http://tug.org/instmem.html
Thanks to all for their support!

American Mathematical Society,
Providence, Rhode Island

Aware Software, Inc.,
Midland Park, New Jersey

Center for Computing Sciences,
Bowie, Maryland

CSTUG, Praha, Czech Republic

Fermilab, Batavia, Illinois

Research, Princeton, New Jersey
Maluhy & Co., Sao Paulo, Brazil

Marquette University,
Milwaukee, Wisconsin

Masaryk University,
Faculty of Informatics,
Brno, Czech Republic

MOSEK ApS,
Copenhagen, Denmark

New York University,
Academic Computing Facility,
New York, New York

Overleaf, London, UK

River Valley Technologies,
Trivandrum, India
ShareL.aTeX, United Kingdom
Springer-Verlag Heidelberg,
Heidelberg, Germany

StackExchange,
New York City, New York

Stanford, California

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

TNQ, Chennai, India

University College, Cork,
Computer Centre,
Cork, Ireland

Université Laval,
Ste-Foy, Québec, Canada

University of Cambridge,
Centre for Mathematical Sciences,
Cambridge, United Kingdom

University of Ontario,
Institute of Technology,
Oshawa, Ontario, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

TUGboat, Volume 37 (2016), No. 3

President’s note

Jim Hefferon

Lots of things are happening in the TEX world, some
new and some older, some great to hear and some
otherwise.

Elections

This is an election year for TUG. There are ten seats
up for a vote this year, including mine as President.

We invite nominations for these openings. I
hope that you will consider serving if you are able.
It is a truism but it is nonetheless true that the work
doesn’t get done unless somebody does it.

The page tug.org/election/ has the full infor-
mation. If you have any questions, please contact the
election committee, whose address is on that page.
The submission deadline, which will be strictly kept,
is February 1.

Conferences

Next year’s TUG conference will take place in con-
junction with the yearly BachoTEX conference. We
are excited to be joining the Polish group GUST to
celebrate their 25th birthday. A big thank you to
them for agreeing to host!

The dates are April 29-May 3, 2017 (note that
this differs from the midsummer time we have often
used in the past). The monthly online TUG newslet-
ter and the web page tug.org/tug2017/ will have
more information as it becomes available.

T’ve also just heard the dates and location for the
11th International ConTEXt meeting have been set:
September 11-17, 2017 in Butzbach-Maibach, Ger-

many. More information on this will be at meeting.

contextgarden.net/2017/.

New projects

We have activated two working groups.

The PDF accessibility group addresses the very
important work of implementing accessibility stan-
dards in TEX. It has a web page tug.org/twg/
accessibility/ and mailing list 1ists.tug.org/
accessibility. You can direct a portion of your
TUG donations, which are tax deductible in the US,
to this group.

The education working group is aimed at helping
to teach and promote TEX in schools and universities.
The mailing is list 1ists.tug.org/edutex and the
freshly minted web site at tug.org/twg/edutex/.

This second group is near to my heart. I would
dearly like to see more undergraduates using TEX
and friends. I'm a mathematics professor and I
teach an introduction to proofs class. As part of

255

the class I require students to learn enough IKXTEX
to do their homework. It is a professional standard
in mathematics and I think it is to their benefit to
know it.

If you are interested in these issues, please join!

Membership drive continues

We are continuing our campaign Members Bring
Members. We ask all TUG members to help spread
the word about our community by inviting new indi-
viduals and organizations to join.

If you know someone who uses TEX and friends,
someone who is interested in high quality electronic
documents, then please urge them to consider joining
TUG.

On the TUG signup form at tug.org/forms/
current/memberapp.html, the first question is for
new members: “Who invited you to join TUG?” We
acknowledge each such sponsor with a small gift,
a postcard made by long-time TUG member Peter
Wilson on his letterpress specially for this campaign
(or, if preferred, any physical item from TUG store).
Moreover, we will recognize participants in the cam-
paign at the TUG meeting, in TUGboat, and on the
web site. At the end of 2016, we will also hold a
drawing and the person selected will receive a copy
of the limited edition book Manuale Zapficum: Typo-
graphic arrangements of the words by and about the
work of Hermann Zapf € Gudrun Zapf von Hesse
(2009).

Helping

We all benefit from the work of others, and that
includes those of us in the TEX world. If you are
able to give back a bit but are not sure how, you
could consider running for the TUG Board; see above.
Alternatively, the technical committee maintain a
list of project ideas for anyone interested to tackle,
at tug.org/help.html. Have a look; they are all
worthwhile.

Kristoffer Rose

We learned with sadness that Kris Rose has passed
away in September. He is one of those people whose
work has helped me personally. He was the author
of the widely used Xy-pic package. And, he was
a member of the TUG Board from 1997-2003, as
well as Vice President from 1997-2001. He was also
a contributor to Debian. Barbara will say more
elsewhere in this issue but we were sorry to hear the
news and our thoughts go out to his loved ones.

¢ Jim Hefferon
Saint Michael’s College
jhefferon (at) smcvt dot edu

President’s note

256

Editorial comments

Barbara Beeton

R.I.P. Kris Rose, 1965-2016

Kristoffer Hagsbro Rose was a native of Denmark,
born 5 April 1965. He discovered computer science
when he was very young, and spent the rest of his life
involved in this pursuit. He was an early contributor
to AUC-TEX, and the author of Xy-pic.

In Aarhus in the mid-1990s, after receiving his
degree from the University of Copenhagen, he was
teaching at and working with the Basic Research in
Computer Science (BRiCS) center; he would from
time to time visit with Kaja Christiansen and have
a chat. Kaja reports:

We’d talk TEX, Xy~pic, Debian or Emacs, or he
would sit down and read my copies of TUG-
boat. In 1997 we happened to talk about TUG;
the same year I decided to join the board at
TUG97.

Kris joined the TUG board at the same time, and
was elected Vice President for a term through 2001,
he remained on the board until 2003. In addition to
his TUG participation, he was active in the Debian
open source and free software community.

Also in 1997, Kris moved with his family from
Denmark to France, taking a teaching position at
the Ecole Normale Supérieur (ENS) de Lyon, from
which position he was invited in 2000 by IBM to join
the TJ Watson facility in New York as a Research
Scientist. It was at this point that he left the TEX
community, but continued to be active in Debian. In
2013, while still at IBM, he joined the adjunct faculty
of New York University, where he taught compiler
construction. In 2014, he left IBM to become a
research scientist in the financial industry, at Two
Sigma Investments, while continuing to teach at NYU,
and becoming more active as a Debian contributor.
Late in 2015 he was diagnosed with a very aggressive
form of leukemia, which took his life on 17 September
2016. He was far too young.

A book fair...and another passing

The first weekend in October, my husband and I
attended the Oak Knoll Fest XIX in New Castle, Del-
aware, hosted by Oak Knoll Press.! (Some attendees
at the 2001 TUG meeting, held at the University
of Delaware, may remember my recommendation to
visit the bookshop.) This book fair is held every
other year, and I look forward to it eagerly. So it
surprised and saddened me to learn of the death, just

I http://www.oakknoll.com

TUGboat, Volume 37 (2016), No. 3

a week earlier, of Oak Knoll’s proprietor and guiding
spirit of the Fest, Robert Fleck; nonetheless, the Fest
went on as planned, following Bob’s admonition to
his son Rob, “Hell no! We’ve already paid for it!”
(Rob and his mother, Millie, intend to continue the
work Bob started, Bob’s plans are solidly in place
for the next several years.)

Oak Knoll is both a bookshop and a publisher,
with a very specialized focus —books about books.
I first became familiar with Oak Knoll in the early
years of TEX when I was looking for some of the
books listed in the bibliography of Don Knuth’s
Gibbs lecture, “Mathematical Typography”.2 In ad-
dition to the (very few) publications devoted to math
composition, the shop is full of publications about
fonts, composition and printing, bibliography, book-
binding, papermaking, fine press books, A most
valuable resource for information on the history of
type and printing.

Bob Fleck also recognized an interest in con-
temporary hand-set and artists’ books, and in 1996
encouraged the founding of the Fine Press Book As-
sociation (FPBA).> The biennial Oak Knoll Fest
comprises a symposium on book-related topics as
well as a book fair where book-makers, most of them
FPBA members, exhibit their creations and works
in progress. The array of books and ephemera to be
seen is dizzying in its variety.

The topic for this year’s symposium was the
question: what are the most important criteria for a
private press when selecting texts to print? While
this matter is undoubtedly secondary for most TEX
users, the opinions and experience of the participants
were interesting and enlightening for any active or
prospective book collector.

For anyone who loves books and is in the Del-
aware vicinity around the beginning of October (in
even-numbered years; it alternates years with the
Oxford Book Fair, in the UK), attending the Fest is
a recommended activity.

Another honor for Don Knuth:
the SIAM John von Neumann Lecture

On 12 July 2016, the John von Neumann Lecture
prize was awarded to Don Knuth “for his transfor-
mative contributions to mathematics and computer
science”. Knuth delivered the associated prize lecture,
“Satisfiability and Combinatorics” on that day to the

2 Bulletin of the American Mathematical Society (new
series), 1:2, 337-372 (March 1979), https://www.ams.org/
bull/1979-01-02/50273-0979-1979-14598-1; republished in
Digital Typography, pp. 19-65.

3 http://fpba.com

TUGboat, Volume 37 (2016), No. 3 257

Some typography links to follow

On the illegibility of street signs in New York, in verse:
http://flip.it/HLIMY

How typeface designers made room in the New York Times for President Eisenhower’s
long last name:

http://www.theatlantic.com/technology/archive/2016/06/
eisenhower-and-the-skinny-s/486965/

Selections from the blog of St Brigid Press, in the Blue Ridge Mountains of Virginia:

How type is made, in two parts:
http://www.stbrigidpress.net/blog/how-type-is-made-part-1
http://www.stbrigidpress.net/blog/how-type-is-made-part-2

A letterpress lexicon, in (so far) three parts:
http://www.stbrigidpress.net/blog/a-letterpress-lexicon-part-1
http://www.stbrigidpress.net/blog/a-letterpress-lexicon-part-2
http://www.stbrigidpress.net/blog/a-letterpress-lexicon-part-three

The blog itself:
http://www.stbrigidpress.net/blog

Videos from Type@QCooper — Lectures presented in conjunction with
the Cooper Union typeface design program, in New York and San Francisco:
https://vimeo.com/coopertype/videos

Donald Knuth, “32 Years of Metafont” (Type@CooperWest talk):
https://www.youtube.com/watch?v=0LR_1BEy7qU

Announcements of upcoming lectures:

http://coopertype.org/

annual meeting of the Society for Industrial and Ap-
plied Mathematics (SIAM) in Boston, Massachusetts.
This is the highest honor awarded by SIAM; “the flag-
ship lecture recognizes outstanding and distinguished
contributions to the field of applied mathematical
sciences and the effective communication of these
ideas to the community.”

A fitting memorial for Sebastian Rahtz

The Text Encoding Initiative (TEI) has announced
the creation of the Rahtz Prize for TEI Ingenuity.
The prize is described in part as follows:

The TEI Consortium has created the Rahtz
Prize for TEI Ingenuity in memory of Sebastian
Rahtz (13 February 1955-15 March 2016). The
award is intended to honour Sebastian’s major
technical and philosophical contributions to the
TEI, and to encourage TEI innovation by the
TEI community.

The full announcement can be read at http:
//www.tei-c.org/Activities/rahtz.xml; nomi-
nations for the first award are due 1 April 2017.

Second annual Updike Prize
for student type design

On October 17, safely outside of the winter storm
season,* the award ceremony for the second annual
Updike Prize for student type design was held at the
Providence Public Library. The invited speaker was
Dr. Fiona Ross of the University of Reading.

Four finalists were announced, and their entries
were on exhibit, along with information about the
sources they had consulted for inspiration. Here are
their names, and the names of their typefaces.

e June Shin, [thaka (First Prize)

e SooHee Cho, The Black Cat

e Cem Eskinazi, Mond

e Ifigo Lopez Véazquez, Erik Text
A brief announcement is at https://pplspcoll.
wordpress.com/2016/10/20/congratulations-to-
june-shin-winner-of-the-2016-updike-prize/,
and includes several related links.

4 Last year’s presentation, on 19 February 2015, was ac-
companied by a fierce snowstorm. The event was reported
in my column in TUGboat 36:1, http://tug.org/TUGboat/
tb36-1/tbl12beet.pdf.

258

Talk by Fiona Ross

Fiona Ross is on the faculty of the University of
Reading, where she lectures on non-Latin typeface
design in the MA Typeface Design program, and
is curator of the Non-Latin Type Collection. (She
is also an Associate Designer for Tiro Typeworks,
the organization which is polishing version 2 of the
STIX fonts.) Her talk, on the occasion of the Updike
Prize ceremony, entitled “Collections-based research
for contemporary typeface design— with special ref-
erence to non-Latin scripts”, dealt with the resources
necessary when designing fonts for languages in which
one is not a native speaker, and how to make most
effective use of them.

Dr. Ross used the Bengali script as her main
example. Bengali has a long history, longer even than
Latin, with the oldest representations being carved
in stone, and more recent, though still old, examples
produced with a broad-edge pen that has the writing
edge slanted in the opposite direction from that of the
broad-edge pen used for italic script. Although the
Bengali script is strongly alphabetic, the glyphs are
based on consonant clusters, with vowels relegated
almost to diacritic status. The order of written
phonemes is not necessarily the same as how the
phonemes occur in the spoken word. Wide elements
at the top or (less frequently) bottom traditionally
overlap what occurs next to them; the overlap can
occur on either side. The setting of these features in
type is strongly influenced by what is possible with
the available technology.

Dr. Ross’ studies in Sanskrit prepared her for
her first assignment at Linotype (UK), where she
undertook to redesign the Bengali font for use with
a filmsetter. The existing Linotype Bengali font was
designed for use on a hot-metal typesetter, which had
no real ability to kern adjacent characters. With-
out this ability, the only alternative would be to
provide ligatures, which for Bengali would increase
the number of glyphs to several hundred; with a
physical capacity of only 90 characters at a time,
the Linotype was incapable of accommodating this
requirement. For this reason, many shapes were re-
stricted to a width narrower than tradition would
dictate. But the desire for printed material (India
is still devoted to reading the daily newspaper) was
stronger than the requirement for typography that
embodied traditional elegance.

The design of a new font, even for a new technol-
ogy, should not be simply a clone of an existing font,
even if it is meant to fill the same niche. Especially
if a new technology provides possibilities that were
not available under previous technologies, the op-
portunity should be taken to create something that

TUGboat, Volume 37 (2016), No. 3

matches the expectations of the culture whose lan-
guage it will be used to exemplify. So it was possible,
with the enhanced capabilities of the filmsetter, to
ignore the limitations that had heretofore restricted
the font design.

The UK Linotype company held a collection of
manuscripts and printed materials in the relevant
script, as well as having a branch in India with per-
sonnel willing to supply not only more examples, but
also the expertise of native language speakers. To-
gether, these resources fulfilled the three criteria that
are required for development of a new font (besides
the efforts of a skilled designer): relevance, signif-
icance, and reliability. For Bengali, the available
materials covered a broad period as well as a signifi-
cant variety of likely applications. The staff of the
office in India were enthusiastic about the project,
allowing work on the new font to be a true team ven-
ture. Despite Dr. Ross’ lack of native competency in
Bengali, the ability to ask the right questions and
attention to the opinions of those native speakers
resulted in a product that was readily adopted by
the major Bengali newspapers, and even today, more
than thirty years later, it is still the predominant
font used by the newspapers.

The image below was kindly provided by Dr.
Ross to illustrate this report. It says, in Hindi
transliteration, “Typographic Design” in Adobe De-
vanagari Regular and Bold, designed by Tim Hol-
loway, Fiona Ross, and John Hudson.

SaUTthes fESiTg
CELIDI A CO |

Every slide illustrating Dr. Ross’ talk included
the Bengali letter “ka” (Unicode U+0995) as an icon.
An inquiry elicited the information that “ka” is auspi-
cious; this is the first glyph that she designs in every
script.

On 17 July 2016, Dr. Ross presented a lecture
on a related topic at Typographics 2016, held at
The Cooper Union in New York City. A video of
that talk can be viewed at https://www.youtube.
com/watch?v=3_MbN_pBuy0. In her slides, starting
at 3:29, the iconic Bengali “ka” can be seen, usually
in the lower left-hand corner.

© Barbara Beeton
http://tug.org/TUGboat
tugboat (at) tug dot org

TUGDboat, Volume 37 (2016), No. 3

Interview: Federico Garcia-De Castro
David Walden

Erin Gallagher Pesa

Federico Garcia-De Castro is a composer of music,
passionate for chess, and a lover of TEX.

Dave Walden, interviewer: Please tell me a bit
about yourself.

Federico Garcia-De Castro, interviewee: Iwas
born and raised in Bogota, Colombia. I was a pretty
normal child, but I pursued a couple of interests from
an early age—1I went to the conservatory for a couple
years, before that conflicted with math Olympiad
training and I decided to do math. I'd return a
couple of years later, as I remember out of curiosity
and a vague remembrance that it (music) had actu-
ally been interesting. Math still figured at the top,
though, but then eventually I left math to devote my-
self to chess, which was my life pretty much between
11 and 16. And, studying chess, I started listening
to music (while studying openings, tactics, etc.), and
that’s when I got hooked on music. In the end, at
16 I decided music — composition — was my thing.

So my mom, who had been the one pushing
for my early music training (and hated that I quit
for math, and later hated much worse that I quit
math for chess!), ended up winning that one. The
one who lost, however, was my uncle Rodrigo De
Castro. A mathematician, uncle Luli was in Chicago
for seven years before returning to Colombia in 1993,
when I was 15. He’s also a huge music aficionado
and connoisseur, and was the one who triggered my
teenage interest in music ... always trusting that I
clearly was going to be a mathematician. He’s most
relevant here, however, because in 1993 he brought
TEX to Colombia.

Now, a digression for context: some four years
ago I was visiting Bogota, and went through some
notebooks and papers and things my mom had kept

259

Federico conducting a composition of his at the 2015
MusicArte Festival in Panama

from our childhood years. (That is, mine and my
brother’s; Nicolas is two years younger, and now a
German philologist; he writes amazing poetry on
the side, and I have set a couple of his poems to
chamber works.) In those childhood archives I found
a small slip of paper, which had, written clearly in a
child’s handwriting, some 10 lines of a program —in
BASIC. This discovery, and some things it made us
all remember, helped me, as an adult, understand
a lot of my life in a new light. Whatever I did as
a child, whatever I pursued, whatever courses I en-
rolled, I was always, and have always been, foremost
a programmer. In the wide sense: what else is a
music score? No more and no less than a program —
a series of instructions, written in a code (with its
own syntax that you have to learn, etc.), that will
be executed. And then debugged. A musical work is
not exactly analogous to an algorithm, but even so,
what a composer does is programming.

My relationship with composition has always
been tense (as probably anyone’s is—nothing special
there). When I came to the United States, for PhD
in composition at Pitt in 2001, I also “discovered”
musicology, and I did much more musicology than
composition. From that time stems the motivation
for my first IN\TEX packages.

DW: Let’s talk about them later.

FGDC: Then eventually between 2005 and 2009 I
was really devoting myself to chess—in 2009 I won,
amazingly, the Pittsburgh Chess Club championship
and the informal “state” tournament at Carlisle, PA.
That’s where the TEXmate package stemmed from.
Soon after my graduation in 2006 1 co-founded a
contemporary music organization, which has since
grown stronger and stronger. That meant for years
I flirted seriously with a career in conducting. ...

Interview: Federico Garcia-De Castro

260

It’s like I always looked for something to do,
something to be, other than a composer.... That’s
why it was so important to me to understand, as men-
tioned above, that I am mainly a programmer, and
that my interest in composing is of the same nature.
Composing, I've since also figured out, is just much
harder and much scarier (among other things, you
don’t have the luxury of constant feedback through
test runs). But it is what I am, period.

DW: How did you first come in contact with TEX?

FGDC: So in 1993 I ran into TEX. Then I only
had an Atari 130 XE, which I got after months and
months of pleading to my parents because I wanted
finally to be able to program on a computer, not on
slips of paper ... (also, my parents couldn’t readily
afford a computer right away, that was the reason
for the wait). I had no PC to run TEX on in 1993,
but I have the vivid memory of being in a class in
school and writing out the TEX document that would
produce whatever the textbook we were looking at
was. I’d write it on the left side of the notebook; on
the right, I'd calligraph out what would have been
TEX’s output. This was in 1993, just when I got to
know TEX and was hooked enough that I had to do
it even on paper :) That summer a colleague of my
uncle hired me to typeset his math book. I remember
too the frustrating moments with ! Extra messages,
and my uncle coming to my rescue (I worked at my
uncle’s place—1 did not have a PC!) when the tears
were starting to come.

Back then, AMS-TEX was the thing. (In fact,
my uncle had brought with him the I*TEX manual,
but he had never used IXTEX and only vaguely told
me what it was. I borrowed the book. I was the
one who told my uncle (!) that BTEX was onto
something....) The point is that, for me, names
like Spivak, Mittelbach, Rahtz, etc., were the same
as names like Mozart, Beethoven, Brahms.

This last one with an h; Braams would also be-
come like that when my uncle kept writing IZN\TEX
manuals for Colombian (and Spanish-speaking) TEX
users, with which I helped him. In 2002, I think,
El Universo BTEX featured a CD with examples and
summaries —in PDF, done by me, with color syntax
highlighting and plenty of hyperlinks —a lot of fun
with \verb. Years and years later, when working se-
riously on my most complicated program (TEXmuse),
I looked back at this code, when I wanted to add
syntax highlighting to the IATEX docstrip system —
what eventually became the colordoc package.

In 2011, I think, Frank Mittelbach (Beethoven!)
got in touch with me to include TEXmate in the
second volume of the KTEX Graphics Companion.

David Walden

TUGDboat, Volume 37 (2016), No. 3

One of the IMTEX books written by Federico’s uncle in
2002; Federico prepared the PDF summary included in
the CD.

And then I met him, in Boston in 2012. A couple of
weeks ago (as of this writing) I had multiple beers
and chats with him in Toronto.

DW: When you say that your uncle brought TEX to
Colombia, do you mean to you personally or basically
to all Colombia?

FGDC: To all Colombia. He basically brought TEX
with him when returning from his time in the US
(PhD in math at Champaign Urbana). At around the
same time TEX was also brought into the community
centered on another person (I can’t remember his
name), who was associated with the Math Olympiads.
But my uncle brought it to the National University,
much more central in the math community. And then
he immediately started writing booklets, manuals,
etc., that people needed in order to learn. I remember
he even did one on PiCTEX. And a full booklet for
tables, which of course were a problematic subject
in TEX. And so on.

DW: Is your uncle still alive and promoting TEX?

FGDC: He’s still active at the math department.
Demand for TEX manuals declined once most peo-
ple know how to use it and with the availability of
everything online these days. But I'm sure copies of
that book are still sold every once in a while today.

DW: You mentioned TEXmate. What other things
have you implemented in TEX. (I know you have
written about some of them.)

FGDC: Here’s a list:

e subfiles—an alternative to the \include
mechanism that allows the subsidiary

TUGboat, Volume 37 (2016), No. 3

documents to be typeset as stand-alone
documents.

e todo— utilities to add a to-do list at the end
of a document.

e texmate —comprehensive chess annotation.

e opcit—support for footnote-style
bibliographies in ETEX.

e colordoc—modification of the doc package
that provides syntax highlighting.

And there’s TEXmuse, of course

DW: Yes, I have read your papers on TEXmuse:
On musical typesetting: Sonata for TEX and META-
FONT, Op. 2!, and TEX and music: An update on
TEXmuse?.

I'd like to come back to TEXmuse. How about
TEXcel, which you presented at TUG 20163?

FGDC: TgXcel is a set of macros I developed this
spring for financial tracking and reporting for my
contemporary music company. It was a fun project,
a nice excuse to program (go back to hacking TEX),
with a clear and manageable goal. It is a complete
and robust system, but it simply does what it does:
helps in reporting financial information for my orga-
nization. It is certainly the backbone of what conceiv-
ably would be a more “public” and general purpose
package; and, inasmuch as it was a kind of discovery
(in the sense that who would have thought that TEX
was more appropriate for this than a spreadsheet),
it was an interesting presentation for the TUG meet-
ing. But I would not count it next to the packages
above that are meant for general use by general users
without much further hacking.

DW: Let’s return to your composing. Is it possible
to label the kind of music you write, and who are
your musical influences (in addition to your uncle)?

FGDC: The genre is usually called “new music”.
But for someone who doesn’t already know what
that means, it doesn’t mean much. Lately I've said
“contemporary chamber music”. That gets it across.

I think Mahler and Beethoven are the greatest
composers in history. At one point I was a devoted
Bachian (I even published a scholarly article on his
Italian Concerto), but I have since matured, hehe.

All that said, it is when I listen to Luciano
Berio, Witold Lutostawski, and George Crumb that
I remember why I am a composer.

DW: Might you give us an example of each of these
composers that is in any sense representative of their
compositions? Perhaps I can listen to them via
YouTube.

FGDC: Crumb’s Makrokosmos series (the first one
is for solo piano, then he wrote one for amplified

261

piano, then the masterpiece volume III for two pianos
and two percussionists, and finally one for amplified
piano four hands) is in my view among the highest
creations of the human mind in any area. Crumb’s
music is unmistakable, but in a very open way: it’s
prolific in his influence on other composers (in the
80s, for example, it swept through Latin America
and everyone was writing like him for a while, in the
good sense), unlike, for example, Messiaen’s, who
sounds like Messiaen to the point that it came to be a
kind of dead end with no more to be explored there.

Berio’s Laborintus II is a piece that also fills
me with admiration. This coming spring (I can
barely believe it), I am producing and conducting
the Pittsburgh premiere of the piece (which is very
ambitious: 17 instruments, 8 actors/speakers, 3 solo
sopranos, narrator, and electronics) as part of a
residency with Chicago-based vocal ensemble Quince.
This has been more of a dream than a goal for me;
until it became a possibility last year, it was simply
too unthinkable.

Lutostawski’s music is certainly my biggest in-
fluence. I think the piano concerto is second only,
maybe, to Beethoven’s Emperor. His cello concerto,
his third symphony, and his string quartet are tow-
ering exemplars of each genre. His music is rela-
tively conservative in format (most of it for orches-
tra, which is a 19th-century instrument), if not in
its amazing content; and this has meant that he’s a
little less “sexy” than more fashionable contempora-
neous names, notably Ligeti. But everyone agrees
Lutostawski is a giant.

DW: On your website*, I see full scores® for some
of your compositions. How do you do your compos-
ing —musical instrument, music paper and pencil,
instrument and music notation program, or directly
into a music notation program (e.g., TEXmuse)?

FGDC: It really depends on the piece, the project,
the kind of idea I'm struck by. I just finished a guitar
piece, that’s inspired by a Cuban trova song (Pedro
Luis Ferrer’s Romanza de la nifia mala). You can
think of it almost as a translation into a new language
(in my piece, the guitar is tuned in microtones; and
in addition it has no lyrics, it’s just the guitar part).
The process was: passage by passage, listen to the
original, then find the right “translation” on my
guitar; I’d then lock the left hand in position, so as
to not lose the chord, and quickly scribble it down
with my right hand on my notebook. But not all the
details —those would be added simply when (next
step) I'd type the notes into the computer. On the
other hand, I’ve been composing a piece for six harps
placed around the audience; in this case I have no

Interview: Federico Garcia-De Castro

262

Federico at the piano strings for his composition
Livre Pour Deux Pianos, August 2014, New Hazlett
Theater Community Supported Art Performance
Series, Pittsburgh, PA (photo by Renee Rosensteel)

instrument to find chords on and the piece is really
about the surround effect, so exactly what notes I
write is really a minor point. For this there’s mainly a
huge “research” stage that’s really about discovering
what the piece is about, and I am a long way away
from even knowing what the best notation will be
for it —so the computer is useless at this point.

The question, I think, touches on the relation-
ship between the notebook and the computer. Do
musicians have it all in their heads? Do they fig-
ure it out on paper? Do they use the computer for
it? All understandable questions, but in a way they
are illusory: would you ask a novelist, or a scholar,
whether they write first on paper and then type it
up? The answer in that case is not only obvious
(take notes as needed on paper, but go ahead and
use the computer for the actual text), but also not
very interesting. Well, I hate to say it, but writing
music doesn’t carry any more mystery about it than
writing words!

DW: Please compare your TEXmuse music tran-
scription with other programs, for example, Finale,
Sibelius, MusiXTEX, or Lilypond.

FGDC: The most important aspect and uniqueness
in TEXmuse’s approach is that it is all about keeping
the act of typesetting music as close as writing it by
hand as possible. In several respects: if you're, say,
in c-minor, you don’t write the flat next to each e,
even though you mean it (because that’s part of what
being in ¢ minor means). This is the major deficiency
of Lilypond —a very complete system, but with a
syntax and an approach so autonomous from the
musician’s mind that it’s a chore more than a help.

TEXmuse also features some algorithms that

David Walden

TUGhboat, Volume 37 (2016), No. 3

were pursued in the belief that mechanical tasks are
exactly what computers are for. In music, in par-
ticular, pitch spelling (including transposition) and
line breaking are areas that are largely mechanical
but that have been left alone by music typesetting
software. Among the two of them they consume the
biggest (and unacceptably big) portion of a com-
poser’s time these days.... It was this frustration
that led me to think of TEX for music typesetting.
And it was so high on my priority list that I tackled
those two algorithms very early on: if they were
not going to be possible, then the rest would not be
worth it.

In recent times there have been advances. I
follow from a distance, but from what I have seen
MusicXML is very good, there are serious people do-
ing serious research on all of this. (I'm still not aware
of anyone tackling the spelling problem, though.) It’s
part of the reason why I haven’t continued working
on TEXmuse (in addition to time, my “real” respon-
sibilities, etc.): that space is in a sense crowded
now, and crowded with good efforts. As a system,
and thinking of the user’s experience, TEX (sadly) is
not really the most promising environment; I don’t
see the whole musician community installing and
deciphering TEX.

TEXmuse can still be a contribution at some
point: as a front end to the other systems that have
been developing. At this point in TEXmuse, TEX
takes the user’s input (and this is its strength) and
from it, it makes METAFONT programs that produce
the music. There’s no reason why TEXmuse’s in-
put couldn’t be something other than METAFONT
(for example, Lilypond, or MusicXML). In fact, this
is probably much much easier than programming
METAFONT automatically!

DW: Please say something about Alia Musica® and
the new music festival” it sponsors, e.g., how and
why were they founded, how does it help you (or
the world) for you to spend time as artistic director
and obviously doing lots of less artistic work to keep
them functioning?

FGDC: In the last 15 years or so (I lived here since
2001), Pittsburgh has been going through a major
cultural renaissance. Even when I got here the city
was far from its infamous past as a dirty steel mid-
west town, and had already shifted to things like the
health system (the biggest industry in Pittsburgh,
through the University of Pittsburgh Medical Cen-
ter), high-tech research (mainly at Carnegie Mellon
University) and eventually high-tech industry. But
culturally it’s been a thing of the last decade or so.
I founded Alia Musica with another 10 emerging

TUGboat, Volume 37 (2016), No. 3

composers in 2006-7. The main reason was that
there were really no professional outlets for the work
of young composers in the city, and in fact there was
little visibility, little funding, and little interest. In a
word, we realized that since no one was playing our
music we would have to do it ourselves. A lot has
changed, and it’s continuing to change. Some things
lag behind (funding, media attention) but they’re
catching up. In any case, the contemporary chamber
music scene is much larger, and not only in quan-
titative terms. More and more young people (and
that includes, simply statistically, artists, and within
them musicians) are either moving in or (perhaps
more relevantly in a city with a long tradition of
excellent music performance schools) staying after
advanced studies.

I was reflecting on this during an interview I did
for the new-music blog “I Care If You Listen” on the
occasion of the 2016 edition of the Pittsburgh Festi-
val of New Music® (PFNM), a production of mine and
of Alia Musica’s in May 2016. As I was saying, when
we started there wasn’t much devoted to cultivating
the creation and appreciation of new music in the
city (and that’s why we started; and, by the way, we
were not the only ones that started more or less at
that same time). By contrast, at PFNM 2016 one
of the performances was a showcase of current new-
music activity in Pittsburgh, for which I had to select
groups. I had “room” for seven, and I had to make
a choice, and it wasn’t easy. New initiatives pop up,
some die, some endure, but the general sense is of vi-
brant activity. Alia Musica itself has in a way grown
out of its original mission of performing Pittsburgh
composers; other younger initiatives have taken that
role. Alia Musica has been able now to shift its focus,
from making an impact on the careers of emerging
musicians, to making an impact on the actual life
experience of its audiences. So, for example:

e In 2014 we produced a piece that was written for
9 to 99 percussionists by Pulitzer Prize winner
John Luther Adams; we gathered 67 percussion-
ists at a park.

e We presented one of the most epic works of
the 20th century, the variations for piano on
The People United will Never Be Defeated, per-
formed by the composer himself, the legendary
Frederic Rzewski, at a fish market!

e In 2015 we were able to bring a residency with
cutting-edge California composer/vocalist Ken
Ueno? to perform his own concerto for overtone/
throat-singing and orchestra (excerpt!?).

e As part of the May 2016 festival we produced a
flashmob of Stravinsky’s Firebird!! at the cen-
tral Market Square in Pittsburgh.

263

These are epic, unforgettable events— music
at its most relevant, the proof, in fact, that music
can still be relevant. I mean, who cares that the
counterpoint is well crafted or that the pianist has
good technique? When you're seeing (as in the third
bullet point above) a symphony orchestra re-creating
and elaborating on the sound of a low throat-singing
note, with muted trombones and string glissandos,
who cares really whether the tempo is correct?” Who
cares, even, who the composer is? More and more
in the mind of the general audience, Alia Musica is
the folks who bring these experiences to our lives.

I should mention one more thing, namely, one of
the young ensembles just founded, NAT 28!2. T have
been in touch with them in regards to my 10 years
of professional activity as a composer in Pittsburgh.
As part of the celebration, NAT 28 is going to devote
a full concert to my music this November. A “por-
trait concert”, the dream of any composer. They are
bright young musicians, recent graduates in perfor-
mance, and beyond (or before) plans for this concert
I have had nothing to do with their formation. I
take this as a sign that the seeds planted by Alia
Musica (among many seeds planted by others as well)
are in fact taking root and producing on their own.
Personally, it is also one more gift I get from Pitts-
burgh —like the right grant that I've gotten at the
right time for the right new idea, effectively the mech-
anism by which I've stayed, year after year, and based
my career in what is an increasingly central city.

DW: Thank you for taking the time to do this in-
terview. You’ve mentioned a lot of new music I need
to listen to.

[Interview completed 2016-08-17]

Links

Lhttp://tug.org/TUGboat/tb24-2/tb77garcia.pdf

2http://tug.org/TUGboat/tb33-2/tb104garcia. pdf

3 http://tug.org/TUGboat/Contents/contents37-2.html

4 http://garciadecastro.net/composer

Shttp://tinyurl.com/garciadecastroscores

6 http://aliamusicapittsburgh.org

"http://icareifyoulisten.com/2016/05/5-questions-
federico-garcia-de-castro-pittsburgh-new-music-
festival-artistic-director

8 http://pghnewmusic.com

9 http://newmusicusa.org/projects/spring-2016-a-ken-
ueno-premiere-2

0 http://youtu.be/A_4nfxShyGM

M http://youtu.be/bz80VFygnQA

2 nttp://www.nat28.org

©o David Walden
http://tug.org/interviews

Interview: Federico Garcia-De Castro

264

Typographers’ Inn
Peter Flynn

Dashing it off

I recently put up a new version of Formatting Infor-
mation (http://latex.silmaril.ie), and in the
section on punctuation I described the difference be-
tween hyphens, en rules, em rules, and minus signs.

In particular I explained how to type a spaced
dash — like that, using ‘dash™---_1like’ to put a
tie before the dash and a normal space afterwards,
so that if the dash occurred near a line-break, it
would never end up at the start of a line, only at
the end. I somehow managed to imply that a spaced
dash was preferable to an unspaced one (probably
because it’s my personal preference, but certainly
not an absolute).

The ensuing discussion on comp.text.tex re-
vealed some curious inconsistencies. Petros Travioli
very kindly directed me at the Oxford Dictionaries
web site at http://www.oxforddictionaries.com/
words/punctuation#dash, which gives examples of
an unspaced em-rule, but in the ‘Read more’ link
on that page, we discovered that the examples are
actually spaced en-rules. This is the practise recom-
mended by Wikipedia’s style guide, which says that
the em-rule is not spaced; and the APA style guide
agrees with them [1, p 97]. Strunk & White use it
unspaced, but don’t actually mention it; but the As-
sociated Press style guide disagrees and says to use
spaces, which is what TUGboat does (\thinspace,
in fact).

So what authorities say they think is right, and
what publishers actually do, can be very different. I
just picked up five books I read since the start of the
year:

e Sansom, Ian (2012) Paper: An Elegy. Fourth
Estate (Harper Collins), London, 2012 (spaces
around en rule).

e Wilson, Bee (2013) Consider The Fork. Penguin,
London (spaces around em rule).

e Jones, Terry and Alan Ereira (2005) Mediaeval
Lives. BBC Books, London (spaces around
em rule).

e Sayers, Dorothy (1942) The Nine Tailors. Victor
Gollancz, London (unspaced em rule).

e Banks, Tain M (2003) The Player of Games.
Orbit (Macmillan), London (spaces around
en rule).

I suspect that, as with many points of typographic
style, you should follow the conventions of your dis-
cipline; but if you have free rein, choose whichever
style you think best —but be consistent.

Peter Flynn

TUGboat, Volume 37 (2016), No. 3

XgETEX

Back at the ranch, we have been experimenting with
XAETEX in our workflow, spurred on by two recent
requests to use a specific set of OpenType fonts for
some GNU/Linux documentation. XgKTEX offers
two major improvements on pdfIATEX: the use of
OpenType and TrueType fonts, and the handling of
UTF-8 multibyte characters.

Font packages. You can’t easily use the font pack-
ages you use with pdfIATEX because the default font
encoding is EU1 in the fontspec package which is key
to using OTF/TTF fonts, rather than the T1 or OT1
conventionally used in pdfIATEX. But late last year
Herbert Vof kindly posted a list of the OTF/TTF
fonts distributed with TEX Live which have packages
of their own for use with XgITEX [6].

Table 1: List of font packages supporting XqgI4TEX
(as of 25 Dec 2015)

accanthis some Accanthis with CMR
Alegreya some Alegreya with CMR
AlegreyaSans some Alegreya Sanswith CMSS
cabin some Cabin with CMSS
caladea some Caladea with CMR
carlito some Carlito with CMSS

cinzel some CINZEL with CMR
ClearSans some Clear Sans with CMSS
ebgaramond some EB Garamond with CMR
FiraMono some Fira Mono with CMTT
FiraSans some Fira Sans with CMSS
gillius some Gillius with CMSS

gillius2 some Gillius2 with CMSS
imfellEnglish ~ some IM FELL English with CMR
libertine some Libertine with CMR,

librebaskerville some Libre Baskerville with CMR
some Libre Caslon with CMR

some ‘lgbater Two with CMR

some Merriweather with CMR
some Mint Spirit with CMSS
mintspirit2 some Mint Spiritz with CMSS
PlayfairDisplay some Playfair Display with CMR

librecaslon
LobsterTwo
merriweather
mintspirit

quattrocento some Quattrocento with CMR

raleway some Raleway with CMSS

roboto some Roboto with CMSS
sourcecodepro some Source Code Pro with CMTT
sourcesanspro some Source Sans Pro with CMSS

some Source Serif Pro with CMR
some Universalis with CMSS

sourceserifpro

universalis

These packages, shown in Table 1, work with
the \usepackage command in the normal way. The

TUGboat, Volume 37 (2016), No. 3

ITEX Font Catalogue has a separate page at http://
www.tug.dk/FontCatalogue/opentypefonts.html
for fonts with OpenType support.

So what do you do about all those other font
packages not yet adapted to detect that they are
being used in XJKTEX? Individual font specifi-
cation in XqgKTEX is slightly different to that in
pdfIATEX: it requires the fontspec package. This pro-
vides three commands which let you specify the three
basic families expected by IKTEX: \setmainfont,
\setsansfont, and \setmonofont (there are also
commands for loading individual fonts). The argu-
ment is either a full fontname like Times New Roman
or a font filename like Lato-Hairline.ttf, and this
is where the fun starts, because both methods have
advantages and disadvantages for ease of use and
portability.

Full fontnames. There are OTF /TTF replacements
for many of the pdfl4TEX-oriented package fonts,
which can be loaded using the full font name, in-
cluding spaces. The TEX Gyre project has created a
set of fonts which work with fontspec, equivalent to
the old Adobe ‘35’ which have been a mainstay of
desktop publishing for many years (see Table 2).

Table 2: Font names for equivalents of the Adobe
PostScript ‘35’ fonts

TeX Gyre Adventor Avant Garde

TeX Gyre Bonum Bookman

TeX Gyre Chorus Zapf Chancery

TeX Gyre Cursor Courier

TeX Gyre Heros Helvetica

TeX Gyre Pagella Palatino

TeX Gyre Schola Century Schoolbook
TeX Gyre Termes Times

For example, \setsansfont{TeX Gyre Adventor}.

If you need the Microsoft Windows Core Fonts
which come with most Windows and Mac systems
(available as RPM/DEB packages for GNU/Linux),
the names are shown in Table 3.

However, the downside with all the other OTF
or TTF fonts already installed on a computer is
that the user may not know how to find out the
full fontname —it’s usually the one shown when you
display the system font folder or pull down the font
menu in a wordprocessor. The upside is that the
full fontname is usually fairly clear and descriptive,
and stays built into the font even if you change the
filename.

On GNU/Linux systems, where there is no strict
rule about where such fonts get installed, you must

265

Table 3: Font names for using the Microsoft Windows
Core Fonts in Xg#TEX

Andale Mono
Arial

Arial Black
Comic Sans MS
Courier New

Andale Mono
Arial

Arial Black
Comic Sans MS
Courier New

Georgia Georgia

Impact Impact

Times New Roman Times New Roman
Trebuchet MS Trebuchet MS
Verdana Verdana

Webdings SerEleomE

For example, \setsansfont{Comic Sans MS}.

use your system’s font cache to find a fontname. You
create the cache by running the command

sudo fc-cache -f -vv

You can then use the fc-1ist command to list the
fonts it found (the second colon-separated field) and
use a filter like grep (1) to find the name you want.

Font filenames. You can also load the font by file-
name, providing the filetype (extension), location
(path), and naming pattern for the font variants as
options (see Figure 1).

\setmainfont{Lato-Hairline} [Extension=.ttf,
Path=/usr/share/fonts/truetype/lato/,
UprightFont=%, BoldItalicFont=*BoldItalic,
ItalicFont=*Italic, BoldFont=+*Bold]

Figure 1: Loading a font by filename

The naming pattern uses an asterisk to represent
the filename you gave as the main argument to the
command; so in the example, the italic variant would
be the file named Lato-HairlineItalic.ttf, but
you can add whatever punctuation (hyphens, spaces,
etc) your filenaming pattern requires. This method
is probably better than the fontname if you know the
exact places and names of all your font files, because
you can tailor the command to suit your own setup.

The disadvantage is that filenames can be differ-
ent for the same font file across systems, so there is
less portability; but the advantage is that it’s usually
easier to find filenames than to find full fontnames.
However, you can also create a .fontspec file which
provides the mapping from filename to fontname, so
frequent users can make life much easier for them-
selves.

Typographers’ Inn

266

Logos

Logotypes are typographic designs or glyph variants
of more than one letter, but available as a single
glyph (originally, cast as a single piece of metal type).
Yhe in ATF Garamond is one example, and TEX is
another.

The TEX and related logos work fine in Com-
puter Modern, but in other faces the spacing needs
adjustment, and this is tedious in the extreme when
dealing with many fonts in several faces.

There have been several articles on the problem
of adjustments [4, 5], not least from Don Knuth [3];
but Karl Berry and Robin Fairbairns parameterised
the macros for \TeX and other commands in the
ltugboat document class, which were tuned for CM by
Barbara Beeton, the redoubtable editor of TUGboat.

Table 4: Example adjustments to logo settings

Typeface Font Normal Italic Bold Bold Italic
Computer Modern 1mr BTEX KX ITeX IKIpX
Bitstream Charter bch ITEX KIEX WTEX KIEX
Avant Garde pag IATEX ATEX IATEX IATEX
‘Iobater Two LobsterTwo TT¢X WEX WX HTX
Caladea Caladea BTEX ETpX BTEX HIEX
Raleway Raleway IATEX ATeX ATX LATEX

I have borrowed this code and extended it so
that you can specify the kerning either side of the
letter E in TEX and the letter A in IXTEX, as well
as their vertical displacement and their scale. Three
other arguments let you give the font name, font
series, and font shape, so that each combination can
have its own set of adjustments.

I'll upload a draft of the package (flexlogo) to
CTAN once I have a few buglets sorted out.

Afterthought

In this column in TUGboat 33:1 [2], I described the
problems raised by poorly-broken centered material,
especially headings. Hardly a day goes by without
me seeing another example, and Figure 2 shows the
label from a very fine cheese I brought as a gift to an
elderly relative recently. She wanted to know what
a ‘cheese beech’ was. . .see Figure 2.

SEMI FIRM CHEESE BEECH
SMOKED ON THE FARM

Maybe they prepared the text in Word and sent it
to the designer, who followed it without question
(which is unprofessional), or that the vendor has no
clue, and the designer neither (which is not unusual,
alas). Would it have killed them to rearrange it?

SEMI-FIRM CHEESE
BEECH-SMOKED ON THE FARM

Peter Flynn

TUGDboat, Volume 37 (2016), No. 3

But most likely, the designer wanted the lines to get
shorter so that they followed the curvature of the
label.

SEMI-FIRM CHEESE
BEECH-SMOKED
ON THE FARM

Three lines was probably too many, but I still think
they made a mistake putting vanity of the design
above the usability of the text.

SEMI FIRM CHEESE BEECH
SMOKED ON THE FARM

Figure 2: Poorly-broken lines in a description

References

[1] American Psychological Association. Publication
Manual of the American Psychological Association.
Technical report, APA, Washington, DC, Jan 2010.

[2] Peter Flynn. Typographers’ Inn— Formatting
and centering. TUGboat, 33(1):8-9, Jan 2012.
http://tug.org/TUGboat/tb33-1/tb103inn. pdf.

[3] Donald E. Knuth. The TEX Logo in Various
Fonts. TUGboat, 7(2):101, Jan 1986. http:
//tug.org/TUGboat/tb07-2/tb15knutlogo.pdf.

[4] Grzegorz Murzynowski. ITEX vs. WTEX —a
modification of the logo. TUGboat, 29(1):180,
Jan 2008. 17th European TEX Conference
(EuroBachoTEX), Bachotek, Poland. CSTUG,
GUST. http://tug.org/TUGboat/tb29-1/
tb91lmurzynowski-logo.pdf.

[5] Jacek Ruzyczka. texlogos.sty: ITEX package
for I¥TEX logos. http://ctan.org/pkg/texlogos,
Jan 2016.

[6] Herbert VoR. Re: XeLaTeX /biblatex -
anything missing? comp.text.tex, Dec 2015.
debbbaFddkaUl1@mid.uni-berlin.de.

¢ Peter Flynn
Textual Therapy Division,
Silmaril Consultants
Cork, Ireland
Phone: 353 86 824 5333
peter (at) silmaril dot ie
http://blogs.silmaril.ie/peter

TUGDboat, Volume 37 (2016), No. 3

LuaTgX version 1.0.0
Hans Hagen

1 The release

After some ten years of development and testing, on
September 9, 2016, we released LuaTgX 1.0.0! It
happened at the tenth meeting of the ConTEXt users
and developers group in the Netherlands.

Instead of staying below one and ending up with
versions like 0.99.1234, we decided that the moment
was there to show the TEX audience that LuaTgX is
stable enough to lose its beta status. Although func-
tionality has evolved and sometimes been replaced,
we have been using LuaTEX ourselves in production
right from the start. Of course there are bugs and
for sure we will fix them.

Our main objective was and still is to provide a
variant of TEX that permits user extensions without
the need to adapt the inner workings. We did add
a few things here and there but they mostly relate
to opening up the inner parts and/or the wish to
influence some hard-coded behaviour. Via Lua we
managed to support modern functionality without
bloating the code or adding more and more depen-
dencies on foreign code. In the process a stable and
flexible MetaPost library became part of the engine.

The functionality as present now will stay. We
might open up some more parts, we will stepwise
clean up the code base while staying as close as possi-
ble to the Knuthian original, we will try to document
bits and pieces. We might also experiment a bit
with better isolation of the backend, and simplify
some internals. For that we can use the experimental
version but if we diverge too much we may need to
give that another name.

We want to thank all those who have tested the
betas and helped to make LuaTEX better.

Hans Hagen
Hartmut Henkel
Taco Hoekwater
Luigi Scarso

267

2 The past

Originally we planned to release the first version a few
years ago but our ambitions didn’t work out well with
that schedule so we finally took a decade to get there.
For the record it is good to summarize what happened
during those years.

e Around 2005, after we talked a bit about extend-
ing TEX in a flexible way and Hartmut added the
Lua scripting language to pdfTEX as an experiment.
This add-on was inspired by the Lua extension to
the SciTE editor that I (still) use.

e At that time one could query counter registers and
box dimensions and print strings to the TEX input
buffer.

e The Oriental TEX project then made it possible to
go forward and come up with a complete interface.
For this, Taco converted the code base from Pascal
to C, a quite impressive effort.

e We spent more than a year intensively discussing,
testing and implementing the interface between TEX
and Lua. Many binaries and lots of test code were
flying between Taco and my machine as we pro-
gressed and decided what directions to go. These
were really interesting times.

e In successive years we polished and extended things;
in recent years, we cleaned up interfaces, polished
more code, filled in gaps and reached the point where
we were more or less satisfied.

e The core is still traditional TEX, but has been ex-
tended with pdfTEX protrusion and expansion (re-
worked) and directional features from Aleph (cleaned
up). We did add some extensions (in e-TEX fashion)
but removed most of the ones that we inherited from
pdfTEX because Lua could do better.

e The backend and extension interfaces are now mostly
separated and although we don’t expect to add more
backends, it makes the code somewhat cleaner be-
cause all kinds of PDF-related issues are no longer
mixed with front-end mechanisms.

e The font subsystem is no longer limited to 8-bit
fonts. It must be noted that for instance Open-
Type support is done in Lua, which provides a lot of
flexibility. This also serves as an example of exten-
sibility. A small TEX core, independent of libraries,
was definitely an objective and it works out well.

e The (rewritten but compatible) hyphenation machin-
ery can use runtime loaded (and extended) patterns.
There are a few extensions and of course one can
revert to Lua for more.

e Already at an early stage, hyphenation, ligaturing
and kerning were separated, which was one step
in adding callbacks to nearly every stage in the
typesetting process.

e Math supports wide (more than 8-bit) characters
too so that one can implement Unicode math easily.
The machinery has OpenType math code paths
because there are some fundamental differences with
traditional TEX math fonts.

LuaTgX version 1.0.0

268

e Although the kpse library is still the default inter-
face to the file system, all in- and output can be
controlled and intercepted, for instance for input
filtering or re-encoding on the fly.

e The token scanner has been opened up so that one
can write (simple) parsers. Experimental intercep-
tion code didn’t prove to be useful so that interface
has been dropped. We kept it simple and efficient.

e During callbacks related to the node lists, individual
nodes can be accessed and manipulated at will. Of
course one needs to know a bit about the internals
and not mess up the lists to the extent that TEX
will choke on it: things that ‘can’t happen’ now
can. Most of the original documentation of the
code by Don Knuth still applies (which was another
objective) but of course directional support and such
go beyond that. And it’s surprisingly fast.

e Images and reusable boxes are now native nodes;
they travel through the system as special kinds of
rules instead of whatsits with dimensions. Users
can define their own rule types too.

There is more to say but much has been reported
already in articles in this and other journals. In the Con-
TEXt distribution there are four documents describing
aspects of the development and choices we have made
(mkiv.pdf, hybrid.pdf, about.pdf and still.pdf) and
we keep writing (onandon.pdf). One thing will hopefully
be clear by now: the choice of Lua was a good one.

3 The future

The project is driven by ConTEXt users and ConTEXt
development which is why we found it proper to release
version one at the tenth meeting. Right from the start
ConTEXt supported LuaTEX and this means that most
mechanisms have been tested in production. There is
some risk in this as users then are always forced to
update the binary with the macros but the ConTEXt
garden provides easy ways to deal with this. In fact,
most users switched to the new engine pretty soon after
we started rewriting ConTEXt. We greatly appreciate
their patience.

Raw performance of LuaTgX is of course less than
8-bit pdfTEX but in practice and on modern machines
LuaTgX behaves well. In fact, many mechanisms, like
native XML handling and MetaPost processing are way
faster in ConTEXt MKIV then in the now frozen MKII
version. Given the fact that we’re using Unicode and
more complex fonts, one can safely assume that in Con-
TEXt the overhead due to delegation to Lua has no real
drawbacks.

We will continue development, but functionality
will stay stable within versions. The code will be further
streamlined and documented. We deliberately postponed
some cleanup till after version one. And of course bugs
will be fixed. We hope to stepwise improve the manual
too. So what will the future bring?

Hans Hagen

TUGhboat, Volume 37 (2016), No. 3

e So far we managed to avoid extensions beyond those
needed as part of the opening up. We stick close to
Don Knuth’s concepts so that existing documenta-
tion still conceptually applies. We keep our promise
of not adding to the core. But, we might open up
(make configurable) some of the remaining hard-
coded properties.

e Some node lists could use a bit of (non-critical)
cleanup, for instance passive nodes, localpar nodes,
and other leftovers. Maybe we should add missing
left /right skips.

e We can optimize some callback resolution (more
direct) so that we can gain a little performance.

e Inheritance of attributes needs checking and maybe
we need to permit some more explicit settings.

e We will move some more code to the API file and
plan to update the global PDF and Lua states con-
sistently (there are some leftovers from the early
days). Some C macros can probably go away.

e We can possibly minimize some return values of
Lua functions and only return nil when we expect
multiple calls in line. This might be more efficient.
We plan to look into Lua 5.3 but we might well
conclude that it’s better to stick to 5.2.

e We have to figure out a way to deal with literals in
virtual characters. This relates to font switching in
the result.

e Maybe we will reorganize some code so that docu-
mentation is easier. We hope to continue to stick
close to what Don Knuth documents.

e We can clean up and isolate the backend a bit more.
We also could add a few more options to delegate
actions to Lua and we should get rid of some historic
PDF artifacts.

Of course we have some ideas of what to do next
but these don’t need an extension to the engine because
we can use Lua for that.

In that perspective it is tempting to think of a
(lean and mean) LuaTEX variant for ConTEXt: a close to
traditional core with many hooks and a minimal number
of dependencies on libraries and such. In a ConTEXt setup
a only user needs LuaTEX because all (workflow) related
scripts are written in Lua and if additional functionality
(like graphic conversions) is needed, it can easily be
provided by external programs.

‘We will not touch the stable version unless it con-
cerns bug fixes and/or simple extensions, but we will
keep exposing ConTEXt users to the experimental branch
(as we do now). Of course users of other macro packages
can pick up binaries from the compile farm that has been
set up by Mojca and friends.

So ... be prepared.

¢ Hans Hagen
Pragma ADE
http://pragma-ade.com

TUGboat, Volume 37 (2016), No. 3

LuaTgX 0.82 OpenType math enhancements
Hans Hagen

Abstract

LuaTgX 0.82 (and later) have had improvements in
OpenType math typesetting.

1 Introduction

When TEX typesets mathematics it makes some as-
sumptions about the properties of fonts and dimen-
sions of glyphs. Due to practical limitations in the
traditional eight-bit fonts, such as the number of
available characters in a font and a limited number
of heights and depths, some juggling takes place.
For instance, TEX sometimes uses dimensions as a
signal to treat some characters as special. This is
not a problem as long as one knows how to make
a font and in practice that was done by looking at
the properties of Computer Modern to implement
similar shapes. After all, there are not that many
math fonts around and basically there is only one
engine that can deal with them properly.

However, when Microsoft set the standard for
OpenType math fonts it also steered the direction
of their use in rendering mathematics. This means
that the LuaTgEX engine, which handles OpenType
fonts, has to implement some alternative code paths.
At the start, this involved a bit of gambling because
there was no real specification; since then we now
have a better picture. One of the more complex
changes that took place is in the way italic correction
is applied. A dirty way out of this dilemma would be
to turn the math fonts into virtual ones that match
traditional TEX properties, but this would not be a
nice solution.

It must be noted that in the process of imple-
menting support for the new fonts, Taco (Hoekwater)
turned some noad types (see below) into a generic
noad with a subtype. This simplified the transition.
At the same time, a lot of detailed control was added
in the way successive characters are spaced.

In LuaTgEX before 0.85, the italic correction was
always added when a character got boxed (a fre-
quently used preparation in the math builder). Now
this is only done for the traditional fonts because,
concerning italic correction, the OpenType standard
states:!

1. When a run of slanted characters is followed by
a straight character (such as an operator or a
delimiter), the italic correction of the last glyph
is added to its advance width.

I Recently version 1.8 has been published on the Microsoft
website.

269

2. When positioning limits on an N-ary operator
(e.g., integral sign), the horizontal position of
the upper limit is moved to the right by half of
the italic correction, while the position of the
lower limit is moved to the left by the same
distance.

3. When positioning superscripts and subscripts,
their default horizontal positions are also differ-
ent by the amount of the italic correction of the
preceding glyph.

And, with respect to kerning;:

4. Set the default horizontal position for the su-
perscript as shifted relative to the position of
the subscript by the italic correction of the base
glyph.

I must admit that when the first implementa-
tion showed up, my natural reaction to unexpected
behaviour was just to compensate for it. One such so-
lution was simply not to pass the italic correction to
the engine and deal with it in Lua. In practice, that
didn’t work well for all cases; one reason was that the
engine saw the combination of old fonts as a new one
and followed a mixed code path.? Another approach
I tried was a mix of manipulated italic values and
Lua, but finally, as specifications settled I decided
to leave it to the engine completely, if only because
successive versions of LuaTgX behaved much better.

So, as we were closing in on the first stable re-
lease of LuaTEX (1.0.0 was released on September 27,
2016; this note was mostly written in the early part
of 2016), I decided to fix the pending issues and sat
down to look at the math-related code. I must admit
that I had never looked in depth into that part of
the machinery. In the next sections I will discuss
some of the outcomes of this exercise.

I will also discuss some extensions that have been
on the agenda for years. They are rather generic
and handy, but I must also admit that the MkIV
code related to math has so many options to control
rendering that I'm not sure if they will ever be used
in ConTEXt. Nevertheless, these generic extensions
fit well into the set of basic features of LuaTEX.

2 Italic correction

As stated above, the normal code path included
italic correction in all the math boxes made. This
meant that, in some places, the correction had to
be removed and/or moved to another place in the
chain. This is a natural side effect of the fact that
TEX runs over the intermediate list of math nodes

2 ConTEXt employed Unicode math right from the start
of LuaTgX.

LuaTgX 0.82 OpenType math enhancements

270

2 22

w2 W20

NN

H@ Ho Jff

TUGhboat, Volume 37 (2016), No. 3

Figure 1: Italic correction examples (1):
superscripts shifted right and subscripts left.

BTl Y

L4 2y J W2 £

£

NN

Figure 2: Italic correction examples (2):
plain integral vs. integral with limits

(noads) and turns them into regular nodes, mostly
glyphs, kerns, glue and boxes.

The complication is not so much the italic cor-
rections themselves, because we could just continue
to do the same, but the fact that these corrections
are to be interpreted differently in case of integrals.
There, the problem is that we have to (kind of) look
backward at what is done in order to determine what
italic corrections are to be applied.

The original solution was to keep track of the
applied correction via variables but that still made
some analysis necessary. In the new implementation,
more information is stored in the processed noads.
This is a logical choice given that we have already
added other information. It also makes it possible to
fix cases that will (for sure) show up in the future.

In figure 1 we show two examples of inline italic
correction. The superscripts are shifted to the right
and the subscripts to the left. In the case of an
integral sign, we need to move half the correction.
This is triggered by the \nolimits primitive. In fig-
ure 2 we show the difference between just an integral
character and one tagged as having limits.?

The amount of correction, if present at all, de-
pends on the font, and in this document we use
DejaVu math. Figure 3 shows a few variants. As
you can see, the amount of correction is highly font
dependent.

3 Vertical delimiters

When we go into display math, there is a good chance
that an integral has to be enlarged. The integral
sign in Unicode has slot 0x222B, so we can define a
bigger one as follows:
\def\standardint{\Umathchar "1 "0 "222B }
\def\wrappedint{\mathop{\Umathchar "1 "0 "222B}}
\def\biggerint{\mathop{

\Uleft height3ex depth3ex axis

3 We show some boxes so that you can get an idea what
TEX is doing. Essentially, TEX puts superscripts and sub-
scripts on top of each other with some kern in between and
then corrects the dimensions.

Hans Hagen

2 2] > D
ﬁ ,,,,, HHL J{»I%% ,,,,, H'fﬂﬁ‘ﬁ* ‘

2 2
;1? &agl ,,,,, &ﬂgj ‘,”J: ;F% ,,,,, H:!!E! ,,,,, H“ligg
[2 00 7 2 2
Y A H—-,sz """ H,ﬁg‘ R e Hiwwﬁg"”ﬂf"-{hj
2 I L2 F2 Fs F2
4 rr Al ar i/ — Limre LNy

lucida ot

Figure 3: Italic correction examples (3):
correction amounts are font-dependent.

\Udelimiter "O "O "222B \Uright .}}
\def\evenbiggerint{\mathop{

\Uleft height 6ex depth 6ex axis

\Udelimiter "O "O "222B \Uright .}}

The axis keyword will apply a shift up over the
size of the current styles math axis. We use this in
some examples as:

$
\displaystyle\standardint
\displaystyle\wrappedint “a_b\enspace
\displaystyle\biggerint “a_b\enspace
\displaystyle\evenbiggerint~a_b\enspace
$

“a_b\enspace

In figure 4 you can see some subtle differences.
The wrapped version doesn’t shift the superscript
and subscript. The reason is that the operator is
hidden in its own wrapper and the scripts attach
at an outer level. So, unless we start analyzing the
innermost noad and apply that to the outer, we
cannot know the shift. Such analyzing is asking
for problems: where do we stop and what slight
variations do we take into account? It’s better to be
predictable.

Another observation is that Latin Modern does
not provide (at least not yet) large integrals at all.

The following four cases are equivalent:

\Uleft height 3ex depth 3ex axis
\Udelimiter "O "O "222B
\Uright .

\Uleft .
\Uright height 3ex depth 3ex axis
\Udelimiter "O "O "222B

\Uleft
\Umiddle height 3ex depth 3ex axis

TUGboat, Volume 37 (2016), No. 3

271

=E$_§§

s

LA b

Eﬂ:ﬁ’:ﬂﬁ

v

b

Pt
Nikaral

=

St

=
e

]
ARTA
b |

11
i

Vs m

@E@
:

Figure 4: Comparison of integral variants (standard, wrapped, bigger, even bigger)
among fonts: TEX Gyre Pagella, Cambria, Latin Modern, and Lucida OT.

il
i

=
Eﬂ

k_

E
=
pm—
;_5
F_gg—ﬂ‘
Eﬂ

Figure 5: Cambria integrals, adaptive; axis left,
noaxis right.

il \

Figure 6: Cambria left parenthesis, adaptive;
axis left, noaxis right.

(aaq

e

P m—

—

\Udelimiter "0 "O "222B
\Uright

\Uleft

\Uniddle height 3ex depth 3ex axis
\Udelimiter "O "O "222B

\Uright

However, because this all looks a bit clumsy, we
now provide a new primitive:
\Uvextensible

height (dimension)

depth (dimension)

[nolaxis

exact

(delimiter)

The symbol to be constructed will have size
height plus depth. When an axis is specified, the
symbol will be shifted up, which is normally the case

il
mJi mli

axis exact

i

axis exact

=
—
—
—

Figure 7: Cambria integrals, with dimensions.

~
=N
—
_
~
~
=
—~
N

~
AN

\ \

axis exact

axis exact

Figure 8: Cambria left parenthesis, with dimensions.

for such symbols. The keyword exact will correct
the dimensions when no exact match is made, and
this can be the case as long as we use the stepwise
larger glyphs and before we end up using the com-
posed shapes. When no dimensions are specified, the
normal construction takes place and the only key-
word that can be used then is noaxis which keeps
the axis out of the calculations. After about a week
of experimenting and exploring options, this combi-
nation made most sense, read: no fuzzy heuristics
but predictable behaviour. After all, one might need
different solutions for different fonts or circumstances
and the applied logic (and expectations) can (and
will, for sure) differ per macro package. Figures 5-8
show some examples.

4 Horizontal delimiters

Horizontal extenders also have some new options. Al-
though one can achieve similar results with macros,
the following might look a bit more natural. Also,

LuaTgX 0.82 OpenType math enhancements

272

(default) = & & & R
i - - =T

left [< T <N < N < <
LG A S S

middle | & &8 =2 = = = Mm@ & o
DO O a8 B Bl e &

right [T < T <N < T < <
Lt dCa i e S S

Figure 9: Stepwise wider \Uhextensible with options
(Cambria).

(default)
left
middle

right

Figure 10: Stepwise wider \Udelimiterunder with
options (Cambria).

some properties are lost once the delimiter is con-
structed, so macros can become complex when trying
to determine the original dimensions involved.

We start with the new \Uhextensible primitive
that accepts a dimension. It’s just a variant of the
over and under delimiters with no content part.

\Uvextensible
height (dimension)
depth (dimension)
left | middle | right
(family)
(slot)

So for example you can say:
$\Uhextensible width 30pt 0 "2194$%

The left, middle and right keywords are only
interpreted when the requested size can’t be met
due to stepwise larger glyph selection (i.e., before we
start using arbitrary sizes made of snippets). Figure 9
shows what we get when we step from 2-20 points
by increments of 2 points in Cambria.

The dimensions and options can also be given
to the four primitives:

\Uoverdelimiter \Uunderdelimiter
\Udelimiterover \Udelimiterunder

Figure 10 shows what happens when the delimiter is
smaller than requested. The source for the samples
looks like this:

$\Udelimiterunder width 1pt 0 "2194
{\hbox{\strut !}}

Hans Hagen

TUGhboat, Volume 37 (2016), No. 3

Y800 Y900 Y1000 ¥1100 ¥1200 Y1300 ¥1400 ¥ 1500

xits - has variants

¥800 Y900 Y1000 Y1100 Y1200 Y1300 Y1400 Y1500

cambria - lacks variants

Y800 Y900 Y1000 Y1100 Y1200 Y1300 Y1400 Y1500

pagella - lacks variants

Figure 11: Using overlay in \Umathaccent.

When no dimension is given the keywords are
ignored as it makes no sense to mess with the exten-
sible in that case.

5 Accents

Many years ago, I observed that overlaying charac-
ters (which happens when we negate an operator
which has no composed negation glyph) didn’t al-
ways give nice results and, therefore, a tracker item
was created. When going over the todo list, I ran
across a suggested patch by Khaled Hosny that added
an overlay accent type. As the suggested solution
fits in with the other extensions, a variant has been
implemented.

The results definitely depend on the quality and
completeness of the font, so here we will use XITS.
The placement of an overlay also depends on the
top accent shift as specified in the font for the used
glyph. Instead of a fixed criterion for trying to find
the best match, an additional fraction (numerator)
parameter can be specified. A value of 800 means
that the target width is 800,/1000.

The \Umathaccent command now has the fol-
lowing syntax:

\Umathaccent

[top | bottom | overlay]

[fixed]

[fraction (number)]

(delimiter)

{{content)}

When we have an overlay, the fraction concerns
the height; otherwise it concerns the width of the
nucleus. In both cases, it is only applied when search-
ing for stepwise larger glyphs, as extensibles are not
influenced. An example of a specification is:
\Umathaccent

overlay "O "O "0338

fraction 950

{\Umathchar"1"0"2211}

Figure 11 shows what we get when we use dif-
ferent fractions (from 800 up to 1500 with a step of
100). We see that \overlay is not always useful.

Normally you can forget about the factor be-
cause overlays make most sense for inline math, which

TUGboat, Volume 37 (2016), No. 3 273
r+aofy+x x4+ 1Ys+z x4 () +z x4+ (YY) +a
exact r+ Y +z z+ Yotz x4+ (%) +z x4+ (Yh)+a
noaxis r+afp+x T4+ 12+x x4+ (afp)+a x+ (1)2) +2
exact noaxis z+ah+ax x4+ lh+zx x4+ (ah)+z x+ (k) +a

Figure 12: Skewed fraction results in Latin Modern.

uses relatively small glyphs, so we can get X X XXX
with the following code:

$\Umathaccent overlay "O "O "0338 {x}$
$\Umathaccent overlay "O "O "0338 {\tf x}$
$\Umathaccent overlay "O "0 "0338 {\tf xxx}$

A normal accent can also be influenced by fraction:

—t— —F e, e, r— — | p——
axb axb axb axb axb
6 Fractions

A normal fraction has a reasonable thick rule but as
soon as you make it bigger you will notice a peculiar
effect:

)))) -

1pt 2pt 3pt 4pt Spt

Such a fraction is specified as:
x + { {a} \abovewithdelims () 5pt {b} }
A new keyword exact avoids the excessive spacing:

x + { {a} \abovewithdelims () exact 5pt {b} }

Now we get:
x+[2] x+[£] x+[2] x+[=] x+(=
b b b b b
1pt 2pt 3pt 4pt 5pt

One way to get consistent spacing in such frac-
tions is to use struts:

x + { {\strut a} \abovewithdelims () exact 5pt
{\strut b} }

Now we get:

a a a a a
x+|=| x+|[=] x+[=] x+[=] x+|m

b b b b b

1pt 2pt 3pt 4pt S5pt

Yet another way to increase the distance be-
tween the rule and text a bit is:
\Unathfractionnumvgap \displaystyledpt
\Umathfractiondenomvgap\displaystyle4dpt

This looks quite consistent:

())) 6)

X+ |=] x+|=| x+|=] x+|=] x+|m

b b b b b
1pt 2pt 3pt 4pt 5pt

Here we use code like:

$\displaystyle x +
{{a} \abovewithdelims() exact 2pt {b}}$

Using struts, it is best to zero the gap:

)))) -8

1pt 2pt 3pt 4pt S5pt

Here we use code like:

$\displaystyle x + {{\strut a} \abovewithdelims()
exact 2pt {\strut b}}$

7 Skewed fractions

The math parameter table contains values specify-
ing horizontal and vertical gaps for skewed fractions.
Some guessing is needed in order to implement some-
thing that uses them, so we now provide a primitive
similar to the other fraction related ones but with a
few options that one can use to influence the render-
ing. Of course, a user can mess around directly
with the parameters \Umathskewedfractionhgap
and \Umathskewedfractionvgap.
The syntax used here is:
{ {1} \Uskewed / (options) {2} }
{ {1} \Uskewedwithdelims / () (options) {2} }
The options can be noaxis and exact, a com-
bination of them or just nothing. By default we add
half the axis to the shifts and also by default we
zero the width of the middle character. For Latin
Modern, the results are shown in figure 12.

8 Side effects

Not all bugs reported as such are really bugs. Here
is one that came from a misunderstanding: In Eijk-
hout’s TEX by Topic, the rules for handling styles in
scripts are described as follows:
e In any style superscripts and subscripts are
taken from the next smaller style. Exception:
in display style they are taken in script style.

LuaTgX 0.82 OpenType math enhancements

274

e Subscripts are always in the cramped variant of
the style; superscripts are only cramped if the
original style was cramped.

e In an ..\over.. formula in any style the nu-
merator and denominator are taken from the
next smaller style.

e The denominator is always in cramped style;
the numerator is only in cramped style if the
original style was cramped.

e Formulas under a \sqrt or \overline are in
cramped style.

In LuaTEX, one can set the styles in more detail,
which means that you sometimes have to set both
normal and cramped styles to get the effect you want.
If we force styles in the script using \scriptstyle
and \crampedscriptstyle we get the following (all
render the same):

default bXZ3%
script XX
crampedscript b¥ZX¥

This is coded as follows:
$b_{x=xx}"{x=xx}$
$b_{\scriptstyle x=xx}"{\scriptstyle x=xx}$
$b_{\crampedscriptstyle x=xx}
“{\crampedscriptstyle x=xx}$
Now we set the following parameters:

\Umathordrelspacing\scriptstyle=30mu
\Unathordordspacing\scriptstyle=30mu

This gives:
default bY_ .~ X
script by ¥ X
crampedscript b¥ZX%

Since the result is not what is expected (vis-
ually), we should say:
\Umathordrelspacing\scriptstyle=30mu
\Unathordordspacing\scriptstyle=30mu
\Unathordrelspacing\crampedscriptstyle=30mu
\Umathordordspacing\crampedscriptstyle=30mu

Now we get:

default by ¥ X
script by ¥ X
crampedscript b} I %

Hans Hagen

TUGhboat, Volume 37 (2016), No. 3

mode down up
0 dynamic dynamic ‘CHZ +CH! + CH%
1 d u CH, + CH} + CH3
2 s u CH, + CHf + CHJ
3 s u+s—d CH,+CH;j +CH,
4 d+(s—d)2 u+(s—d)2 CH,+CHj +CH;
5 d u+s—d CH,+CH} +CH;

CH, + CH} + CH3 CH, + CH} + CH3 CH, + CHJ + CHZ
0 1 2

CH, + CH} + CH2 (CH, + CH} + CHJ CH, + CH} + CH3
3 4 5

Figure 13: The effect of setting \mathscriptsmode.

9 Fixed scripts

We have three parameters that are used for anchoring
superscripts and subscripts, alone or in combinations.

d \Umathsubshiftdown
u \Umathsupshiftup
s \Umathsubsupshiftdown

When we set \mathscriptsmode to a value other
than zero, these are used for calculating fixed po-
sitions. This is something that is needed in, for
instance, chemical equations. You can manipulate
the mentioned variables to achieve different effects,
and the specifications are shown in figure 13, with
enlarged examples below the table.

10 Remark

The changes that we have made are hopefully not
too intrusive. Instead of extending existing com-
mands, new ones were introduced so that compati-
bility should not be a significant problem. To some
extent, these extensions violate the principle that
extensions should be done in Lua, but TEX being
a math renderer and OpenType replacing old font
technology, we felt that we should make an exception
here. Hopefully, not too many bugs were introduced.

¢ Hans Hagen
Pragma ADE
http://pragma-ade.com

TUGboat, Volume 37 (2016), No. 3

Introducing LaTeX Base
Gareth Aye

LaTeX Base (https://latexbase.com) is a web-
based IXTEX editor that provides many useful fea-
tures such as

live, compile-as-you-type document preview,
one-click document publishing and sharing,
offline mode,

integrations with file storage services like Google
Drive and Dropbox,

syntax highlighting,
e and familiar keyboard shortcuts for Vim and
Emacs users.

This article focuses on the technical side of the inter-
actions between LaTeX Base and IXTEX. However,
we're eager to hear from users about their experi-
ences using the service; please feel free to reach out
to us at team@latexbase.com with suggestions or if
you’d like to beta test new features. Many features
do require a premium membership.

Figure 1 shows the first page presented after
loading, with simple LaTeX source on the left and
the preview output on the right.

1 Offline mode

One unique aspect of LaTeX Base amongst web ap-
plications is that it can be used with or without an
Internet connection! This is possible thanks to “ser-
vice workers”: a recent development in the web plat-
form that allows applications to intercept and cache
network requests. That means that you can write
your papers on a plane, in a park, or anywhere in
between. While LaTeX Base isn’t the first web-based
IATEX editor, it is the only one with this capability.
If you’re a programmer as well as a ITEX en-
thusiast, you may suspect that there’s a bit more
to the story. Service workers allow us to cache the
editor, but (I#)TEX doesn’t run in the browser (it’s
ordinarily compiled to machine code). How can La-
TeX Base compile documents without an Internet
connection if it’s limited to executing JavaScript?

2 Enter Emscripten

The answer lies in a fascinating tool that came out
of Mozilla’s research group a few years ago called Em-
scripten (wikipedia.org/wiki/Emscripten), which
compiles LLVM bytecode to JavaScript. Many code-
bases such as Unreal Engine, Bullet Physics, and
the Lua programming language (which appears to
be of some interest to the greater IXTEX community)
have been ported from C/C++ to JavaScript using
Emscripten. In building LaTeX Base, pdflatex was

275

compiled to LLVM bytecode using clang and from
LLVM to JavaScript using Emscripten.

Whereas similar services send users’ documents
to servers with installed M TEX compilers and pack-
ages, LaTeX Base sends the compiler and packages
to the browser. In addition to making offline mode
possible, compiling in the browser also allows LaTeX
Base to compile documents quickly and often—so
much so that we can offer a real-time preview instead
of requiring the user to compile manually.

3 Packages

Our design goal when considering the issue of pack-
ages was to make a large number of packages (eventu-
ally anything hosted on the CTAN registry) available
to users while only ever downloading the packages
needed to compile their documents. What we came
up with is lazy package loading. Every time you
include a new package in a document with LaTeX
Base, you’ll download it from our servers. When you
use that package in the future it’ll be cached in your
browser. For this reason, using packages that a user
hasn’t previously used while offline will not work.
You can also expect compiling to take slightly longer
the very first time you use a package.

For the time being, we only support a small
number (around 25) of the most commonly used
packages, but our roadmap includes extending sup-
port to arbitrary hosted packages.

4 Images

The only way that our implementation of IATEX
differs from a standard compiler is in how we han-
dle external files (like images). We don’t currently
give users direct access to the virtual Emscripten
filesystem that IXTEX sees when it’s running on
https://latexbase.com. Instead, we support call-
ing \includegraphics with an image url that we’ll
fetch and preload in Emscripten’s virtual filesys-
tem. When you download your documents, we au-
tomatically convert these url identifiers to simple
file names and bundle the downloaded images so
that no changes are necessary to compile documents
elsewhere.

Our roadmap also includes allowing users to
upload images and other local resources rather than
supplying urls.

5 Conclusion

Web applications are great. They allow users to
use software without permanently installing it. The
abilities and permissions they’re granted by default
are very limited compared to native applications, so

Introducing LaTeX Base

276

TUGDboat, Volume 37 (2016), No. 3

DOCUMENT NAME

Getting started.tex

Zzal> -

LATEX

\documentclass[12pt]{article}
\usepackage{amsmath}
\usepackage{hyperref}
\usepackage{graphicx}
\title{Getting started}
\date{\ today}

- \begin{document}
\maketitle

(0 AR SV I RV

11 Welcome to LaTeX Base, a web-based LaTeX editor with live document preview!
12 Here are some things to try --

14 - \begin{itemize}

15 \item edit the document name above by typing in the input field

16 \item make changes to the body on the left and see the preview update
17 \item check the compiler output by clicking the log button

18 \item format a mathematical expression like

19 S\Frac{1}{2\pi}\int_{-\infty}*{\infty}er{-\Frac{x*2}{2}}dx§

20 \item download the document as a pdf by selecting Save To §=§ Local
Filesystem

21 (or by clicking the cloud download button)

22 \item include an image by url like this one

23 \hspace*{0.5in}

24 \includegraphics{https://latexbase.com/images /raptor.jpg}

25 \item export your work to Dropbox or Google Drive
26 \end{itemize}

27

28 Editing single page documents online is free. View premium plans and
pricing at

29 \url{https://latexbase.com/static/pricing} to enjoy unlimited document
editing

38 (online or offline) and a variety of other useful features. Thanks for
trying

31 out our service and don't hesitate to get in touch at
\url{support@latexbase.com}!

32

33 \end{document}

34

IMPORT ¥ EXPORT ¥ LANGUAGE™ OVERVIEW PRICING SIGNUP
WORDS 135
|
PREVIEW 1/1
=
SRR :
Getting started
September 11, 2016

Welcome to LaTeX Base, a web-basad LaTeX editor with Tive document
preview! Here are some things to try

« cdit the document name above by typing in the input field

o make changes o the body on the left and see the preview update

o clieck the compiler output by clicking the log button

o format a mathematical exprossion like L [o~ d

« dovinload the document asa pdf by selecting Save To > Local Filesystem

(or by clicking the clow download button)

« include an image by wlike this one

« export your work to Dropbox or Google Drive

Editing single page documents online i free. View premium plans and
pricing at https: //latexbase .com/static/pricing to enjoy u ed document
editing (online or offfine) and a variety of other wseful features. Thanks
for trying out our service and don’t hesitate to get in touch at lsupport®

latexbase com!

Figure 1: Getting Started page of LaTeX Base.

they are preferable from a practical security perspec-
tive. They’re built on open standards, so they run
anywhere and don’t need to be sanctioned by any
organization or app store. Using cutting edge tools,
LaTeX Base is able to offer many advanced capabili-
ties right in the browser. In this author’s (absolutely
biased) opinion, it’s on its way to becoming the best
way to write INTEX documents.

In closing, I want to recognize Mozilla, not only
for their tremendous standards work that’s made the
web the wonderful thing it is today, but also for their
work on components that made LaTeX Base possible
including Ace, Emscripten, PDF.js, and localforage.

Gareth Aye

About the author

Gareth is a New York native living in Portland, OR,
with his wife Alison and toddler Albee. He received
a BA in Computer Science with a Math minor from
Middlebury College and worked in software develop-
ment, most recently as an engineering lead at Mozilla,
before building LaTeX Base. In his free time, he en-
joys playing jazz piano and chess.

o Gareth Aye
https://latexbase.com

TUGDboat, Volume 37 (2016), No. 3

Computer Modern Roman fonts for ebooks

Martin Ruckert

How it all started

Last year on February 19, I looked at the first ver-
sion of my first ebook and I was shocked. I had just
finished the printed version of “The MMIX Supple-
ment for The Art of Computer Programming” [5]
and Donald Knuth had provided extensive help to
make its appearance match the books in his series.
Donald Knuth had developed TEX, METAFONT, and
the Computer Modern Roman (CMR) type faces es-
pecially to be able to typeset “The Art of Computer
Programming” [3] in the best possible quality. But
when I looked at my newly bought Kindle Paper-
white—not the most expensive, but still a decent
ebook reader—what I saw (Figure 1) did not re-
semble even remotely what you would expect from
TEX and friends.

I studied the specification of the epub format
and found that TrueType or OpenType fonts should
work with it. My first attempt with the TrueType
versions of the CMR fonts failed because I had over-
looked the few instances where the characters in the
book were not pure ASCII. So I switched to the
Computer Modern Unicode (CMU) version of the
fonts [4], and mailed the publisher the first long list
of change requests including the request to use these
fonts. When I received the next version of my ebook,
Dayna Isley, the digital development editor respon-
sible for the ebook, wrote: “I’'m finding that embed-
ded fonts are not well supported across Kindle apps
and devices. In most cases, the fonts default to the
standard Kindle fonts. Kindle for PC and Paper-
white support embedded fonts, but the body font is
difficult to read (very faint) and therefore not effec-
tive.” And see for yourself (Figure 2), she was right.

My schedule was tight, I was teaching 18 credit
hours that semester, and aside from the fonts there
were more and bigger problems to be solved before
the ebook could be released. So we settled for a se-
lection of standard ebook fonts and moved on. The
final ebook uses Baskerville fonts for the main text
body. It is no match for the printed version, but
it was a good compromise given the limitations of
time and technique.

Now, a year later, I decided to get back to the
problem of ebook production with more time to my
disposal: 1 plan to use my sabbatical in 2017 to
build a prototype ebook renderer that uses the al-
gorithms of TEX for ebook layout and a front-end

277

The multiplicative hashing scheme is equally easy
to do, but it is slightly harder to describe because we
must imagine ourselves working with fractions
instead of with integers. Let w be the word size of the
computer, so that w is usually 232 or 264 for MMIX;
we can regard an integer A as the fraction A/w if we
imagine the radix point to be at the left of the word.
The method is to choose some integer constant A
relatively prime to w, and to let

h(K) {.\/ (("A‘) - 1>J (4)
w

Fig. 1: First version of my ebook

The multiplicative hashing scheme is equally easy
to do. but it is \l'lg'llllv\' harder to describe because we
must imagine ourselves working with fractions instead
of with integers. Let & be the word size of the
computer, so that e is usually 232 or 264 for MMIX: we
can regard an integer 4 as the fraction A w if we
imagine the radix |nliIH to be at the left of the word.
The method is to choose some integer constant 4
relatively prime to «. and to let

| \
I (| I

Fig. 2: Second version of my ebook

that translates TEX input to an intermediate re-
presentation that can be used by the new rendering
engine. In preparation for this project, I started to
identify those subproblems which I would need to
ignore in order to have a reasonable sized project.
This brought me back to investigating the font issue.

ebook versus Preview

One of the good programs to view TEX output on-
screen is YAP, which comes with MiKTEX [6]. YAP
is an acronym standing for Yet Another Previewer.
The word “previewer” indicates that it is the pur-
pose of the program to give the user an advance
view, an approximation of what one should expect to
see on paper. The paper version is the “real thing”
and the electronic version is only an intermediate
step in its production. An indication of this attitude
is the selection of fonts. In its default configuration,
YAP uses METAFONT in 1jfour mode to generate
bitmap fonts. These bitmaps are optimized for a
(once) popular 600 dpi laser printer. YAP scales
them down to display the TEX output on the low
resolution computer screen, and if you reduce down-
scaling, you can see precisely, down to the last pixel,
what you are supposed to get on paper.

The situation has changed significantly with the
introduction of ebooks. Now books are produced

Computer Modern Roman fonts for ebooks

278

specifically for reading on some kind of computer
screen. The electronic rendering is no longer an ap-
proximation of something yet to come, it is the final
product.

The built-in font rendering software (and hard-
ware) of computers usually does not support META-
FONT generated bitmapped fonts. It supports True-
Type or OpenType outline fonts. These are now the
de facto standards. The emerging universal stan-
dard in character encoding is, perhaps due to the
World Wide Web, the UTF-8 encoding. Outline
fonts can be scaled to any resolution desired, but
as we will shortly see, this is not sufficient for opti-
mal on-screen reading.

Rendering Computer Modern Roman fonts

To investigate the rendering of the available CMR
fonts on current electronic devices, a reference ren-
dering is needed. I choose (somewhat but not com-
pletely arbitrarily) my personal copy of The META-
FONTbook and picked the second paragraph of the
preface [2, page v]. It reads, typeset below in 10pt
Computer Modern Roman as in the printed book:
“ Modern printing equipment based on raster
lines—in which metal “type” has been replaced by
purely combinatorial patterns of zeroes and ones
that specify the desired position of ink in a discrete
way — makes mathematics and computer science in-
creasingly relevant to printing. We now have the
ability to give a completely precise definition of let-
ter shapes that will produce essentially equivalent
results on all raster-based machines. Moreover, the
shapes can be defined in terms of variable param-
eters; computers can “draw” new fonts of charac-
ters in seconds, making it possible for designers to
perform valuable experiments that were previously
unthinkable.”

I then took a photograph of this paragraph from
the book (Figure 3) which I will use as my refer-
ence for the Computer Modern Roman 10pt font
from now on. Apart from the plain text, the pho-
tograph contains an insert with the first two let-
ters magnified six times. In comparing the different
font renderings, one should pay special attention to
the thickness of the different strokes of the “M” and
the rounding of the “0”. As a first observation you
might notice that the font as shown in figure 3 ap-
pears to be much heavier than the same font in the
previous paragraph — depending of course on how
you printed or rendered this article in order to read
it. While it is impossible for me to avoid the effects
that your rendering software and your output device

Martin Ruckert

TUGDboat, Volume 37 (2016), No. 3

Modern printing equipment based on raster
has been replaced by purely combinatorial patterns
ify the desired position of ink in a discrete way —n
puter science increasingly relevant to printing. We 1
completely precise definition of letter shapes that w

alent results on all raster-base M

in terms of variable paramete
in seconds, making it possible
Fig. 3: From The METAFONTbook

were previously unthinkable.

Modern printing equipment based on raster
has been replaced by purely combinatorial patterns
ify the desired position of ink in a discrete way—n
puter science increasingly relevant to printing. We n

Mo

Fig. 4: CMU font, ebook

completely precise definition of
alent results on all raster-based
in terms of variable parameters:
seconds. making it possible for
were previously unthinkable.

Modern printing equipment based on raster
has been replaced by purely combinatorial patterns
ity the desired position of ink in a discrete way —n
puter science increasingly relevant to printing. We n

('1)111];](*1('1‘\' 1)1'('('1.(' definition of letter rll:l]n« that w

:\ I()
were previously unthinkable.

Fig. 5: LM font, ebook

alent results on all raster-based
in terms of variable parameters:

seconds, making it possible for

will have on the appearance of fonts, I can reason-
ably hope that the reproduction of the photographs
shown in this article preserve the relative differences
which I observed on my output devices.

I have tried my best to take all the photographs
in this article under identical conditions, for the sake
of comparison. Using a good camera (Canon EOS
60 D, 18Mpixel, 18mm-135mm lens, 1/15s, 5300K,
IS0320, 56mm focal length, 16 aperture), I took
all photographs under identical light conditions and
post-processed the raw images in the same way, try-
ing to reproduce the differences in appearance as
well as possible.

TrueType, OpenType, and Unicode fonts

As a first example, lets look at the rendering on my
ebook reader (Kindle Paperwhite 2, 1024x758 pix-
els, 212dpi) using the OpenType Computer Modern

TUGDboat, Volume 37 (2016), No. 3

Modern printing equipment based on raster
has been replaced by purely combinatorial patterns
ify the desired position of ink in a discrete way 1
puter science increasingly relevant to printing. We n
completely precise definition of lattr=shanas thot =

alent results on all raster-based
in terms of variable parameters:
seconds, making it possible for O
were previously unthinkable.

Fig. 6: CMU Font, smart-phone
Modern printing equipment based on raster
has been replaced by purely combinatorial patterns
ify the desired position of ink in a discrete way—n
We 1

completely precise definition of letter shapes that w
i}
. fi {u}

Modern printing equipment based on raster

puter science increasingly relevant to printing.
alent results on all raster-base |
in terms of variable paramete
in seconds. making it possible

were previously nnthinkable.

Fig. 7: CMU Font, laptop

has been replaced by purely combinatorial patterns
ify the desired position of ink in a discrete way—m
puter science increa.singly relevant to printing. We r
completely precise definition of letter sha.nes tha.t w
alent results on all raster-base |
in terms of variable pa,ra.mctm
in seconds, making it possibled |
were previously unthinkable. ¥

Fig. 8 METAFONT at 142dpi, laptop

Modern printing equipment based on raster
has been replaced by purely combinatorial patterns
ify the desired position of ink in a discrete way—ir
puter science increasingly relevant to printing. We 1
completely precise definition of lr\f‘rnr qbanm ’r‘hat w
alent results on all raster-base '
in terms of variable pa.ra.metef i
in seconds, making it possible | § M¥ B
were previously unthinkable. = sk ™ olfie M

Fig. 9: METAFONT at 4 x 142dpi, laptop

Unicode (CMU) fonts that I had tried already for
my ebook (Figure 2). Figure 4 shows how the ebook
renders this outline font using the built-in rendering
engine. Comparing it with the printed book (Fig-
ure 3), it is obvious that the rendering lacks contrast
and looks significantly lighter. It turns out that the
initial observation that the font is “very faint” is not
a general property of the CMR fonts but a property

279

Modern printing equipment based on raster
has been replaced by purely combinatorial patterns
ify the desired position of ink in a discrete way—mu
puter science increasingly relevant to printing. We 1
completely precise definition of letter shanes that w

alent results on all raster-base i
0]

in terms of variable paramete:
in seconds, making it possible -
were previously unthinkable.
Fig. 10: METAFONT with blacker = 0.6, laptop

Modern printing equipment based on raster
has been replaced by purely combinatorial patterns
ify the desired position of ink in a discrete way—m
puter science increasingly relevant to printing. We r
completely precise definition of 1~##or choanac thot «r

alent results on all raster-base:

in terms of variable parameter

in seconds, making it possible f O
were previously unthinkable.

Fig. 11: METAFONT with blacker = 1.6, smart-phone

Modern printing equipment based on raster
has been replaced by purely combinatorial patterns
ify the desired position of ink in a discrete way—un
puter science increasingly relevant to printing. We 1
completely precise definition of letter chanes that w

alent results on all raster-base

in terms of variable parameter

in seconds, making it possible f O
were previously unthinkable.

Fig. 12: METAFONT with blacker = 2.4, ebook

of a specific font implementation on a specific output
device. Another popular choice are the OpenType
Latin Modern (LM) fonts [1]. The native rendering
on the Kindle Paperwhite (Figure 5) is compara-
ble to that of the CMU fonts. It seems that the
elnk technology used on the Kindle Paperwhite just
needs heavier fonts.

When considering reading text on an electronic
device, two other choices come to mind: laptop com-
puters and smart phones (or tablets), which typ-
ically have a smaller screen but higher resolution.
Figures 6 and 7 show the reference text as displayed
on my smart-phone (Motorola Moto G, 1280x720
pixels, 329dpi) and my laptop (Dell Latitude E6530,
1920x1080 pixels, 142dpi).

It is clearly visible that, due to high resolution
and good contrast, the font rendering on the smart-
phone already approaches the rendering on tradi-
tional paper, whereas the laptop screen falls short of

Computer Modern Roman fonts for ebooks

280

our expectations. METAFONT was designed to pro-
duce good looking fonts at low resolution. Donald
Knuth writes: “However, it will always be less ex-
pensive to work with devices of lower resolution, and
we want the output of METAFONT to look as good
as possible on the machines that we can afford to
buy.” [2, page 195] Of course, we can hope that the
ever-increasing resolution of our computer screens
will make those techniques dispensable within the
next years. But for the time being and for afford-
able, low-cost devices, good font rendering will con-
tinue to be an issue.

METAFONT and bitmapped fonts

METAFONT is aware of rasterization and takes great
care to round the outlines of the glyphs to the avail-
able raster, but it assumes an output device that
places small dots of black ink on white paper. In
contrast, my ebook is able to produce 16 gray lev-
els and my smart-phone screen is, at least in the-
ory, capable of 256 shades of gray. (Other font ren-
dering engines use even more sophisticated subpixel
rendering.) To overcome this limitation of bitmap
fonts generated by METAFONT, one can render the
bitmaps for a higher resolution and then scale down
the result to a lower resolution, converting partially-
black regions to gray pixels. The effect of this mech-
anism can be seen in figure 8 and figure 9. Clearly
the downscaling gives superior results. So the fol-
lowing figures all show fonts that are scaled down
by a factor of 4.

The METAFONT system for font design offers
special parameters to adapt the generated bitmap
fonts for any specific output device [2, Chapter 24,
Discreteness and Discretion]. The main parameter,
of course, is the resolution. Since we are dealing
with fonts that are too light, we turn our attention
to the parameter blacker. The variable blacker is a
special correction intended to help adapt a font to
the idiosyncrasies of the current output device [2,
page 93]. Its effect can be seen when comparing
figure 9 to figure 10, where the parameter blacker
has been chosen so that the visual appearance of
the font on screen would match as closely as possi-
ble the appearance in the printed book (Figure 3).
Similar results can be obtained for the smart-phone
(Figure 11) and the ebook (Figure 12) with appro-
priately chosen values of blacker. The illustrations
show that with appropriate parameters, the glyphs
as rendered by METAFONT look better than their
counterparts produced by the built-in font render-
ing engines from standard outline fonts optimized
for high-resolution printers.

Martin Ruckert

TUGboat, Volume 37 (2016), No. 3

Conclusion

Preparation of an ebook from a TEX source will al-
ways be more than just flipping a switch in the TEX
file. Just as preparing a book for print is more than
just adopting the publisher’s style file: it might re-
quire for example stretching a paragraph by rewrit-
ing it to get a good page break; repositioning and
redesigning illustrations, so that they fall on the
right page and fit the available space on the page.
These things are no longer necessary nor possible
with ebooks, but other problems appear: Now the
author has to judge the appearance of tables or pro-
gram listings at different sizes and optimize font
sizes for good readability at various magnification
levels. Still, I expect that the algorithms of TEX
can help us to produce ebooks of much better qual-
ity than the ebooks we have today.

But even if I can get TEX to produce a beauti-
ful page layout for the ebook reader, I still need —
especially for the traditional look and feel of books
like “The Art of Computer Programming” —a True-
Type or OpenType version of the Computer Modern
Roman font family using Unicode encoding that is
specifically designed for ebooks (or other on-screen
reading). My experiments indicate that such fonts
are possible and I sincerely hope that one of the
many font specialists takes on this project. If you
do, please let me know!

References

[1] Bogustaw Jackowski and Janusz M. Nowacki.
The Latin Modern (LM) Family of Fonts.
http://www.gust.org.pl/projects/e-foundry/
latin-modern/, 2009.

[2] Donald E. Knuth. Computers & Typesetting,
The METAFONT book. Addison-Wesley, 1986.

[3] Donald E. Knuth. The Art of Computer
Programming. Addison Wesley, 1998.

[4] Andrey V. Panov. Computer Modern Unicode
Fonts. http://canopus.iacp.dvo.ru/ panov/
cm-unicode/, 2010.

[6] Martin Ruckert. The MMIX Supplement:
Supplement to The Art of Computer
Programming Volumes 1, 2, 3 by Donald E.
Knuth. Addison-Wesley, 2015.

[6] Christian Schenk. MiKTEX.
http://wuw.miktex.org/, 2016.

o Martin Ruckert
Hochschule Miinchen
Lothstrasse 64
80336 Miinchen Germany
ruckert (at) cs dot hm dot edu

TUGDboat, Volume 37 (2016), No. 3

When (image) size matters
Peter Willadt

Abstract

For space and performance reasons, scaling of images
to be included into a PDF document down to a
certain resolution is often desirable. This article
describes a halfway automatic method to achieve
this goal with pdfTEX.

1 Basics

TEX output is by default device independent, and
this is fine. In ancient implementations, adoption
to different previewers or printing devices resulted
from the work of DVI processing software, in recent
years TEX has been widely replaced by pdfTEX and
other software that produces PDF output which can
be processed by a wide range of devices (the P in
PDF stands for portable, after all).

With scalable fonts and scalable inline graphics
produced by software packages like TikZ or META-
POST, still everything is fine. Problems arise when
raster graphics are embedded into a PDF file. pdfTEX
includes raster graphics at their natural size. Espe-
cially with the megapixel mania of digital cameras
this leads to bloated files. Download time and pro-
cessing effort at the printing device increase; perhaps
your printer will give up with an out-of-memory error
for rendering a stamp-sized photograph.

Rescaling bitmap images to a size that suffices
for usual post-processing help keep file size and pro-
cessing complexity small while retaining expected
image quality. The most important question is: what
resolution will suffice? There are two answers: With
pure black-and-white pictures (‘line art’), the print-
ing devices’ native resolution (e.g. 1200 dpi) is fine.
With grayscale or color pictures, a resolution of 1/4
of that will easily do. The reason is that colored
‘pixels’ are formed by combining several dots.! For
16 distinct gray tones, one ‘pixel’ consists in theory
of a 4 x 4 matrix of black or white pixels. In practice,
the real resolution may be even coarser, as effects like
bleeding of ink or surface roughness of paper have
also to be considered. With professional printing
equipment, true output resolution is measured in Ipi
(lines per inch) and grayscale or color images scaled
to their dpi equal to the printing devices’ lpi should
be fine. If you read this article in the print version of
TUGboat, figure 1 gives you the chance to see what

1 It does not matter if the device does halftoning by ras-
tering or dithering. Special printing devices which are capable
of producing ink drops of varying size or using thermal subli-
mation are not covered by these thoughts.

281

375 dpi, 42 kB

200 dpi, 20 kB

100 dpi, 10 kB

Figure 1: The same photograph in several resolutions.
See for yourself where quality degradation becomes
perceptible.

professional printing equipment can achieve on plain
paper. Printing this page on your own device will
probably be even more sobering: On my 1200 dpi
laser printer, I can’t see any difference among the im-
ages. With special paper and techniques like duotone
printing, there is room at the top.

For online viewing, one pixel of an image corre-
sponds to one pixel on screen. If you zoom in even
more pixels may be needed. Considering high-res
devices and moderate zooming, 300 dpi will probably
suffice for the next few years.

2 Looking outside the box

In the early times of desktop publishing, when disk
space was costly and memory size and local network
bandwidth were seriously limited, layout designers
often worked with low-resolution preview pictures
and final images would be inserted on the way to the
imagesetter. There even existed a standard called
open prepress interface (OPI) [1] for automatic image
replacement in PostScript files.

Adobe software (at least InDesign and Distiller)
will rescale images during PDF production to an ap-
propriate resolution chosen for the intended target
you choose (e.g. print or web). OpenOffice and Libre-
Office leave images untouched, while Microsoft Word
treats pictures, without any chance to intervene, in
a way that causes considerable grief to people in
printing offices.

When (image) size matters

282

3 Including pictures for different output
devices into a single PDF file

Probably for purposes similar to OPI, the PDF spec-
ification allows the inclusion of different images for
viewing on screen and printing. Unfortunately, there
are several restrictions and drawbacks:

both images have to have the same dimensions

both images should have the same resolution

both images will be included within the PDF
file, so file size gets bloated.

Software support is rare.

Alternative print images are enabled as an exper-
imental feature in pdftex.def and can be used with
the graphicx package out of the box. You just say

\includegraphics

[print=imgPrint. jpg,...]1{imgView}
instead of
\includegraphics[...]{myimgView}

and you’re done.

It only works with bitmap graphics and you
have to specify the full filename. Another drawback
is that image reuse does not work with this option
for screen images, so your file gets bloated even more.
With Adobe Acrobat, I have been able to use it,
but most other PDF processing software fails. On
my GNU/Linux system, I ended up with a file I
could view but not print. Considering all this, I can
unfortunately see no good use for this technology
apart from playing pranks.

4 Ways of attack

There are three possible hooks to scale images: before
the pdfTEX run; while pdfTEX is processing pictures;
and as a postprocessor on the finished PDF.

Googling for the problems aforementioned, you
will find a postprocessing solution using Ghostscript
on the final PDF file [2] and another one using a
Python tool [3].

There also exists a IMTEX package and corre-
sponding ConTEXt module, both called degrade [4],
which shrink image files on the fly using ImageMagick
in the background. Both of these packages require a
Unix-ish operating system and \writel8 has to be
enabled.

Beyond downscaling, there are other ways of
getting smaller image files. For one, increasing JPEG
compression allows drastic reductions in space. This
can be done when there will be no further image
processing involved, but it requires careful visual
checking for compression artifacts.

Also, color depth can be decreased (by “posteri-
zation” or grayscale conversion). The author believes

Peter Willadt

TUGhboat, Volume 37 (2016), No. 3

that this technique is best carried out with interactive
software and visual checks for the results. Unfortu-
nately, reducing color depth does not yield large gains
in space,? but it might be useful to do gray-scale
conversion for material to be printed in black and
white to get fine control over the results. Gamma
correction and adjustment of black and white levels
are often helpful to get better printing results, but
for file size there is no benefit.

5 Proposal for a perfect solution

A presumably perfect solution would scale pictures
on the fly while producing PDF, ideally triggered
by a command like \pdfFinalResolution=300 or
\destination=web in the document preamble. This
command would probably be supported by some
bookkeeping to avoid unnecessary computations on
already downscaled images. If black-and-white out-
put was intended, all images might be converted to
grayscale, also keyword-driven. Of course, when im-
ages were to be clipped, only the visible part of these
images would be included.

I guess that this could be done with LuaTgX
almost out of the box, and as it has now (Sept. 2016)
reached a stable state, there should be no obstacles
to implementing it.

6 Implementation (less than perfect)
and usage

I have resorted to external software that reads a
TEX log file to scan for filenames of images and re-
quired target resolutions and then builds up scaled
images. As you can specify paths for graphic inclu-
sion with the graphicx KTEX package, you get a
comparatively easy solution if you adopt to some
conventions. You should avoid giving path names
on individual \includegraphics commands and in-
stead use the \graphicspath directive. In a first
run you will comment the path to the final images
out, having generated the downscaled pictures you
will comment the original file path out.

\graphicspath{{my/hires/images/}}
%\graphicspath{{printimg/}}
% move comment up for final pdfLaTeX run

You will have to repeat this procedure as you
change image sizes or as you add new images, so it
is probably best to start generating scaled pictures
when your document is almost done. Really fast
previewing can — as you probably know — be done by
specifying the draft option to the graphics package,

2 With the example picture, only ten percent reduction of
disk space was achieved by grayscale conversion.

TUGboat, Volume 37 (2016), No. 3

where you get only frames instead of pictures in your
PDF file.
So, your workflow will look like this:

e Run ETEX on your file, with \graphicspath
pointing to the original files.

e Run pdflatexpicscale on your WTEX project.
e Run ETEX on your file, with \graphicspath
pointing to your optimized files.

e Repeat if you change picture sizes, add new
pictures, or choose a different target resolution.

If you cannot produce PDF files directly, the
only change to the workflow will be that you have
to additionally call your PDF producing software.

pdflatexpicscale? is a Perl script. It depends
on some standard Perl packages and the presence of
ImageMagick software. As these prerequisites are
quite common, it should run with your system. You
call the script with the name of your IXTEX project
and optionally with the desired resolution and desired
picture directory. If you omit arguments, reasonable
defaults will be assumed. So a typical call would be:

pdflatexpicscale --printdpi=200 \
--destdir=medrespics myarticle

If your IMTEX file is called myarticle.tex, you
have done a IXTEX run, so that the log file exists, you
want 200 dpi output and the directory for the scaled
pictures is an existing subdirectory of the current
directory called medrespics, then you may copy the
above command verbatim.

The software can be downloaded from CTAN
[5], and is included in TEX Live. Documentation is
included. You may probably want to read it, as it is
not identical with this article.

7 Caveats, limitations and drawbacks

My PostScript printer prints some black-and-white
images inverted. I could have inverted them with an
image processor, but then they would look wrong
on screen. As a workaround I converted them to
grayscale. Some provision needs to be made to
keep pdflatexpicscale from scaling them down
like other halftone images. The easiest way is keep
them in a separate directory and to include this di-
rectory at the beginning of the \graphicspath list.

The target resolution you choose may not truly
meet the printing devices’ needs, especially if you do
not know who will print your document. Perhaps
the printing device has got fantastic image scaling
software that you replace by some inferior software
on your computer. Also you probably will not want

3 This name was chosen because Google found no hits in
July, 2016.

283

to recompile all of your documents just because you
bought a new printer.

pdflatexpicscale changes image size and tar-
get resolution. This has serious consequences if you
intend to use clipping, or to display pictures in a
size dependent on their resolution. Also, anisotropic
scaling is not supported.

When a file gets used several times at different
sizes, only the largest will be included. The software
reads the log file from beginning to the end and starts
rendering immediately, so when an image is included
at first in thumbnail size and then larger, it will be
rendered several times.

The Perl script uses ImageMagick’s convert
software for scaling pictures, so quality of resam-
pling and file compression (most important for lossy
compression formats like JPEG) depend upon Im-
ageMagick’s algorithms.

Security concerns: ImageMagick has had several
security flaws fixed in 2016. So it is probably not a
good idea to provide scaling services to anonymous
users that might upload a malicious image file.

The solution presented only deals with pure
raster graphics (JPEG and PNG). If you include
graphics in a mixed format like PDF, rasterization
might be beneficial or disadvantageous, depending on
the content. Rastering vector graphics is definitely
not what you want. Treating your PDF with one of
the postprocessing solutions mentioned might help.

A last remark: Having two projects share the
same images is a recipe for dissatisfaction. It is quite
common to keep, for instance, a presentation and
the corresponding handout in the same folder, but
graphic requirements are totally different. The best
solution is to keep downscaled pictures in separate
directories; pdflatexpicscale can easily cope with
this.

References

[1] http://wwwimages.adobe.com/www.
adobe. com/content/dam/Adobe/en/
devnet/postscript/pdfs/5660.0PI_2.0.pdf

[2] http://tex.stackexchange.com/questions/
14429/pdftex-reduce-pdf-size-reduce-
image-quality

[3] http://tex.stackexchange.com/questions/
2198/how-to-create-small-pdf-files-for-
the-internet

[4] http://ctan.org/pkg/degrade

[5] http://ctan.org/pkg/pdflatexpicscale

o Peter Willadt
willadt (at) t-online dot de

When (image) size matters

284

A survey of the history of musical notation

Werner Lemberg

Abstract

Music has been and still is an essential part of life. Simi-
lar to writing text there have been various ideas on how
to notate music. This article tries to show, with many
images, the solutions found in the course of more than
3000 years of history.

1 Introduction

Over the millennia, humanity has developed many
different ways to notate music. The solutions can be
roughly categorized visually as follows.
1. action description
. words
. letters
. digits
. graphics
. stylized graphics

NN U W

. abstract symbols

8. combination of 1-7

This ordering also roughly corresponds to historical de-
velopment across cultures: The oldest Chinese sources
we know of are action descriptions, Mesopotamia seems
to have started with letters and digits, while modern
Western notation essentially uses all possible combina-
tions.

Interestingly, preserving music itself has been
much less important than preserving words — this is
true for all ancient cultures throughout the world. We
know many texts of hymns and songs, but their music
did not survive. Another observation is that most cul-
tures only developed tablatures. A tablature basically
notates the fingering to play the music on an instru-
ment, not the music itself. An exception to that was a
notation system for songs in ancient Greek; however, it
was lost with the fall of the Roman empire. Perhaps due
to the century-long ban of instruments in the church
music of early Christianity, musicians in western Eu-
rope developed new ways to notate sung music, which
eventually led to the modern notation which is used all
over the world today.

The emphasis in this survey is on the graphical rep-
resentation of music, showing both the inventiveness
and the beauty of the solutions discovered, via many im-
ages. Using some technical terms related to music for
the descriptions is unavoidable; readers without a mu-
sical background, however, can simply skip them and
enjoy the pictures for themselves.

This article is a greatly revised and extended ver-
sion of a paper submitted to the MOTYF 2014 confer-

Werner Lemberg

TUGDboat, Volume 37 (2016), No. 3

https://ww. youtube. com/watch?v=27opcKxcglc, with permission

Figure 1: A kinnor-like lyre.

ence proceedings.! Most images shown here are high-
resolution scans; it is thus recommended that you have
a look at the online PDF version so that you can zoom
into the document for details!

The music examples were typeset with GNU Lily-
Pond version 2.19.43.2

2 Mesopotamia — Hurrian songs

The oldest notation for music we currently know of was
found in the Royal Palace at Ugarit, an ancient port city
in northern Syria, today called Ras Shamra (5 & U«AT 15)-
These clay tablet shards date to approximately 1400 BCE
(figs. 2 and 3); the notation uses words and digits (in
Akkadian cuneiform) for a nine-string lyre (fig. 1).

There are several problems making it hard to inter-
pret the data in a meaningful way.

« The text is written in a poorly understood Hurrian
dialect.

« Words in the notation represent intervals, not
pitches (fig. 4) —is this polyphonic? If not, what is
the order of the pitches? Ascending? Descending?

+ Should the intervals be filled with scales or some-
thing different? In other words, is this a one-to-
one representation of what should be played, or is
it just a mnemonic aid?

« What do the numbers mean? Repetition? Beats?
Something completely different?

3 Greece — The Seikilos Column

The example shown in this section is the famous Seiki-
los column, found in one of the largest Aegean cities
in antiquity, Tralleis (TpaAAeig, today Aydin, Anatolia,
Turkey), with an approximate age of 2000 years (figs. 7,
5, 6). It is a tombstone depicting an epigram or a skolion
(drinking song).

1. MOTYF. International Students’ Moving Type Festival 2014: Type
in Music, the Rhythm of Letters. Polsko-Japonska Akademia Technik
Komputerowych, Warsaw 2015. ISBN 978-83-63103-76-7.

2. http://www.lilypond.org

TUGDboat, Volume 37 (2016), No. 3 285

o e h-_—'_‘r...‘("-' "f‘}"ﬂ" J‘-b
"; 'ﬂ' i i lf'T:!-l' L=

-*-,g_-mv- gy T S ——

http://wiw. ramivitale. con/wp-content/uploads/2013/09/H6TabletsBack 1g. jpg
Figure 2: Hymn tablet h. 6 (front and back), consisting of shards RS 15.30, 15.49, 17.387 (Natl. Museum of Damascus).

Re

A = % o7 =T KRR M &gk BE I
E 2R o ar»»r bt { B[ET BT RRT R RO

HFERTEE FEET GRET M G MR VAR R R S
RECTSESE ERERE o M [BT R SR o i rﬁraimf»m l
S AT Mo &8 T QAR [2% £ g RO < 2o |
g&ap PUVAE N //;/f%?ﬁl’ﬂ’ s =
' /@%‘r%%»m@%’ £ S
RS-0 T RO R T R |
|

|

|

T TR T PR S
& B BT T ST

T |
http://digital.library.stonybrook.edu/cdn/ref/collection/amar/id/6904, with permission

Crrey”

qab-li-te 3 ir-bu-te 1 qab-li-te 3 Sa-ah-ri 1 i-Sar-te 10 us-ta-ma-a-ri

ti-ti-mi-Sar-te 2 zi-ir-te 1 Sa-ah-ri 2 Sa-as-Sa-te 2 ir-bu-te 2

um-bu-be 1 Sa-as-Sa-te 2 ir-bu-te 1[+X] na-ad-qab-li 1 ti-tar-qab-li 1 ti-ti-mi-Sar-te 4
zi-ir-te 1 $a-ah-ri 2 Sa-as-Sa-te 4 ir-bu-te 1 na-ad-qab-li 1 Sa-ah-ri 1

Sa-as-Sa-te 4 Sa-ah-ri 1 Sa-as-Sa-te 2 Sa-ah-ri 1 Sa-as-Sa-te 2 ir-bu-te 2

ki-it-me 2 qab-li-te 3 ki-it-me 1 gab-li-te 4 ki-it-me 1 qab-li-te 2

SO NG

1

Figure 3: A transcription of the cuneiform text below the double line that represents musical notation, following
Manfred Dietrich and Oswald Loretz (Kollationen zum Musiktext aus Ugarit, Ugarit-Forschungen 7, 1975).

qab-li-te 3 ir-bu-te] qab-li-te 3 Sa-abri] i-Sar-te 1() uS-ta-ma-a-ri

o) |

7 i i i i

7\ | I T =Y I I | P2 I d
{52 i — 2 i = — i
$D—¢ .| 1 1 .| — 5|
) 4 (7 o i 4
o) I | I I

—+— - — i - —

" "

F}j i — I i i

I 2 2 i]

J = < e e <4

Figure 4: The intervals and counters as used in the Hymn tablet. Depending on the order of strings (either ascending
or descending), which is unknown, either the first or the second line is the correct one.

A survey of the history of musical notation

286

https://comnons. wikinedia. org/wiki/File:Seikilos2.tif

TUGDboat, Volume 37 (2016), No. 3

EIKQNH AIGOX

EIMI- TIOH>I ME
2EIKIAOY ENGA
MNHMHY AGANATOY
>HMA TIOAY XPONION

Z Z Kiz

OZON ZHY <I>AINOY

z O

MHAEN OAQZ Y

C O<I> C K z

AYTIOY - TIPO3. OAI-

I K K C

PON EZTI TO ZHN
TO TEAOZ O XPO-

c C X1

NOZ ATIAITEL

Figure 5: The text of the Seikolos column; left a flattened image, right a version with modernized orthography. Note
the final “T’ character: To get more symbols for music notation, Greek characters were both mirrored and rotated.

Eixavr) AiBog eipi.
TiOnoi pe Seikihog EvOo
pvipng abavartov

ofpa ToAv xpoVIOV.

c z 7 xz T
‘Ocov {fig paivov
I3 z & o T &b
anev dAwe o Avmod -
c Kz 1 1<I K C b
pog o}\Lyov ¢oTi 1o (AVv.
C K O I Z K C C CX"I

TO TéA0G O YPOVOG ATTONTEL

I am a tombstone, an image.
Seikilos placed me here

as an everlasting sign

of deathless remembrance.

While you live, shine

have no grief at all

life exists only for a short while
and time demands its toll.

Z [| 1 [[[1 |] /1
I 1 1] 1 | 1 1] | AN 11 I
[= T |4 |4 14 14 14 r—v 14
Hoson zés, phai-nou médenho-l6s sy ly-pou pros ol-igones - tito zén to te-losho chronos a-pai-tei
‘O-coviiig, ¢ai- vov un-8év 8-Awg odAv - o0- TpOG OA-iyovéo - titd (v TOTéAog O Xpd-vog dmon-tel

Figure 6: A text version of the Seikilos column using mixed-case Greek, together with an English translation and a
representation with modern musical notation. A bar over letters represents two beats, a hooked bar three beats. A
dot indicates an unstressed beat, a tie below letters marks a syllable to be sung with more than a single note.

In contrast to the Hurrian songs, this is the earliest
known piece of music that can be almost exactly tran-
scribed to today’s music notation, thanks to many sci-
entific works of Pythagoras and others who introduced
music notation for their theoretical treatises. Sadly, the
number of music pieces that actually use the notation is

Werner Lemberg

very small; as mentioned in the introduction, it was not
considered important to be written down. Additionally,
knowledge of this notation system was lost in the early
middle ages; only the text of Greek songs has survived.

TUGDboat, Volume 37 (2016), No. 3

https://commons . wikinedia.org/wiki/
File:2. Stéle_portant_l’inscription_de_
Seikilos. jpg
Figure 7: The Seikilos column, National Museum
of Denmark.

4 Egypt

No musical notation is known from the culture of an-
cient Egypt; apparently, there was only an oral tradi-
tion. Musical instruments are displayed in many images
(and some have even survived); it is thus possible to re-
construct at least the range of possible sounds, but noth-
ing more.

A Coptic document with coloured circles, dated to
the 5th-7th centuries CE, might be related to notation
(fig. 8); however, nobody really knows.

http://musicofthebiblerevealed.files.wordpress.com/2013/07/
coptic_musical notation.jpg

Figure 8: One of six Coptic parchments; colours might
indicate pitch, size the duration. Metropolitan Museum,
New York (?).

287

5 Far East
5.1 China

Similar to ancient Greece, music theory was highly de-
veloped in ancient China. The most important archae-
ological site, from a musicological point of view, is the
tomb of Marquis Yi of Zeng (g & &, Zéng hou Yi mu,
located in Léigudan, 1E S 8, Hubei province, China),
dated sometime after 433 BCE. Excavated chimestones
and bells contain inscriptions related to pitches, scales,
and transposition (fig. 9). However, no musical notation
was found.

The oldest known notation from China dates from
the 7th century, called wénzipt (3 “F #%), a longhand
tablature (figs. 10 and 11). It is a plain text description
of how to play the giiqin (77 %), a zither.

During the Tang dynasty (8th to 9th centuries) this
system of verbal descriptions was greatly simplified,
leading to the jianzipu (Ji F#Z) tablature (fig. 12). In
parallel, another tablature called gongchépu (L JT35)
was invented (fig. 13); both systems use Chinese char-
acters, digits, and other symbols to notate fingerings.

Modern non-western notation (f&#% jianpii), intro-
duced in the early 20th century, is most likely based on
the French Galin-Paris-Chevé system, published 1818
(figs. 14 and 15 [after main text]). While not having

http://herschelian.files.wordpress.com/2013/09/bianzhong-

concert-2. jpg, with permission
Figure 9: Bells from the tomb of Marquis Yi of Zeng.
Hubei Provincial Museum, Wuhan.

HREATRAE | N T 3F5en,

BiE - PIEEERER -

FHREE N SMET =TT
E o Rk - BIRER-FEER
BIEPEA o SCRIRET -

MR TIEZ N =Ah— T3P R A,
TR A BV 2k ~ PPk -

freely i slouIJ

Figure 10: The beginning of Jiéshi diao you lan, with John
Thompson’s transcription. While the pitches in the orig-
inal are given to the quarter tone or better, one can only
approximate the rhythm.

A survey of the history of musical notation

TUGDboat, Volume 37 (2016), No. 3

288

%&%ﬁﬁbﬁ { é.ﬁ“ﬁ

gﬁwﬁﬁkm$f@ﬁhﬁm»%%mﬁ&.

_»ﬁﬁffﬁ RS (R TS E N

ﬁﬂaﬁ%i# W & o e oD
e i e o K

B atw

Eat T M o ed Mo m ol S

é&ﬁ%ﬁkr+i¢¢#afﬁ¢@ﬁﬁﬁ%

».,m?wwﬂ.ﬁm%xkfh?%ﬁf.i o

P ERTeE e e T o)

ity A - FMT A DT E 2y

P axﬁﬁgéﬂfm@ﬁ&% W A4
HA 0 b 1T P se e b T g dabis
ﬁ&kﬁ?»%%ﬁ&.ﬂm.ﬂk&:rx A
W oe doda s R e Ly
AT L o I ¥ DT TN T s
ST B W 2T) IR g e
EEIER T A B Lims Jip K
T 00 2 HLE F) QT 40 D e 7 Qo
ZHLET 9 gl Ed T o e
RRUEL L AL G R Bl b a e
DHLEUBEII L LA 9 E I ol

QR E

Hagt i WY RLT WALtk

http://www. emuseun. jp/detail/100229/000/000

B)

2]
H

Figure 11: The beginning of the 4 m long scroll with wénzipii tablature of the piece Jiéshi dido you lan (F&f

“Secluded Orchid, in Stone Tablet Mode”, from the 7th century (Tokyo National Museum, TB-1393).

AR

ﬁnw.mmﬁﬁ&
S5 = BETRT W

=

ﬁmﬁa ,}.u Mﬂ.ﬂuﬂﬁ@ "2)
BT R e AL BT =

iES 355,6_
@?@5%

@Aﬂ#aﬁuﬁﬂ ;.J.\ _uﬁ ﬁ....?,
P @ AT) K W W

Ji

o
| 357 15 ity

T e i

@ﬁ;&? el R 1 A

L

&ﬁﬂ&@{ﬁﬁw@ii

b OF e oot
#,#é¢;

wmmuﬁr.@@wwﬂwwgﬁj praET 9

| EIOM w%ﬁfam;ELW: +

B 5} AL 0) & JoL.__
OB VI W HRET

“éiﬁa%éﬁ

—EE

T A

m_

S -|.-!-.| .

%@ﬁwaﬁaﬁaﬁaiﬁ%ﬁwé

M B TR

.

https://en.wikipedia.org/wiki/File:Shenqi Mipu vol 3 pg_1.jpg

Figure 12: Two pages from Shéngi mipii (f & Hh5L), dated 1425, an example of jianzipt tablature for the gin zither.

Werner Lemberg

TUGDboat, Volume 37 (2016), No. 3 289

= -’;:\ 3 2 =
el il 3 BL it &Y
o %m»l% : 5 [—_}51»% 4
i§°*1ﬁl ir B R L HEm.ARr &
HEEBR BRZ —%A Fr-B
(> R %.l:»%_t B T Eﬂ'i &
—@I\j\‘){\ﬁlx ‘%[ﬂl\ 7 '
_.—E %"P‘ i %oﬂlj. i
bl Eéo\..%){) L % I
e %SJ:\ R %R‘Em g
2 ‘R %o e —I'Ej o
éf*\\éi:ﬂi Tk |
gx 1 an TN
| 2 XN WS D = 2\ %
| *R‘j—%_h % i _Iio..l::.@
.. R o) ms =
Eoax By b £ Ry &l
., 2::"5;.{\ ‘B‘Lv\ __4 m‘@-w

https://en.wikipedia.org/wiki/File:Kam Hok_Yap Mun-Yeung Kwan_Sam_Tip.jpg

Figure 13: Two pages from the score book Qin xué rumén (%%%)\F’ﬁ), dated 1864,
showing gongchépu tablature for the giigin zither.

105

1=F.

N NS OF 25 1 et
O heilzge See=len =fpei = fe

2 gheabe2 3 a1 o (= 2. .3

au bie=fer $Bil= gev-rei = fe, o Man=na, Hin=

gio¥e). B3] .2 € HE UL 38
melg-brot! Du o = bejt hier Ddie Mt = den

aigh 93 o i T Lebs 1 S

mit ®ot=ted fit = gem %rie:b'eu wnd ftiir=fejt uns

pEgntos)
jum el =gen Tob.

http://sammlungen.ulb.uni-muenster.de/hd/content/pageview/1474276
Figure 14: Cipher notation for the song O heil’ge Seelenspeise, contained in the book Sursum corda, a German Catholic
hymnal from 1887. The displayed melody is based on Innsbruck, ich muf dich lassen (Innsbruck, I Must Leave You),
a famous song by Heinrich Isaac composed in the second half of the 15th century.

A survey of the history of musical notation

290

a significant impact on the Western world, it became
extremely popular in Asia since it is comparable to the
gongché tablature. Even today, most traditional music
scores and song books use jidnpu notation.

5.2 Japan

All traditional notation systems in Japan are tablatures,
strongly influenced by China and Korea, which in turn
was also influenced by China (fig. 16). In the course of
time, many different, specialized notations were devel-
oped depending on the instrument. This was further
specialized by competing music schools, trying hard to
provide knowledge of playing the instrument only to
members of the clan (fig. 17). In spite of the special-
ization, all notation systems are just mnemonic devices,
making it impossible to interpret it correctly without ad-
ditional oral tradition.

5.3 Korea

Similar to Japan, both music and music notation was
strongly influenced from China.

In the 15th century, the jeongganbo mensural no-
tation (% 7+ X, JfH] i) was developed, providing a
means to exactly specify the rhythm by positioning the
musical information into a grid. This system, which was
the first in Asia able to represent duration of notes, is
still in use today (fig. 18); the idea of using a rhythm
grid was also exported to Japan in the 18th century.

6 India

Ancient India is another major civilisation that did not
develop explicit notation systems. Instead, only hints,
usually small strokes above and below the text, were
added. As is to be expected, such a system is not re-
producible without the oral tradition from guru (2,
teacher) to shishya (f&r=, student).

Modern notations were developed by Vishnu Na-
rayan Bhatkhande (fe®] TRMEUT HTd@s, 1860-1936) and
Vishnu Digambar Paluskar (fgw] fgmisR qef@hz, 1872-
1931) in northern India, mainly for teaching music and
the preservation of traditional compositions. They are
based on Devanagari characters and numbers with a
small set of additional symbols (fig. 19).

7 Middle East

No music notation systems were developed in the Mid-
dle East after the fall of the Roman empire; there was
only oral tradition, as far as we know. Starting around
1830 in Egypt, Western notation was introduced, but
only in a very limited way.

Music theoreticians Al-Kindi (3le] o <sn }j
xSl 9th century) and Al-Farabi (LW & &
10th century) used letters to denote s’Erings of the oud
(25#, an Arabic lute), together with finger positions. Safi

Werner Lemberg

TUGDboat, Volume 37 (2016), No. 3

al-Din al-Urmawi (sse,Y) (rdl e, 13th century) ad-
ditionally used digits to indicate rhythm in his works.
It must be noted, however, that none of these systems
gained any practical importance for playing music.

The perhaps most remarkable contributor to mid-
dle eastern notation systems was Dimitrie Cantemir,
Prince of Moldavia (Turkish: Kantemiroglu), who pub-
lished his letter notation around 1710 while in forced ex-
ile in Constantinople, collecting and preserving around
340 Ottoman instrumental pieces (figs. 20 and 21).

8 Europe
8.1 Neumes

Isidore of Seville, living in the early 7th century, states
in his book Etymologiae (also known as Origines):

nisi enim ab homine memoria teneantur soni,
pereunt, quia scribi non possunt®

(unless sounds are held by the memory of man,

they perish, because they cannot be written down)

Music history soon provided counterexamples:
Visigothic neumes (i.e., inflective marks to notate mu-
sic) began to develop in northern Spain in the late 7th
century (figs. 22 and 23).

Similarly, the first paleofrankish neumes appeared
around 850 in Aurelian of Rédme’s works (fig. 24).

In the 10th and 11th centuries, development and us-
age of neumes started to flourish in many places in Eu-
rope: St. Gallen (Switzerland), Laon, Brittany (France),
to name just a few.

Neumes can be roughly classified as either adia-
stematic or diastematic. The older adiastematic neumes
show the direction of a melody, but no pitches. On the
other hand, rhythm and dynamics were quite precise
(fig. 25).

Diastematic neumes were rather the opposite:
Quite precise pitches, but lack of rhythm and dynamic
hints (fig. 26).

It is probable that neumes were originally devel-
oped in the Byzantine Empire, based on Greek origins.
The orthodox church still uses neumes today (with re-
fined notation).

8.2 Staff lines

Another European invention was the use of staff lines.
The first use of horizontal lines to indicate the pitch
can be found in the theoretical work Musica enchiriadis,
written in the 9th century (fig. 27).

Guido of Arezzo further developed the idea of staff
lines; he recommended the use of lines in distances of
a third in his book Prologus in Antiphonarium (around
1030), together with a clef (or coloured lines) to indicate
pitches.

3. Isidorus Hispalensis, Etymologiae, book III, De Musica.

TUGDboat, Volume 37 (2016), No. 3

With the introduction of square-note neumes in
the 12th century, the development of the notation of
Gregorian chant was essentially completed (fig. 28), and
is still in use today.

In the same century, polyphony started to develop,
mainly in the Notre Dame school in Paris. It also intro-
duced modes to control the rhythm (figs. 29 and 30).

8.3 Mensural notation

Perhaps the most important invention in Western mu-
sical notation was made by Franco of Cologne (around
1250, as documented in his book Ars cantus mensurabi-
lis). He introduced note heads with different shapes to
define their own duration.

Previously, rhythm was only implicitly defined by
context and learned rules; the new class of note heads
allowed the notation of arbitrary durations. This system
is still basically the same as what we use today, with
only minor changes and additions (figs. 31, 32, 33).

8.4 Tablatures

In the Western music, tablatures spread in the 15th cen-
tury, mainly for instruments that can produce more
than a single note at the same time. Either digits or
letters were used to denote keys or fingering (figs. 34,
35, 36).

8.5 Printing

Printing music with movable type started around 1500.
In the beginning, the layout was a copy of handwriting
(figs. 37 and 38).

Bar lines, ties, slurs, and other marks were gradu-
ally introduced in the 16th and 17th centuries (fig. 39).

8.6 Engraving

In the 18th century, polyphonic music became too com-
plicated to be printed with movable types. Instead, en-
graving techniques were introduced for music, starting
with copper plates (chalcography, fig. 40).

Around 1730, the English music publisher John
Walsh invented a new engraving technique: Staff lines
were drawn with a 5-pronged ‘scoring tool’ onto a
pewter plate (an alloy of mainly tin), fixed-size musical
symbols were punched with dies, and everything else
engraved manually (fig. 41).

In 1799, Johann André from Offenbach am Main,
Germany, applied the newly invented lithography tech-
nique to music — images on zinc plates being mechani-
cally transferred (fig. 42).

Around 1860, the aesthetics of classical music en-
graving as used today were completed (fig. 43).

9 The future

The last revolutionary step in the history of music nota-
tion to date is the introduction of computers to typeset

291

music — this is happening right now. Today, the job of
a music typesetter working with pewter and dies is now
essentially defunct.

However, until very recently, the results produced
by computers were hardly adequate compared to man-
ually engraved scores. This difficulty is mainly due
to the two-dimensionality of the data, making it hard
to automatically achieve visually pleasing scores. At
the present time, this is going to change: Computers
are steadily becoming more powerful, allowing for the
mathematically expensive computations that are neces-
sary for good automatic positioning of the notational
elements.

Software is evolving, too: Programmers are learn-
ing from the errors and problems affecting the first-
generation programs used for typesetting music, and
also providing better GUIs with powerful templates for
users —who thus need be less aware of the intricate
details of correct music layout.

Sources

All images not tagged with a URL were created by the
author. Here is a table with additional notes for selected
images.

1 This image was extracted from a video; it shows Peter
Pringle playing an ancient lyre.

3 On his website, Casey Goranson collects no less than
ten different realizations of the tune that appeared in
various scientific papers, see http://individual.
utoronto.ca/seadogdriftwood/Hurrian/
Website_article_on_Hurrian_Hymn_No._6.html.
Most of them, if not all, are highly speculative due to
lack of information.

6 The English translation of the Greek text was taken
from Wikipedia, https:
//en.wikipedia.org/wiki/Seikilos_epitaph.

8 The blog entry http://musicofthebiblerevealed.
wordpress.com/2013/07/25/spiritual-harmony-
coptic-musical-notation gives more details on the
possible interpretation of this parchment.

9 The photo belongs to Jo Michie’s blog on China,
http://herschelian.wordpress.com/2013/09/
25/the-marquis-yi-of-zengs-musical-bells.

10 Thompson’s complete transcription of the piece can be
found at http://www.silkqin. com/02qnpu/01yl/
transpdf/jsdyl01.pdf.

19 The image was taken from David Courtney’s site Music
of India, http://chandrakantha.com/articles/
indian_music/lippi.html.

© Werner Lemberg
wl@gnu.org

A survey of the history of musical notation

292

1=G

e
7 0.6 5643 | 2 -
/\/\/{/\/\

5.3 5 5%3 2 6 5612 3.

o

TUGDboat, Volume 37 (2016), No. 3

e N N

| 3. 5 65 6561 |
=

1 - 161 332 |

-
9# T I o I Il
N I — — I : | 1Y [[— | [& &
[£anY Il - I 1 I | — | - N | I ™ - I T & | e = e
;j\l .I. -I.I .I — > 'Ié | - .II I.I'é I’III el o—
~ N\ — — —t —
id v & =5 < e = —

Figure 15: Beginning of the piece The Moon Mirrored in the Second Spring (—. 5B H, Erquan yingyue) for the érht

(:Eﬂ , a Chinese fiddle); jianpti and Western notation.

https://en.wikipedia.org/wiki/File:Tempyo_Biwa_Fu.jpg

Figure 16: The Tempyo biwa fu (K F-EEE 3, Tempyo
lute score), dated ca. 738. This is essentially a Chinese
piece using Chinese lute notation, preserved in the Im-
perial Storehouse (Shosoin 18 5%) in Nara, Japan.

Werner Lemberg

!-

———
-

)

e

)
\Q“

«
[

X
“—nv‘*t‘ —

(

]

W,

4
<
—

X
¢ ne gy
b B e A

=y
Xoo—

=
rd
St dpie
N
S -
™~
N

‘l\l—

S —
=Yy —y-%

N

&

\
$=

___,ngﬁ
&:;gz“

N
1* &

A
v R EET WH

d

)

=Fe-
7= L

=
y o
Pad)
-‘
‘ w
|
> w‘
b, 8Pl N ¢ S

i‘
X
'\T'_'x'

T

)&jgiis '\‘;:;:t)

)
o
N =

=
—®
=n " P)
R
bath o))
&)
¥
,Dt L) Y
Y
L -

http://www. shaku-rus. con/Scores/Ch_score. jpg

Figure 17: An example of a tablature for the shakuhachi
(RJ\, an end-blown flute).

TUGDboat, Volume 37 (2016), No. 3

ogEZaAY
o [t st |y r g m~lul & [| x~[o
A8 |] | EXS T | = S g
i~ || R ¥ wlel < [EE [x|2
T el [T BT] el -
B - w4
L :

P = s=o| & ot oo || £~ |2
weldlxe 2 &L A A R A1 5 R
o] & | & |e I RS I
BININEIRINIGEN
A ol =lal & (ot e o] 2= o =-]3] 2 2] =9
e e | i =1 el S| A S0 R ol e

& fol (= AF gt i % |=

[P O K%*_ ?&— = |

k] oy o B EE e
< <

i (o] A~|g| #E~[2] ke|g| K~ % |2 ﬁ~o} K~ |2

S| o K |5 & [d] & [d] & [R-- A

KNl |5 || % |a @ |8 @ |u
A |- iad f & # |2
& |- s Elw || #le| B 1B

o] B ~|z |3 . [o u
el P e o [e
x | & o |8 w-| |- % |

- - B | % |2 - |
- || Ao (-] W " |)

http://cfi1e222.uf .daun.net/image/251ECT4A5184633226C904

Figure 18: A modern example of jeongganbo notation, to
be read from top to down, right to left. The square boxes
contain the melody, the rectangles to the right hold play-
ing instructions. In the square boxes, two rows split the
beat into two half beats; two characters in a row further
split a half beat into two quarter beats. A ‘-’ character
indicates a rest.

Wa'ff?ﬂﬁf (9Eq d9) (Rag, Tal. and Tempo)

_— i stha
fF a fa
araAal-afq glai g q|@FTha ey
B IIH|(ST T A|Fg s F{dS 55 wies

3 X £ o (Tal Signs)
AT Graco Notes

T T

A-n wlgafafalda -fiqgg-ar weu

*‘“‘Q dlafan alg v s glaas T wis
% L]

° (Tal Signs)

vibhag vibhag wibihag vibhag

http://chandrakantha. con/articles/indian music/lippi_media/bhat notation2.jpg,

with permission

Figure 19: An example of two systems of Bhatkhande’s

notation, taken from Hindustani Sangeet-Paddhati Kra-

mik Pustak Malika (T&-{G&T=1 Id-Ugld shifeh Jdieh AI-
foTepT), Volume 4. Each system consists of four lines.

293

i b &.a 4 ,,.ms,,‘;;r
277 JJAU’JJ‘\ Udr-:‘; ‘Q)" L

aiur._a.\.r_:l.:v'
FRIRR R B2

\: Lot G

L5

6
i
16
“C
“s
G
Ak

3C
as
AL

~
~oa—
I TR AN

bLae Y
ab e
'1':"(':
3L agQ
bLad
-% a6 =k
e e oY -C 3N
B el B S
SRR
oS

%
B
30 o
-% 30~
‘trAal 8% a0
; e 4y
o -
AN
-9
~8~70 Ly
-0
Y
o 10 0O
Aas -0 -
A% te AN -

LN ©
-G -a 30 a0 -L

Lag e
1G

~6
-4

._"G-\

"

http://www. musikwissenschaft.uni-
wuerzburg. de/struktur/lehrstuehle professuren ressorts/projekte und_
materialien_des lehrstuhls_fuer ethnomusikologie/osman/elci pesrevi 1 faks/

Figure 20: A page of Cantemir’s treatise Kitab-1 Tlmii’l-
Misiki °ala Vechi’l-Hurdfat (Turkiyat Enstitiisii Library,
Istanbul, Arel 2768).

Figure 21: A zoom into the fourth line of the page
showing the beginning of the song Trak Elgi Pesevi’,
Usul Diiyek, with transcription. The lower part of the
line in the facsimile with Arabic digits (to be read from
right to left) gives the rhythm of the melody.

A survey of the history of musical notation

294 TUGDboat, Volume 37 (2016), No. 3

94
.j '/,.'JM ,»J“ /‘ '/M-u-/rr. A J »gf q
5 r[«‘éj P s L A (.-f i
;J r“n\,f /J / In ﬂf' -

"‘:\ln\,,f /j '1'\— j _9‘-“

T

; ¥ 4
. ‘,,/ﬂ/p/ rr] J /M/" ’/ ,
P Jded) T '*%ML o3

s 1 f(t d w4 o
«w-mm‘— s s a: e W “TL
A | ﬁ > j ,/ g -r
ic L...Mlﬁ_, s r:,ﬁ “mw.x
Jr!‘rn /

. f}uﬁ, jhxu.j ARNEERY tw
is b Y /‘ '
” J :
BAY \ i ﬂL s ot i oo o W 4 &

3 e
f‘/t/) C"/ J “1‘/'

u] 4o
i "lgm.l(,,mv,l S o'l

g ey Boaiia

3 ‘ J\,/ : ; «,_.J,./_/ 2l J./'.//‘ 7
o S IV(L'}vo i m | O T L 7;":‘f/ %
| (X”M- (H Sl (Vih« /r _ 7 Lmam s,‘.wt r e L2 :7(*5“7,‘,.,(ﬁ_ﬂ_

: SIRIN [
Caave i 1l J.._ Loyt 10050
i [_,,f';fﬁ“‘ m,?/ v«_ 7 flf /ﬁ ‘"T, i
«s‘.umf«r-wa — e =mmye-m-rm rtrmazumy
jj\/yﬂl ,k,p 'hJJ !

i

A /~ | % .
S O Rl e o 1 A s R u‘T'“‘ z.n SES——— ST RRAE -
y- /JA :J- *, ./Jj f-;rrvy\,.f ‘ I’ J"’\ J ./ / ./[J
"”7 ‘,‘.‘/A !) £w,lﬁ i A . TJM I, |M‘I” fwymLﬂ_.,, W e ,,.,,”,J,,., i,
> “‘\ TR * ST % " /) ALY "l p .’
s ok J“f' kel | R Ty L & e m(M ﬂf Plimecs
http://bpb.mcu.es/en/catalogo_imagenes/grupo. cud?posicion=192kpath=26408 http://bpb.mcu.es/en/catalogo_imagenes/grupo. cnd?posicion=193kpath=26408%
presentacion=pagina presentacion=pagina

Figure 22: Two pages from the Visigothic Antiphonal, most probably an 11th century copy of a 7th century book
(Archivo de la Catedral de Ledn, Ms. 8). It depicts Mozarabic chant.

'_LrJJ ! {]M\q ~-) jhm[fn',\&
ﬁh‘ru.ctum udtctum

J“, usd c‘ér—v-n ufonu:!e— &:Tu«ﬁa‘

\ ﬂﬂ ™ 9% 96 ‘ ﬁ

J s

v A 5
rwtn -Lp—Enua:m .:mewr

-vJJL

af fue &x deminuticuy” \nme’bw niMmico yum fuo §1

Figure 23: A detailed view of the Antiphonal, also called Antifonario de Leon. Today, these neumes are
almost completely undecipherable — the Mozarabic Rite was forbidden in Spain around 1080 by Pope
Gregory VII and replaced by the Roman Rite.

Werner Lemberg

TUGDboat, Volume 37 (2016), No. 3 295

http://gallica.bnf . fr/ark:
/12148/btv1b8452635b/147 . iten
Figure 24: Two views of a page of Aurelian of Rédme’s book Musica disciplina, a Carolingian chant treatise written
around 850 — containing only text, no music. The neumes (undecipherable today) in this copy from ~880 were
apparently added to this copy by an early reader (Bibliothéque municipale de Valenciennes, Ms. 148).

https://archive. org/strean/palographienusicibmacq#page/60/mode/ lup

Figure 26: The beginning of Tu es deus in the Codex
http: //uww. e-codices. unifr. ch/de/csg/0359/107 Benevento V1.34 manuscript, f. 59v, written around

Figure 25: A detailed view of p. 107 of the Codex 1109’ showing diastematic neumes (]?iblioteca

Sangallensis 359 manuscript from the early 10th capitolare, Benevento). The thicker line marks the

century, showing adiastematic neumes (St. Gallen, Pitc'h 'f', the thinner one pitch ‘c’,‘a ﬁ,ﬂh higher, as
Stiftsbibliothek). indicated by the letters at the beginning of the lines.

Those letters eventually became the clefs in modern
notation.

A survey of the history of musical notation

296 TUGDboat, Volume 37 (2016), No. 3

obﬁarrcrtf‘ra ﬁ)nl lnCan(‘)nAITL’IA‘L I‘CC'CT;U"C{'
et {hbfecuncluf: Que ur Luc;dm;’”: Franc :
q.pcc-mp’.t Je{'cnpmone' udneur pro u.rrof
fre fier fu[mfpc-@rum-

2 [‘l/ //r'n"lf“l Sgual

R mme 1 11
" 4 TR
5 Ly art / n Squal’\ i
/::: e ,mrné}“' g A -5/ .nd,q ‘\ }
™ Rcévceh c[r./ 3\/ T(mnlr nf 7

:/‘/ i\ d banc CIEfCI‘lP‘lTlDﬂm mncncfo 'tlc—{'c'ni
treup uomodo mclefcrtp'tzf' duo ufmemby
fiewre: fubeuf cecrardum Hnum organalifuex

https://comnons . wikimedia.org/wiki/File:Musica_enchiriadis Rex_celi.png

Figure 27: An image from Musica enchiriadis (Staatsbibliothek Bamberg, Var. 1, fol 57r).
Each line corresponds to a chord of a harp-like instrument.

A 7
”~” Vd ~
SEN L . Is. 45, 8; Ps. 18

T/ IN.T & B S —g]

[
R J S - JA A 2 ™ X & B .
/. O-ra- te *cae- li dé, su- er, et nu- bes plu-.
a_9 AR il £ LD p & L res
v, = _7 7 + e r/‘)

e e e s

10__..

i

Y TEECITEER et K vl S
ant iu- stum : ape-ri- &- tur ter- ra, et germi-net
E_”L-n—f"/:
. w o F
L .

I :ﬂ i =
Sal-va* t6- rem.
http://wav.kalosconcentus. org/images/Musiche/Intrf20Rorate. jpg, with permission

Figure 28: The Graduale Triplex (published by the Abbaye Saint-Pierre de Solesmes in 1979) shows both the
diastematic neumes from Metz (above, black) and the adiastematic ones from St. Gallen (below, red), together
with square-note neumes taken from the Graduale Romanum.

Werner Lemberg

TUGDboat, Volume 37 (2016), No. 3 297

Sl e g -

http://teca.bulonline.it/ImageViewer/servlet/InageViewer?1dr=TECA0000342136#page/1/mode/lup

Figure 29: The beginning of Pérotin’s Viderunt Omnes from the Magnus liber organi, composed around 1200, start-
ing with syllable “Vi”. This is the first known Quadruplum, a piece with four different voices (Biblioteca Medicea
Laurenziana, Pluteus 29.1, f. 1, Florence).

Figure 30: Transcription of Viderunt omnes from fig. 29, using modern notation.

A survey of the history of musical notation

298 TUGDboat, Volume 37 (2016), No. 3

 Ssag o s

AT R s

o R
s sbefic jpufte Donume Sus_aguue S fifme Paie

e Dl it Guugumes 1l »v{h e Ske an'd fi B pati

http://gallica.bof .fr/ark:/ 12148/btv1b8449032x/f575 item http:/ /galhca bnf. fr/ark /12148/btv1b8449032x/£576. iten

Figure 31: The beginning of the Gloria of Guillaume de Machaut’s famous Messe de Nostre Dame, composed
around 1360, in black mensural notation (ms. Machaut B, f. 283v-284r, Bibliothéque nationale de France).

Py {;L‘.*m': ML b

M’“ 7 E;;—";:" 5 B b

P
tis. Lau - da - mus te. Be - ne-di-ci-mus te. Ad - o - ra - mus te. Glo - ri-fi-ca-

o/

mus te. Gra - ti-as a-gimus ti - - "bi propter mag-nam glo - ri - am tu - am.

Figure 32: A zoom into the highest voice of the Gloria, together with a transcription to modern notation.
Since the original manuscript does not have time signatures, the grouping into bars is rather arbitrary.

Werner Lemberg

TUGDboat, Volume 37 (2016), No. 3 299

Figure 33: The beginning of the Missa
L’homme armé (Kyrie eleison), written by
Josquin des Prez (~1452-1521), in white
mensural notation (Biblioteca Apostolica
Vaticana, Chig.CVIIL.234, f. 191v).

All elements of modern notation except bar
lines are present. Using paper instead of
parchment made it necessary to use less ink

—— to avoid damage, thus the hollow (‘white’)
dm’éll l %}Mﬂm
*- note heads.
| B ——" A N il o i L P
i -r-w\om nln {w\m(/(’v‘l’ Lt 4%
| It eeprReCingar T FEFESCERFF i 3 {
2|0 e i e fo | T 1 - 1o 0 olo
1B % 14 ol s T A A \ |
st Mt s et
TE S Y e IS AT YT eI T (S
'l - g T UV W e
PEFERErF REC . FEFEETC FFFEC C REPPME MICEIT B
o 5 i il T = [(o Yo 1o
5 < e = in b 75 S (v ol |homm | < .
3 gq;,}‘i's il iy, P X 59%0,,1 1 3“, St o '
. = = -0 ¥ 1} 0 eldn 1 nqn—%-
oY VTRECY T WY TV v
(|
RtPE PR RC TQTL MPe T EF [Arae |
T ‘ll. P B L T *TL_“ A lk k“ s)
e e s e
ki V1 75 0 L W O PP B o S ol B B B
4o =0 —0 s
LEBEREE T CEEEE YFIFFFFFL“_F 'I;FF 4
i f 1 4 4 J
0 -‘)}“ q“'n% %"Ja 53);5\ \
N At Seyls [IESTE gt 2t at 8
£ \ V4 \ (f
o o -

http://ricercar.cesr.univ-tours.fr/3-programnes/EMV/1uth/sources/consult .asp?numotice=441D=Capiroladindex=94
Figure 34: Padoana a la francese from Vincenzo Capirola’s lute book, written around 1517
(Newberry Library, Chicago, MS VM C.25, f. 47r).

A survey of the history of musical notation

TUGDboat, Volume 37 (2016), No. 3

300
- ; ; & el
A fnvm Tftf e it : 45’!}
& -~ : il
v _At { J».‘ e | m_-..j_, | e
o j_m—*‘: R W 4 R~ R YR) T s = e
~ i - [ot @ gy |
‘=:_ Yo fl, “rm_.gil" ‘!} ﬂ",g _: iﬂl’a“.':)‘f E U-Ilrrr s
] &..g N = \ \
e Y S r‘wmmhm eV T v - a;g e %ot
AT v ':ilﬂ”}‘ ,1, ¥ ;an"”‘dF - bt — -
e S o o) e 1o N t‘n;-ecm = = Al e -
o 5 RS
3 "] 5 7 |

http: //1mslp org/w1k1/Spec1al Imagefromlndex/ 111320

Figure 35: The chorale Wir Christenleut’, BWV 612, from J.S. Bach’s Orgelbiichlein manuscript, written around 1715
The last 2% bars are notated in German organ tablature (Staatsbibliothek zu Berlin Preussischer Kulturbesitz,

Mus. ms. autogr. Bach P 283).

- —
-
F A=
. |
' <
L -
0 |
YT T
A —~1
10N 2 7 1
bl.l |l .b-
rat r
71 1
12 I
L I
.
rat | - I I I T T Il |
I 1 o 0@ I I I I I 1 |
Z b h & r i I el I I 1 |
v el r i | = | = 1 |
© o

Figure 36: A zoom into BWV 512. In the autograph, each line with German Kurrentschrift letters represents a voice
uppercase letters denote pitches one octave lower, letters with a line above one octave higher. A sharp accidental
is indicated by a trailing curved stroke below the baseline. Flats are not used, thus the note sequence ‘g-f-e flat-d’
is notated as ‘g-f-d sharp-d’, for example. Superscript digits and other symbols above the letters indicate duration

(e.g., ‘4’ for four semiquavers, ‘|’ for a whole note).

Werner Lemberg

TUGDboat, Volume 37 (2016), No. 3 301

Fofquin,
! 3 I ol e orr 1Lt el
5 . — 1 S =F T v
E] T > o { ; ,9&_
. el’ %7 V-
Yz -tley
I C L 1 . [l [g
| ? } b J;u é + } L { #& H’“

i

>
E

)
T
k=N
=
~

-

S 1 i m]
1
h]l‘ &%& A£\TY G -
= MR 0oL T (9 o
{ " H ALAVALA
fon Ryzifte ML Ad
1 { , N
b { { t 1 shiH H
ﬁv [+] *_‘ v, 10 I ¥ In
Y 2 skl
b [\ a4

eley fon

-

http://inslp.org/wiki/Missarun, Book 1_(Josquin_Desprez)

Figure 37: This page of a partbook, printed in Venice by Ottaviano Petrucci in 1502, shows the same mass
from Josquin as figure 33.

R

el
L

i et

Figure 38: A direct comparison between the Josquin manuscript (fig. 33) and the printing (fig. 37). Note that the print
uses a different clef. It also contains some errors and variants, probably due to a different manuscript copy.

A survey of the history of musical notation

302 TUGDboat, Volume 37 (2016), No.

http://wwv.bibliotecavirtualdeandalucia.es/catalogo/catalogo_imagenes/grupo.cnd?path=1000562&presentacion=paginagposicion=29

Figure 39: A page from Miguel de Fuenllana’s Orphenica lyra (printed 1554), a tablature for the vihuela (an early
guitar), with bars. Red numbers indicate the melody. A rhythm indicator is only specified if a rhythm changes.

Werner Lemberg

TUGDboat, Volume 37 (2016), No. 3 303

M OVLINIE.

23
A I R. P
q gt e T a—9—a°1 1 > 1
Ty A P I = = e e e e e e
& < E } o - e =
3 < : = 54 f fe
= e R e 4:_ P = = Je woyeen- core Ces yesx pour qui je menrs pour qui je mewrs d'amonr :
3 £ PSR T B ‘a e >
8 — e T ' g 4.
Y c & D _ca
o b b_a b_a a_a 722 5 o =5
J }PJ) b b b a b _a b BB i > = = |_
A A Lo 3 & g _& r. 3 '~ £ C £ = a
(e A ek s a
7 -2 a 2+ | e a—"
b = “abbak (& =
e P iaae Ty 7S
s - 11 g] 14‘11; a’\'l N3 |
— s = i) n I P e §
-5 By =
q. . : =Y — L
s - :?| R ‘L'j] = :‘}.} = 3 Masspussquejere- uoy la beamté quimenfla- me, Sorter, mes
B o1} =y L c) s 4 ﬂh { J, 4 JPJ J J J 3
EN_/nt‘h.mu’ que jadore Mefiit cognoiftreen fon re- tour o - = R T -
& I o i a_ b b D Sbap
J 4 J J JJ J d e < o a e c ¢ a 2 :‘T
a. a |l c = a4 | A ~
— & -2 b -3 b b -1 o a .o e
£ b b b a boa bb _ba b S
all3 F.77 ¢« ca a ' c 2413,
bl O s e a=_c™ 4
= = + S RO S

: g T o j'l;l Le ciclvayant que fon abfence
ﬁ:&ﬁ: = i e M'offe tout mion contentement ,

OFroye d ma perfenerance
defpliifirs hofle= vousde mon a- me . Lafindemi cruelde ms cruel tourmis:

1 L] j
— . e, DI, i I

I

-~ J J = Mass pus que .
tour LQuelle weut que n
J }) F)) J-,J) J-,j J J J e b a ao b ail Mesmauxchangés vousen delices,
. A A > a b ab ab ba * bll Moncaurarreffésvos donlears,
e -~ = - - ¢ a c a a all Amourd. mes fappli "
T a =_<0 4 = a___er D] T
b iewpee b B 2-» . — = T = 7} Mes yeux ne verfez plys ne verfex plus
a 2 * e a s, 5
a s < < — = -_’ = Etpus que . (deplenrs .
D s~ a
a

http://inslp.org/wiki/Special : ImagefromIndex/246223
Figure 40: A copper plate engraving of the air En fin la beauté from Etienne Moulinie, published 1624.

http://wiw.musicprintinghistory.org/music-engraving/13-about-music-engraving

Figure 41: The process of manual music engraving. For complicated scores, it could easily take a day to finish a single plate.

A survey of the history of musical notation

304 TUGDboat, Volume 37 (2016), No. 3

o f'l’/ll//(/?L/(’ A3 3
e
Cuverture: g A
T o “ ; =3 o : 7 v*
Lo T et /v.—\ —
= ﬂiaﬁ..sﬂsﬁ:}. =
Joe =il

e ;g S =E=r - =i

i AE} JEJP %ﬁ *[E....m. =

Figure 42: A lithography print from 1805 ofa
piano reduction of Mozart’s overture to Don
Giovanni, produced by Johann André’s

printing company in Paris (he held a patent

on lithography).

//////v ./‘ﬂlw‘wz

frw ey

A

http://ww.wurlitzerbruck. con/images/MUS/Nozart}20Don20Giovanni},200ver ture’2010589. jpg

Poco piu mosso.

— == T
/)
cresc. >
th
-7 [i =
I_L_l ?
|
!p_!’ b
e | -
‘;L VO g T P | I B A g
e

S
53

http://inslp.org/wiki/Special : InagefromIndex/69058

Figure 43: An excerpt of Rachmaninoff’s second piano sonata, engraved in 1914.

Werner Lemberg

TUGDboat, Volume 37 (2016), No. 3

Colorful emojis via Unicode and OpenType

Hans Hagen

A recent new (and evolving) addition to OpenType
is colored glyphs. One variant (by Microsoft) uses
overlays and this method is quite efficient.
\definefontfeature[colored] [colr=yes]
\definefontsynonym[Emoji]
[file:seguiemj.ttf*default,colored]

\definesymbol [bug] [\getglyphdirect{Emoji}
{\char"1F41B}]

\definesymbol [ant] [\getglyphdirect{Emoji}
{\char"1F41C}]

\def inesymbol [bee] [\getglyphdirect{Emoji}
{\char"1F41D}]

Here we see a %, * and @, and they come
in color! Since Unicode has started adding such
symbols (and more in each release) the distinction
between characters and symbols becomes even fuzzier.
Of course one can argue that we communicate in
pictograms but even then, given that mankind may
last a while yet, the Unicode repertoire will explode.

U+1F41B bug U+1F41C ant U+1F41D bee

Figure 1: A few emojis from seguiemj.ttf.

Above we have used seguiemj.ttf, a font that
comes with Windows. Colors are achieved by com-
bining glyphs rendered in different colors. A variant
font that uses SVG instead of overlays is
emojionecolor-svginot.ttf:
\definefontfeature[svg] [svg=yes]
\definefontsynonym[Emoji]

[file:emojionecolor-svginot.ttf*default,svg]

This time we get «%, % and @, and they look
quite different. Both fonts also have ligatures and
you can wonder what sense that makes. It makes it
impossible to swap fonts and as there is no standard
one never knows what to expect.

| -
o0

e
GER—

U+1F41B bug

U+1F41C ant U+1F41D bee

Figure 2: The same emojis from
emojionecolor-svginot.ttf.

305

How do we know what faces add up to the lig-
ature % and how are we supposed to know that
there should be zwj between? When we input four
faces separated by zero width joiners, we get a four
face symbol instead. The reason for having the join-
ers is probably to avoid unexpected ligatures. The

sequence man, woman, boy, boy gives family: "~ +
zwjls + zwjs 4+ zwjso =TI, but two girls also
works: = + zwjl 4+ zwjle 4+ zwjle = i, and

so does a mixture of kids: = + zwj = + zwj -

+ zwj =+ = U&, although (at least currently): "=
+ij <% +sz oo +ZWJ = _ GG (I’IOt
stacked). To add to the random fun the official

Unicode family U+1F46A has only three members
(in this font): "

In our times for sure many combinations are
possible, so: = + zwj'T 4 zwjle + zwj o =
indeed gives a family, but I wonder at what pomt
cultural bias will creep into font design. One can
even wonder how clothing and hair styles will demand
frequent font updates: #% #a %&.

In the math alphabets we have a couple of an-
noying holes because characters were already present
in Unicode, so now we forever have to deal with
those exceptions. But not so with emojis because
here eventually all variants will show up. Although a
character A in red or blue uses the same code point,
a white telephone (not in this particular font) and
black telephone & have their own. And because
obsolete scripts are already supported in Unicode
and more get added, we can expect old artifacts also
showing up at some time. Soon the joystick ea will
be an unknown item to most, while the Microsoft
hololens might get its slot.

‘ - ®
°s° ‘ e _o
U+1F423 U+1F424 U+1F425 front-
hatching chick baby chick facing baby chick

Figure 3: Will all animals come in all stages of
development?

For sure these mechanisms will evolve and to
what extent we support them depends on what users
want. At least we have the basics implemented.

¢ Hans Hagen

Pragma ADE
http://pragma-ade.com

Colorful emojis via Unicode and OpenType

306

Cowfont (koeieletters) update

Taco Hoekwater, Hans Hagen

Abstract

After ten years, the ‘koeieletters’ font is ready for an
update. The new version uses OpenType technology
to combine the existing four PostScript Type 1 fonts
into a single TrueType font. It’s sort of a coincidence
that at the tenth ConTEXt meeting, the font also
celebrates its tenth birthday.

1 A bit of history!
1.1 The artful beginnings

At TUG 2003 in Hawaii, Hans Hagen met with Duane
Bibby. Hans was looking for some small images to
enliven the ConTEXt manuals and Wiki. A cutout
of a very early sketch can be seen in figure 1, but
it was soon agreed that consecutive drawings were
going to be an alphabet.

Nothing much happened after that initial meet-
ing until the beginning of 2006 when Hans picked up
the thread and got Duane started drawing. The al-
phabet quickly progressed. Starting in a rather natu-
ralistic style like Duane’s ‘normal’ TEX drawings, but
later progressing toward a much more cartoon-like
style, as can be seen from the drawings in figure 2.

For ease of use, it was clear that these draw-
ings should ideally become a computer font. Taco
Hoekwater agreed to take care of the digitization,
and luckily the drawings were already prepared for
that. As can be seen from the leftmost closeup in fig-
ure 3, the cows are drawn inside a grid. This ensures
that they are all the same size, which is a vital re-
quirement for a font design. But of course this is a
proportional font in the end; it even has kerning and
ligatures!

The center drawing in figure 3 is a still rather
roughly inked version of one of the in-between draw-
ings (there were many). In this particular one you
can see that the mouth of the cow was originally
more or less oval, but in the final form (on the right)
it became much more hexagonal.

1.2 Digitization

The original sheets were sent to Pragma ADE by
regular mail in the beginning of March 2006. Hans
scanned the original sheets at 1200 dpi and then
forwarded the images to Taco. There were four sheets
in all, containing an alphabet with some accents,

I This section is an abbreviated version from our
article ‘The making of a (TEX) font’, MAPS 34 (2006),
pages 51-54. http://www.ntg.nl/maps/34/11.pdf

Taco Hoekwater, Hans Hagen

TUGDboat, Volume 37 (2016), No. 3

Figure 2: Rough design

Latin punctuation, and a number of TEX-related
logos and a few (mathematical) symbols.

The four sheets were digitally cut up into many
smaller pieces, each containing a single glyph for
the font. This being intended as a decorative font,
the character set does not even contain the com-
plete ASCII range. Nevertheless, almost a hundred
separate images were created.

These were then imported into FontForge. The
autotracer in FontForge, which is actually the stand-
alone autotrace program, does quite a good job
of tracing the outlines. But, interestingly enough,
only at a fairly low resolution. At higher resolutions
it gets confused and inserts more than a quadratic
amount of extra points as the resolution is increased.
Based on empirical tests, the images were scaled
to 40% of their original scanned size, resulting in
bitmaps that were precisely 1000 pixels high.

TUGboat, Volume 37 (2016), No. 3

Figure 3: Closeups of the progressive design stages of
the letter ‘A’.

Figure 4: Close-ups of autotracer output

As was to be expected, the autotracer brought
out many of the impurities in the original inked ver-
sion, as you can see in the left image of figure 4.
Luckily, the number of places where manual correc-
tions like this were needed was not so great to force
us to reconsider the digitization process.

A more severe problem can be seen in the right-
hand image of figure 4. The drawings contain hardly
any straight lines. For a font of this complexity, it
turned out to be absolutely necessary to simplify the
curves. Without simplification, the rendering speed
in PDF browsers became unbearably slow. All of the
near-horizontal stripes in the bellies were manually
removed and replaced by geometric straight lines.

The final stage in the font editor is to add
the PostScript hinting. A screenshot of a manually
hinted letter is visible in figure 5.

1.3 Finishing the font

The font was saved as two separate PostScript Type 1
fonts, one with the text glyphs and one containing the
logo glyphs. The text font is named ‘koeieletters’,
the logo font ‘koeielogos’. ‘Koeieletters’ literally
translates from Dutch to English as ‘cowcharacters’,
but the word ‘koeieletter’ is also used to indicate an
enormous character, as in a billboard, for instance.

Eventually it turned out that we needed a second
set of two fonts. Sometimes you want to have text
in the cowfont but on top of a colored background.
The background would then shine right through the
hide of the cow and that was of course unacceptable.
Hence, we also have the fonts ‘koeieletters-contour’
and ‘koeielogos-contour’.

307

|
e

Figure 5: Finished outline

Here is the final ‘A’, in the normal and the
contour version:

3

\ A~ S—]

2 Updated version

In ConTEXt MKIV, we prefer not to use Type 1 fonts,
and definitely not the tfm-based trickery that was
needed to get the ‘koeieletters’ font performing at
its best. Advances in font technology have made it
possible to combine all glyphs into a single OpenType
font, which goes by the name koeielettersot.

2.1 Mathematics

The original Type 1 font already had a math compan-
ion but the new font supports math via its ‘MATH’
table, allowing it to be used for math typesetting just
like the other OpenType math fonts that ConTEXt
uses, with only a few minor differences:

e There are far fewer glyphs, due to a lack of orig-
inal artwork. You can imagine that providing
the full repertoire of Unicode math would be a
bit of a challenge.

e ConTEXt has to do some extra tweaking for the
horizontal extensible rules, including those that
are appended to radicals.

Cowfont (koeieletters) update

308

e There are no accented characters but much can
be achieved by enabling the compose feature.

2.2 Ligatures for logos

In this font, there is no ‘fi’ ligature. In fact there
are no ‘normal’ ligatures at all. However, there is
a dlig feature in the font which replaces words by
hand-drawn versions of those words, and the ss02
feature can be used to convert these further, into
nicer versions with a drop-shadow below.

2.3 Sheep

The numbers and plus and minus in the font can be
replaced by versions that resemble a sheep instead
of a cow, by enabling the ss01 feature.

2.4 Colorization

In mid-2016, the ConTEXt font loader started sup-
porting color fonts. Such fonts normally contain
emoji characters and for achieving the desired effect
two methods are available: overlays and SVG. The
first method is cleaner and naturally fits ‘koeielet-
ters’.

The trick is in splitting a glyph into overlaying
snippets that each can have a color from a palette.
Emoji fonts can provide multiple palettes so that
culturally-based colors can be supported. So even-
tually we could have black Frisian cows and brown
ones from the southern part or our country.

The implementation uses virtual fonts. This is
straightforward but the current way to inject the
needed color directives and information to cut-and-
paste the right character can interfere with the way
the backend flushes characters. As we managed it
with some hackery eventually the virtual font tech-
nology might be extended a bit for this purpose.

More challenging was to get math working. Not
so much math itself but where regular math fonts use
rules for extending radicals, over- and underbars and
fractions, we need to use something cowish. Possible
solutions are:

e Build the radicals from scratch using snippets:
this is cumbersome.

e Preroll with normal rules that get replaced in
the node list later: one has to know in what
ways TEX constructs glyphs because not every
rule is a radical one.

e Patch the math engine to support complex radi-
cals: after some experiments this was considered
too dangerous and messy.

e Make the math rules pluggable: adding more
callbacks makes no sense for this one exception.

Taco Hoekwater, Hans Hagen

TUGDboat, Volume 37 (2016), No. 3

e Make the math rules be (optional) user rules
that can be postprocessed: this was relatively
easy.

It should be clear that the last solution was
chosen. Of course it was not as trivial as we make it
sound. First, for radicals we need to register what
font we are dealing with so that we can get the right
snippets to construct a rule. For the other rules we
need to know the font as well and it happens that
no such information is available: rules don’t come
from fonts. The solution is in two new primitives:
% use math specific user nodes:

\mathrulesmode = 1
% the family to take rules from:
\mathrulesfam = \fam\textstyle

When set, special rules will be constructed that
carry the current size (text, script or scriptscript) and
family-related font. In the backend the serialization
of these rule nodes will trigger a callback (when set)
that can inject whatever is reasonable. Of course
these extensions are still somewhat experimental and
should be used with care.

2.5 Using the font

So how is this new font used? Although it is a special
kind of font that will seldom be used for a whole
document, you need to load it anyway. The easiest
way (in ConTEXt) is:
\loadtypescriptfile[koeielettersot]
\setupbodyfont [cows, 12pt]

Please take a look at type-imp-koeielettersot to
see how these fonts get set up. The beginning of
ConTEXt’s usual example Zapf quote (“Coming back
to the use of typefaces ...”) comes out as follows:

gy wgwsn e
FFED PUESRE €0
FETPRPEMFANSES) REEETIICNE
PESESSONOG: AT €Y TENE IR

LG R AR

Lo 8 2k

B e g B g 4T
(SEIETIEDS FRAET

Y

Le &

® & @

If you want a colored variant a bit more work
is needed. By default the cows are black and white.
If you enable color you will see the difference when
you show them on a background:

CoOHBIHE BACE FTO THE BSE OF
FRPEFACES 8 ELECTROS®IC
HRSE OF FTIE HEH

TIFLEBDiEG:
FCEOCRATHERS

When a font is loaded its color properties are
frozen because the backend needs to deal with it.

TUGboat, Volume 37 (2016), No. 3

[ﬁ@g@

lﬁ

!

2 6

309

= | B

Figure 6: A math formula rendered in ‘koeieletters’; cows above, sheep below.
The standard black rules in fractions and radicals are fixed in the next figure.

You can, however, influence the color with the colr
property before a font gets defined. This happens
just after loading the typescript file.

\definecolor [cowred] [r=.50]
\definecolor[cowgreen] [g=.50]
\definecolor[cowblue] [b=.50]
\definecolor[cowyellow] [y=.25]
\definefontcolorpalette[cows]

[cowgreen, cowyellow, cowblue, cowred]
\adaptfontfeature[sheepcolored] [colr=cows]

In the example below we show the sheep with
colors because we already defined the cows as black
and white. You can mix colors by defining fonts
explicitly. Note that we only use the second and
fourth color in these glyphs.

\usetypescript[all] [cowsotf]

\definefontcolorpalette[cows-1] [cowgreen,
cowyellow,cowblue, cowred]
\definefontcolorpalette[cows-2] [cowred,
cowyellow, cowblue, cowgreen]
\definefontcolorpalette[cows-3] [cowgreen,
cowyellow,cowred, cowblue]

\definefontfeature [cows-1]
[cowscolored] [colr=cows-1]

\definefontfeature [cows-2]
[cowscolored] [colr=cows-2]

\definefontfeature[cows-3]
[cowscolored] [colr=cows-3]

\definedfont [Cows*cows-1 at 30ptlred\quad

\definedfont [Cows*cows-2 at 30pt]green\quad
\definedfont [Cows*cows-3 at 30pt]lblue

REEED GRIEEED AEE

2.6 Math
As said, we can do math. Take this formula:

$\left(a + b - \frac1{200} \right) \times
\left [\sqrt{[AlX\right] \sqrt{\frac{a}{b}}$

This renders as shown in figure 6, cows above,
sheep below. The standard rules there don’t work
well, but figure 7 shows we can do better (imple-
mented with the \mathrulesmode mentioned above).

2.7 Logos

There’s a bunch of logos available. You can directly
request them but they can also be set automatically.

\definefont [CowsLogol
[koeielettersot*cowslogos sa c]
\definefont [CowsLigs]

[koeielettersot*cowsligatures sa cl
\definefontsynonym[CowsOnly]
[koeielettersot]

These definitions can be used to get the logos
shown in 8. The last two columns in the table are
typeset using:

\getnamedglyphdirect{CowsOnly}{contextlogo}

There are two more ligatures:

@E

and we leave it to you to figure out how to get them.
We end with the best of all: a colored logo.

\definefontsynonym
[CowsColored]
[koeielettersot*default,cowscolored]

\getnamedglyphdirect{CowsColored}{contextlogo}

Cowfont (koeieletters) update

310 TUGDboat, Volume 37 (2016), No. 3

E 8§ :
| L
[mem=L]al,

Figure 7: The same math formula as the previous figure, with matching rules created using \mathrulesmode.

[ﬁ@g@

input \CowsLogo \CowsLigs somelogo s_ome_lo_go

AR AN AT AN g/
PragmaAde S 9 é 2 @J_ﬁ

(\%fgﬁ w’z\;‘ \zﬁ 4 i
P
pragmaade LSRN %@_g- CREETD OF

context ? @%&1@ ‘jj
P EYE

TeX 3 . VRS

metafun @Ki@g “ i j@ @?ﬁ% R)g@”ﬁ“
Example (B hi Wﬁ :’ it @ B*Zﬁ v QZZ\;?QZ}@@
et SO goriaw oo
Wiki s e EIREEs
@i‘éﬁ%f Y R

Figure 8: Logos in ‘koeieletters’.

To make a quick start with these fonts, you can use
one of:

\setupbodyfont [koeieletters]
\setupbodyfont [cows]
\setupbodyfont [coloredcows]
\setupbodyfont [sheep]
\setupbodyfont [coloredsheep]

where the koeieletters variant equals sheep. This
is possible because we aliased the typescriptfiles to
the predefined typeface setups in the typescript file.

¢ Taco Hoekwater, Hans Hagen
ConTEXt Group
http://contextgarden.org

Taco Hoekwater, Hans Hagen

TUGboat, Volume 37 (2016), No. 3

Corrections for slanted stems in METAFONT
and METAPOST

Linus Romer

Abstract

Slanting an outline font may change the width and
angles of stems. The following article presents some
formulae to correct these effects and provides corre-
sponding METAFONT and METAPOST macros.

1 Slanting

Slanted typefaces are quite common; they are usually
called “oblique”. E.g., the URW Gothic L Book face
is slanted forward by an angle of ~ 10.5° resulting
in the URW Gothic L Book Oblique face:

Witz Witz

Indeed, even the italic faces in Computer Modern
are designed unslanted, to then be slanted forward
by an angle of arctan(0.25) ~ 14°:

Witz Witz

In this article, we will assume that slanting means
horizontal shearing, which is the correct expression
in mathematics. The following picture allows us to
describe slanting mathematically:

A
P(z,y) P'(x + sy,y)

Q(z,0)
Every coordinate vector (;) is mapped to (m—‘;sy)
where s is the slanting amount:

()= 1) 6)= ()
y 0 1) \y y
The directed angle o = arctan(s) denotes the slant-

ing angle. Note that s and o are negative if and only
if the slanting is backward.

)

2 Width correction for slanted stems

Slanting forward makes forward leaning outline stems
slimmer:

Conversely, slanting forward can make backward
leaning stems fatter:

311

\

This affects slanted glyphs. E.g., a “K” with even
width stems will have stems of different widths after

slanting:

Outline stems can be imagined to be drawn by a
razor pen of penwidth p.

f

We want to express the pen width p (before slanting)
in terms of the future stem width b’ (after slanting),
the drawing direction d and the pen angle 9.

N

—~

b/

In the figures above, d’ denotes the slanted vector d.
The angle § = angle(cf) is the directed angle between
(;) and d. The directed pen angle is denoted as
9. The distances b and b’ are the heights of the
nonslanted marked triangle and the slanted marked
triangle, respectively. As we know, slanting is an
area-preserving transformation. Hence, |d|-b = |d/|-V/

and thus
1 s >
. d "
bb’~|d/|b’~‘<0 1> - (1 5).d
|d| |d| 01/ |d|
By applying the definition of the sine function on
the non-slanted triangle sin |6 — ¢J| = 2, we obtain

the solution:
(1 s) d
0 1 |d]
(1)

sin (angle((f) —7)

/

p="b-

Corrections for slanted stems in METAFONT and METAPOST

312

This formula has been published for the special case
|angle(d) — 9] = 90° as “slant correction formula” by
Jackowski, Nowacki, and Strzelczyk, 2000.

Here is equation (1) as a macro in METAFONT
and METAPOST:

def penwidth(expr b,d,theta,s) =
b*abs (length((d/length(d)) slanted s)
/ sind(angle(d)-theta))

enddef;

3 Fitting given boxes

In the following subsections, we will fit diagonal
stems in some way into a given rectangular box, such
that the diagonal will have the required width b after
slanting. This is equivalent to the condition requiring
that diagonal stems of a required width b fit a given
slanted rectangular box (which is a parallelogram).

The following figures visualize the different mean-
ings of “fitting” a stem of width = 10 pt into a slanted
box of height = width = 50 pt.

Inscribing (first) diagonal leans forward:

N

Inscribing (first) diagonal leans backward:

Vv

Overlapping (last) diagonal leans backward:

/\

Overlapping (last) diagonal leans forward:

Vv

“Half inscribing” chained diagonals:

/\

The source code for the preceding figures is given in
subsection 3.4.

<N/~ N\

Linus Romer

TUGhboat, Volume 37 (2016), No. 3

3.1 Inscribing diagonals
3.1.1 First diagonal forward

First, we are trying to inscribe a forward diagonal
stem of width b into a rectangular box of width ¢ and
height y which was slanted by a slanting amount s.
We will try to find the penwidth p as depicted below.
Jackowski, Nowacki, and Strzelczyk (2000) have al-
ready algorithmically solved this problem by defining
the binary operator /\. Here, we will find an exact
solution.

< > < >

C Cc

We can generalize the situation by introducing the
variable a, which may be toggled between 1 and 2 and
which stands for the number of inscribed (chained)
diagonals. The situation for a = 2 is shown below:

A
Y
A
Y
A
A

The small rectangular triangle at the left foot leads
to the relation

b

- sin 8]
The sine theorem for the left large triangle yields
(remember that cos(o) > 0)

q _ y/ cos(a).
sin (90° — (|B| + o)) sin | 3]

TUGboat, Volume 37 (2016), No. 3

Hence, we obtain
_ ysin (90° — (|8 + o))
cos(o) sin | 8|
_ ycos(|B] + o)
cos(o) sin | 8]

~cos || cos(o) — sin [B]sin(o)

cos(o) sin | 3]

=y- (cot 18] — tan(a)) (2)

Y- <\/1/sin26|1s>
—y (VAT T).

Looking at the total width ¢, we get
c=p+aq=p+ay(p?/(0? —1) —5>-
As p?/b? > 1, this is an ordinary quadratic equation
with the solutions
—b(c + asy) £ ay\/(c + asy)? + a2y? — b2
a2y? — b2 :

Because —b(c + asy) < 0, we are left with the only
non-negative solution:

—b(c + asy) + ay\/(c + asy)? + a2y? — b2
’ a2y? — b2

p=">-

p=>b

3.1.2 First diagonal backward

Again
b
P= Sin 18]
The sine theorem for the left large triangle yields
q _ y/cos(o)

sin (90o — (18] - U)) ~ sin|B|

Analogously as in subsection 3.1.1, we obtain

q:y-(p2/(b2*1)+5)-

313
The equation

c=p+aq=p+ay-(pQ/(b2—1)+8)

then leads to the solution

—b(c — asy) + ay/(c — asy)? + a2y® — b2
a2y? — b2 :
(4)

p=b-

3.1.3 Generalization

After introducing the boolean variable e:

{—1
e =
1

we can generalize equations (3) and (4) to

if first stem is leaning backward

otherwise

—b(c + aesy) + ay+/(c + aesy)? + a2y? — b2
a2y? — b2

p=">b-

Replacing the b’s and c’s by b, = § and c. =
(avoiding arithmetic overflow) yields

—by(ce + aes) + ar/(cc + aes)? + a2 — b?
' a2 — b?
b

p=">
(5)
If we calculate the diagonal ratio p/b with equa-

tion (5) for the slanting amount s = 0, we get the
Computer Modern macro diag_ratio (Knuth, 2002):

—bpce + ar/c. + a? — b}

2 _ 12
a by

diag_ratio(a, b,y,c) = b -

Thus, Computer Modern letters like A, V, A are
computed without slanting corrections. Because of
the unequal stem widths, this is not visible for the
serif faces. However, the sans faces have uneven stem
widths after slanting:

V V

Equation (5) as a METAFONT/METAPOST macro:

vardef penwidthin(expr a,e,b,c,y,s) =
numeric bb,cc; bb=b/y; cc=c/y;

b* (-bb* (cctaxexs) +a*xsqrt ((cctakxexs) **2
+a*a-bb*bb))/ (a*a-bb*bb) enddef;

Corrections for slanted stems in METAFONT and METAPOST

314

3.2 Overlapping diagonals
3.2.1 Last diagonal backward

4
Y
Y
Y
Y
Y

p q q

Cc r

A
v

The situation is almost the same as in subsection

3.1.1, the only difference being that the diagonals

start outside the box and that we are looking for r:
d

~ sin ||

The sine theorem for the right large triangle yields
g _ y/cos(o)
sin (90° — (|6 — o)) sin |4
Analogous to subsection 3.1.1, we obtain
qg=y- (cot|d] + tan(c)) (6)
—y- (VI 1) +5).
Again, we write the total width as
c=a-q—r=ay- (r2/(d271)+s> -
As long as ay > d, the only nonnegative solution is
d(c — asy) + ay+/(c — asy)? + a?y? — d2
a2y? — d2 .
(7)

r=d-

3.2.2 Last diagonal forward

Analogous to the difference between subsection 3.1.2
and 3.1.1, this subsection differs from subsection 3.2.2
in changing (90° — |§]| 4 o) to (90° — |6| — o). Hence,
it suffices to substitute s by —s in equation (7):
d(c+ asy) + ay+/(c + asy)? + a2y? — d>
a2y? — d2
(8)

3.2.3 Generalization

As in subsection 3.1.3, we are able to generalize the
equations (7) and (8) after introducing

{—1
e =
1

Linus Romer

if last stem is leaning backward

otherwise

TUGhboat, Volume 37 (2016), No. 3

to

d(c+ aesy) + ay+/(c + aesy)? + a2y — d>

r=d- a?y? — d?

Replacing the d’s and ¢’s by dg = g and ¢, = 5
(avoiding arithmetic overflow) yields

da(ce + aes) + ar/(c. + aes)? + a% — d?
r=da- a? —d> .

(9)

Equation (9) as a METAFONT/METAPOST macro:

vardef penwidthover(expr a,e,d,c,y,s) =
numeric dd,cc; dd=d/y; cc=c/y;
dx (dd* (cctaxex*s)+a*xsqrt ((cctaxe*s) x*2
+a*a-dd*dd))/ (a*a-dd*dd) enddef;

Of course, equations (5) and (9) could again be easily
united to one single equation.

3.3 Half inscribing diagonals

We are looking at two chained diagonals which fit
the given box such that each penwidth is half inside
the box. In contrast to the preceding problems,
we do not have to consider the case with only one
diagonal (a = 1) as this case is already covered with
equation (1).

A
v

If we combine the equations (2) and (6) and include
the boolean variable e from subsection 3.1.3, we
obtain

y- (cot|B| —es) =y (cot|d] + es)
= cot|d| = cot |B| — 2es.

TUGboat, Volume 37 (2016), No. 3

Looking at the total width ¢, we obtain

c=0.5p+2q—0.5r
= 2c=p+4q—r

= QC:b\/HTtQW‘F‘ly(COt'B'_eS)

- d\/l + (cot |B| — 268)2.

This quartic equation can be solved exactly for cot | 3],
but the exact solution is long and tedious. For ap-
plications, this equation is best solved numerically,
e.g., by the bisection method. In the end, we will
find both widths p and r by

p=by/1+ cot? |3

r= d\/l + (cot || — 265)2.
The implementation in METAPOST with the bisec-
tion method returns the pair (p,r):

vardef poswidthhalf(expr e,b,d,c,y,s) =
numeric bb,cc,dd,ta,tb,t; % t=cot(beta)
bb=b/y; dd=d/y; cc=c/y;

ta=-100; tb=100; % boundaries

forever:

exitif abs(ta-tb)<=eps;

t:=.5[ta,tb];

if bb* (1++t)+4* (t-e*s)-dd* (1++(t-2%e*xs))

-2%cc>0: tb else: ta fi:=t;
endfor
(b* (1++t) ,d* (1++(t-2*e*s))) enddef;

3.4 Source codes for the box fitting figures

In the following, all METAPOST sources of the ten
figures at the beginning of section 3 are given as
building blocks in a compact form. The most impor-
tant figures for font design are probably figures 0-3.

beginfig(0);

w:=50pt; h:=560pt; s:=.25; z11=(0,0); z2r=(w,h);
z1r-z11=z2r-z21=(penwidthin(1,1,10pt,w,h,s),0);
penstroke zle--z2e slanted s; endfig;

beginfig(1);

w:=50pt; h:=b60pt; s:=.25; z11=(0,0); z4r=(w,0);
z3r=z2r; y2r=h; x4r-x2r=x2r-xir;
z1r-z11=z2r-z21=(penwidthin(2,1,10pt,w,h,s),0);
penstroke zle--z2e slanted s;

z3r-z31=z4r-z41 =(penwidth(10pt,z3r-z4r,0,s),0);
penstroke (z3e--z4e) slanted s; endfig;
beginfig(2);

w:=50pt; h:=b60pt; s:=.25; z11=(0,h); z2r=(w,0);
z1r-z11=z2r-z21=(penwidthin(1,-1,10pt,w,h,s),0);
penstroke (zle--z2e) slanted s; endfig;

beginfig(3);
w:=50pt; h:=50pt; s:=.25; z11=(0,h); z4r=(w,h);
z3r=z2r; y2r=0; x4r-x2r=x2r-xir;
z1r-z11=z2r-z21=(penwidthin(2,-1,10pt,w,h,s),0);
penstroke (zle--z2e) slanted s;
23r-z31=z4r-z41=(penwidth(10pt,z3r-z4r,0,s),0);
penstroke (z3e--z4e) slanted s; endfig;

315

beginfig(4);
w:=50pt; h:=b0pt; s:=.25; zlr=(0,h); z21=(w,0);
z1r-z11=z2r-z21=(penwidthover(1,1,10pt,w,h,s),0);
penstroke (zle--z2e) slanted s; endfig;
beginfig(5);
w:=50pt; h:=50pt; s:=.25; z1r=(0,0); z41=(w,0);
z3r=z2r; y2r=h; x4r-x2r=x2r-xlr;
z3r-z31=z4r-z41=(penwidthover(2,1,10pt,w,h,s),0);
penstroke (z3e--z4e) slanted s;
z1r-z11=z2r-z21=(penwidth(10pt,z2r-z1r,0,s),0);
penstroke (zle--z2e) slanted s; endfig;
beginfig(6);
w:=50pt; h:=b0pt; s:=.25; z1r=(0,0); z21=(w,h);
zlr-z11=z2r-z21
=(penwidthover(1,-1,10pt,w,h,s),0);
penstroke (zle--z2e) slanted s; endfig;
beginfig(7);
w:=b0pt; h:=b0pt; s:=.25; z1lr=(0,h); z4l=(w,h);
z3r=z2r; y2r=0; x4r-x2r=x2r-xir;
z3r-z31=z4r-z41=(penwidthover(2,-1,10pt,w,h,s),0);
penstroke (z3e--z4e) slanted s;
z1r-z11=z2r-z21=(penwidth(10pt,z2r-z1r,0,s),0) ;
penstroke (zle--z2e) slanted s; endfig;
beginfig(8); w:=50pt; h:=50pt; s:=.25;
.5[z11,z1r]1=(0,h); .5[z41,z4r]=(w,h); z3r=z2r;
y21=y2r=y31=0; yll=y4l=h; x4r-x2r=x2r-xir;
(x1r-x11,x4r-x41)=(x2r-%x21,%x3r-%x31)
=poswidthhalf (-1,10pt,10pt,w,h,s);
penstroke (zle--z2e) slanted s;
penstroke (z3e--z4e) slanted s; endfig;

beginfig(9); w:=50pt; h:=50pt; s:=.25;
.5[z11,z1r]1=(0,0); .5[z41,z4r]=(w,0); z3r=z2r;
y21=y2r=y31=h; yll=y41=0; x4r-x2r=x2r-xir;
(x1r-x11,x4r-x41)=(x2r-x21,x3r-x31)
=poswidthhalf (1,10pt,10pt,w,h,s);

penstroke (zle--z2e) slanted s;

penstroke (z3e--z4e) slanted s; endfig;

Note: If you use mfplain.mp or METAFONT, you do

not need to write slanted s every time, as this can

easily be solved globally.

4 Apex correction

Of course, you generally do not want to join two
chained diagonals directly, but you want them to
overlap by an amount apex_corr as depicted below
on the left:

— —
apex_corr apex_corr

This does not require any new calculation formulae.

For calculations, one just needs to add the apex_corr

to the box width. In the METAFONT sources of

Computer Modern (Knuth, 2014), the same trick is

applied.

Corrections for slanted stems in METAFONT and METAPOST

316

5 Drawn outline borders

Drawn lines do normally not need slanting correc-
tions, because the paths are slanted first and drawn
in the end:

N\

In the italic faces of Computer Modern, serifs are
not only filled but also stroked. However, the joining
stems are sometimes filled only. This creates bumps
in letters like A, K and X (Jackowski, Ludwichowski,
and Strzelczyk, 2009).

How can we avoid this effect? The formulae presented
in section 3 are still valid for an additional circular
border pen of width py if we use clever substitutions.

o

The METAPOST code for the upper right figure is
indicated below:

beginfig(10); w:=80pt; h:=80pt; s:=.5; pb:=20pt;

pickup pencircle scaled pb slanted s;

1ft x11=0; bot y11=0; rt x2r=w; top y2r=h;
z1lr-z11=z2r-z21
=(penwidthin(1,1,50pt-pb,w-pb,h-pb,s),0);

pickup pencircle scaled pb;

filldraw zle--z2e slanted s; endfig;

6 Orthogonally cut slanted stems

For this section, the pen angle of the stem shall
be exactly orthogonal to the stem direction d after
slanting.

Linus Romer

TUGDboat, Volume 37 (2016), No. 3

We want to find the pen angle « before slanting.

In the preceding figure we find

cot(—a) = | sd +d—§ o d —S—FL
o Yody+sd, | Y dy + sdy’

as long as d, + sd, # 0. If d, + sdy = 0, the stem is
vertical after slanting and we have the trivial solution
a = 0. Therefore,

S<+._J£L_
angle < dml-‘rde) ifd, +sdy #0
o= —

0 otherwise.
(10)
Equation (10) as a METAFONT/METAPOST macro:
def angleortho(expr d,s) =
if xpart(d)+s*ypart(d)>0:

angle (s+ypart(d) /(xpart(d) +s*ypart(d)),-1)
else: 0 fi enddef;

References

Jackowski, Bogustaw, J. B. Ludwichowski, and
P. Strzelczyk. “Math fonts: notes from the
trenches”. ntg.nl/EuroTeX/2009/slides/
jacko-slides.pdf, 2009.

Jackowski, Bogustaw, J. Nowacki, and
P. Strzelczyk. “Antykwa Poéltawskiego: a
parameterized outline font”. MAPS 25, 86-102,
2000.
ntg.nl/maps/25/13.pdf.

Knuth, Donald E. “The base file for Computer
Modern”. ctan.org/tex-archive/fonts/cm/
mf /cmbase .mf, 2002.

Knuth, Donald E. “Computer Modern Roman
upper case”. ctan.org/tex-archive/fonts/
cm/mf /romanu.mf, 2014.

¢ Linus Romer
Oberseestrasse 7
Schmerikon, 8716
Switzerland
linus.romer (at) gmx dot ch

TUGboat, Volume 37 (2016), No. 3

GUST e-foundry font projects

Bogustaw Jackowski, Piotr Strzelczyk and
Piotr Pianowski

What is a document? It is a sequence of rectangles
containing a collection of graphic elements.

What is a font? It is a sequence of rectangles containing
a collection of graphic elements.

— Marek Ryc¢ko

1 Introduction

The Polish TEX Users Group (GUST) has paid at-
tention to the issue of the fonts since the begin-
ning of its existence. In a way, it was a must, be-
cause the repertoire of the diacritical characters of
the Computer Modern family of fonts (CM), “canon-
ical” TEX family defined as the Metafont programs
(see [5]), turned out to be insufficient for the Polish
language. The efforts of the GUST font team (GUST
e-foundry), led by Bogustaw Jackowski, were kindly
acknowledged by the professor Donald E. Knuth:

ua 4“"‘ Jé@“ W//é&ffﬁ(fb $e

o b ailhot Bl ol o TEX

‘@/Wﬂj yesrs — ond T hwmily

R L i R C/

e g ot Conepe Mo fohs)
2= T

Obviously, our first fonts were PK bitmap fonts pro-
grammed using Metafont. Alas, the TEX/Metafont
bitmap font format never became the world-wide
standard. Therefore, the next step were fonts in the
PostScript Type 1 format which fairly soon became
obsolescent and was replaced by the OpenType for-
mat (OTF, a joint enterprise of Microsoft and Adobe,
1996, see [31]) which is actually a common container
for the Adobe PostScript Type 1 and Microsoft True-
Type (TTF) formats. In 2007, Microsoft extended
the OTF standard with the capability of typesetting
math formulas, largely based on ideas developed for
TEX, and implemented it in MS Office. Soon, TEX
engines were adapted to process such math OTF
fonts. Therefore our recent fonts are released in the
OpenType format, which also makes them easily us-
able outside of the TEX realm.

So far, no OTF successor is in sight, which is
both good and bad (cf. Section 7.4).

We published our partial results successively as
the work progressed. This paper provides an overall
summary of our work: it describes the collections of
fonts prepared by the GUST e-foundry, deals with
some technical issues related to the generation of

317

fonts and their structure and puts forward a few
proposals concerning future works.

This is not an overly strict report, but rather a
story about our technical work on fonts, illustrated
by representative examples which, we hope, show
the essence of the matter. In order to keep our nar-
ration smooth, we decided not to use formal captions
with explanations to figures and tables (only num-
bers of figures and tables are given). The relevant
detailed descriptions always appear in the main text.

2 Historical background

PostScript and TEX are genetically related: their
common ancestor is the ingenious idea of a program-
ming language for the description of documents un-
derstood as a sequence of rectangular pages filled
with letters and graphics. Both projects were de-
vised nearly at the same time—at the turn of the
1970s to the 1980s.! And both are still alive and
well, proving that the idea behind both projects was
indeed brilliant.

From our perspective, the most important thing
in common, and at the same time a key distinc-
tive element, was the different handling of fonts and
graphics; in other words, both systems clearly distin-
guished illustrations from fonts. That approach was
justified by the computer technology at that time.

For both TEX and PostScript, fonts were exter-
nal entities, both used metric files plus files defining
glyph shapes, both defined contours as Bézier splines
(planar polynomials of the 3¢ degree), and for both
fonts were to be prepared separately with dedicated
font programs, prior to creating documents.

And this exhausts the list of similarities.

TEX worked with binary metric files, TFM; its
output, a device independent file (DVI), was pro-
cessed by so-called drivers which made use of the
“proper” fonts, that is, the relevant bitmap collec-
tions, and produced output that could be sent to a
printer or to a screen. The bitmaps were prepared
independently with the Metafont program(s) which
interpreted scripts written in the Metafont language
and generated TFM and bitmap files.

In Metafont, the shapes of glyphs are defined
as Bézier curves, stroked with a “pen” and/or filled.

Basic PostScript fonts (i.e., Type 1; see [28])
employ contours defined as non-intersecting closed
Bézier outlines which can only be filled.? The “filled

1 Formally, TEX was released a little earlier— TEX in
1982, PostScript in 1984, both with earlier work.

2 The PostScript Type 1 documentation [28], p. 34, men-
tions the possibility of stroking: a Type 1 font program can
also be stroked along its outline when the user changes the
PaintType entry in the font dictionary to 2. In this case,

GUST e-foundry font projects

318

outline” paradigm relates also to the Microsoft TTF
format and, thereby, to the OTF format.

PostScript Type1 fonts are usually (but not nec-
essarily) accompanied by corresponding ASCII met-
ric files (AFM), not used by the interpreters of the
PostScript language. In the Microsoft Windows op-
erating system, making an already complex situa-
tion even more complex, binary printer font met-
ric files (PFM) were introduced for Windows drivers
that used PostScript Type 1 fonts.

For a long time, only commercial programs for
generating PostScript Type 1 fonts were available.
Only in 2001, George Williams released his remark-
able FontForge program (initially dubbed PfaEdit;
[25]). FontForge can generate outline fonts in many
formats, including PostScript Type 1 and OTF.

PostScript was promptly (and rightly) hailed as
the standard for printers and, more importantly, for
phototypesetters, therefore a driver converting DVI
files to PostScript became necessary. Fortunately
for TEXies, PostScript is equipped also with Type 3
fonts; glyphs in Type 3 fonts can be represented by
nearly arbitrary graphic objects, in particular, by
bitmaps, therefore the making of a PostScript driver
for converting DVI files to PostScript was possible al-
ready in 1986, when Dvips, the first and still most
popular driver was released by Tomas Rokicki. (It’s
a pity that the idea of Type 3 fonts was not sup-
ported and developed by Adobe.)

There were a few unsuccessful attempts to con-
vert the basic TEX font collection, CM, to the Post-
Script Type 1 format automatically, thus preserving
the parameterization. The main hindrance was the
excessive usage of stroked (both painted and erased)
elements in the CM font programs, while, as was
mentioned previously, the PostScript Type 1 and
OTF formats accept only filled shapes.

The “filled outline” paradigm was a convenient
optimization at the beginning of the computer type-
setting era, when, for example, the generating of the
complete collection of bitmaps for the CM fonts at
resolution, say, 240 dots per inch (typical for dot
matrix printers) took a few days. Nowadays, the
paradigm still thrives by virtue of tradition: there
is an abundance of such fonts and, and what is worse,
all operating systems support only this kind of font.

3 First steps

Taking the above into account, we made up our
minds to design our own programmable system for
generating fonts in “world-compatible” formats.

overlapping subpaths will be visible in the output; this yields
undesirable visual results in outlined characters. In practice,
this possibility is not used.

TUGDboat, Volume 37 (2016), No. 3

3.1 Our tools

Our primary tool was MetaPost [4], a successor of
Metafont, which promised well as a tool for mak-
ing PostScript Type 1 fonts due to its native Post-
Script output. We called our MetaPost-based pack-
age MetaType 1 [13]. It was instantiated as a set of
scripts using, besides MetaPost, Tlutils, that is, Lee
Hetherington’s (dis)assembler for PostScript Type 1
fonts (cf. [3, 4]). A few scripts written in Gawk and
Perl were also employed.

On the one hand, such a simple approach turned
out to be insufficient for generating OTF fonts, in
particular OTF math fonts. On the other hand, it
turned out to be flexible enough to include an extra
external step for making OTF fonts. For text fonts,
we employed the Adobe Font Development Kit for
OpenType (AFDKO [26]); for math fonts, the Font-
Forge library governed by Python scripts [15, 25].
In the future, we want replace AFDKO by a Font-
Forge+Python utility (cf. Section 7).

A set of MetaPost macros in the MetaType 1
package defines two important procedures, essential
for generating non-intersecting outlines and heavily
used in our font programs: finding a common outline
for overlapping figures, known also as removing over-
laps, and finding the outline of a pen stroke, known
as expanding strokes or finding the pen envelope.

Another important feature, hinting, is imple-
mented, but, in the end, we decided to avoid man-
ual hinting, since it is difficult to control and yields
mediocre results. Metafont has no notion of hint-
ing — the Metafont language simply offers rounding.
Moreover, the language for describing outlines in
PostScript Type 1 fonts cannot express even as triv-
ial a mathematical operation as rounding.

For low-resolution devices, controlled rounding
is crucial —hence the idea of “hinting”, that is, con-
trolled rounding. Alas, hinting algorithms remain
undisclosed, especially with regard to commercial
typesetting devices such as phototypesetters. One
can presume, however, that low-resolution devices
are bound to disappear sooner rather than later: the
resolution of display devices has reached almost 600
dpi and 1200 dpi (and more) for printers is nowa-
days nothing special. Therefore, running with the
hare and hunting with the hounds, we decided to
hint our recently released OTF fonts automatically
with FontForge.

3.2 Trying our tools out

We tested our newborn MetaType 1 engine against
a simple example, namely, Donald E. Knuth’s logo

Bogustaw Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3

font [17]: the sources, originally written in the Meta-
font language, were adapted to MetaTypel’s require-
ments. The distributed package contains both Meta-
Type 1 sources and the resulting PostScript Type 1
files for the logo font [13].

The test proved the usefulness of the approach;
hence, in 1999, we started a larger project: the pro-
gramming of the long-established Polish typeface
Antykwa Poéltawskiego as a parameterized font. The
preliminary family of fonts was released in 2000. Ten
years later, prompted by the TEX community, we
released the enhanced version of Antykwa Péltaw-
skiego with the relevant OTF files [7]. In parallel,
Janusz M. Nowacki used MetaType 1 to generate
several replicas of Polish fonts, namely, Antykwa To-
ruriska, Kurier, Iwona, and Cyklop [22].

4 Latin Modern collection of fonts

Recall that the repertoire of diacritical characters in
CM fonts was insufficient for most languages using
diacritical characters. The TEX accenting mecha-
nism (the \accent primitive), meant as a solution to
this problem, was unsatisfactory — for example, ac-
cents and hyphenation conflicted. The problem was
recognized relatively early and various approaches
were used to remedy the situation.

For example, the Polish extension of CM in the
PK format was prepared in Poland (PL fonts, [8]),
but this worked only for Polish TEXies.

Also worthy of note is the European Computer
Modern Fonts (EC) project led by Jérg Knappen and
Norbert Schwarz, triggered during the TEX Users
Group conference in Cork, 1990, and finished in
1997 [16]. The EC metric files, however, are slightly
incompatible with CM metric files, by circa 0.025%.3

A rather general technique was applied by Lars
Engebretsen, who attempted to eliminate the ne-
cessity of using the \accent primitive by making
virtual fonts, dubbed Almost European (AE), con-
taining quite a large set of the European diacritical
characters [1].

Hyphenation worked with AE fonts, though still
unsatisfactorily — for example, coinciding of such ac-
cents as cedilla or ogonek with a main glyph is incon-
venient when a non-intersecting outline is required
(for cutting plotters, for outlined titles, and so on).
Moreover, the virtual fonts are obviously unusable
outside the TEX realm.

3 The reason behind this discrepancy is a peculiarity of
Metafont arithmetic: the formula 1/36 * ¢ yields different
results than the formulas /36 and 1/36¢; for example, for
i = 3600 the results are 99.97559 for the first formula and
100 for the latter formulas. The first formula was used in the
EC fonts (in the gendef macro).

319

4.1 Latin Modern fonts in the PostScript
Typel format

In 2002, during the EuroBachoTEX meeting, a pro-
posal of converting Engebretsen’s AE fonts into the
PostScript Typel format and augmenting with them
the set of necessary diacritical characters was put
forward by representatives of European TEX user
groups. We had no choice but to accept the pro-
posal with delight.

Our initial plan was to use the AE fonts as our
departure point; we even wanted to preserve the orig-
inal name, Almost European, coined by Lars Enge-
bretsen. It turned out, however, to be much more
efficient to prepare the enhanced version of the CM
fonts from scratch, and so sticking to Lars Enge-
bretsen’s name seemed inadequate, because the dif-
ferences were too essential.

All in all, inspired by both EC and AE fonts,
we came up with the Latin Modern (LM; see [11])
project which was accepted by the user groups.

Fortunately for us, freely available quality CM
fonts in the PostScript Type 1 format already ex-
isted. In the 1980s and 90s, they were produced
(from traced bitmaps improved by very solicitous
manual tuning) for commercial purposes by Blue
Sky Research and Y&Y. Nearly a decade later, they
were released to the public thanks to the efforts of
the American Mathematical Society.*

We converted the PostScript Type1 files of the
CM fonts to MetaType 1 and wrote the MetaPost
software relevant for generating the characters we
decided to add (mainly diacritical letters). The work
had already been partially done by Janusz M. No-
wacki, who prepared the PostScript Typel version of
the PL fonts in 1997. The official version of the LM
fonts, 1.000, was eventually released in 2006 (in the
meantime, several unofficial versions were released
for testing purposes). The LM collection of fonts
consisted of 72 text fonts, each counting about 700
glyphs, plus 20 CM-like math fonts.

In 2009, an extensive revision of the LM fonts
was carried out: the text fonts now contain more
than 800 glyphs each (altogether more than 60,000
glyphs) and the glyphs conform to the changes in-
troduced by Donald E. Knuth in 1992.

4 Tn 1997, a consortium of scientific publishers (American
Mathematical Society, Elsevier Science, IBM Corporation, So-
ciety for Industrial and Applied Mathematics, and Springer-
Verlag) in cooperation with Blue Sky Research and Y&Y de-
cided to release these excellent fonts non-commercially; in
order to assure the authenticity of the fonts, copyright was
assigned to the American Mathematical Society. (http://
www.ams.org/publications/typel-fonts).

GUST e-foundry font projects

320

Almost all of the CM text fonts have counter-
parts in the LM family; the exceptions are one mono-
spaced font, cmtex10, emulating Donald E. Knuth’s
keyboard layout, and the rarely used cmf£10, cmfi10,
cmfib8, and cminch. So far, nobody has complained
about this inconsistency. Instead, encouraged by
Hans Hagen, we decided to create 10 variants of
typewriter LM fonts not having counterparts in the
CM family: 1mt1c10, Imtk10, lmt110, lmvtk10, and
1mvt110 (monospaced light condensed and mono-
spaced and variable-width dark and light, respec-
tively) plus their oblique variants 1mtko10, Imt1o10,
1mtlco10, 1lmvtko10, and 1mvtlo10.

4.2 Latin Modern fonts in the OTF format

It was relatively easy to prepare the LM family of
fonts in the OTF format using the AFDKO package:
it mainly necessitated preparing a few extra data
files in the OpenType Feature File Specification lan-
guage [32]. Needless to say, the experience gathered
at this stage came in handy during the work on the
TG fonts (see Section 5).

There was trouble, however, with the 20 math
fonts. We provided the respective LM equivalents
in PostScript Type1 format. For compatibility with
the (obsolete) PL fonts, the symbol fonts, lmsy* and
lmbsy*, contain two extra glyphs: slanted greater-
or-equal and less-or-equal signs, used traditionally
in Polish math typography. As the math extension
for OpenType did not exist yet, we decided not to
convert these fonts to OTF. We knew that the com-
panies that had invented and maintained the OTF
standard, in cooperation with the American Mathe-
matical Society and the Unicode Consortium, were
working on extending the standard with math type-
setting capabilities. We expected that by using the
enhanced OTF specification we would be able to cre-
ate a TEX-compatible math OTF collection. Alas,
the Unicode Consortium report on Unicode support
for mathematics [37], followed by the initially confi-
dential Microsoft specification [29], snuffed out our
hopes. It turned out that OTF math and TEX math
cannot be reconciled. More information on the inter-
relationships between OTF and TEX math can be
found in Ulrik Vieth’s thorough analysis [24].

4.3 Repertoire issues

Our primary aim was to provide a repertoire of dia-
critical letters rich enough to cover all European lan-
guages. We thoroughly exploited Michael Everson’s
comprehensive study of European alphabets [2], as
well as other sources. Several other languages using
Latin-based alphabets, such as Vietnamese, Navajo
and Pali, are covered.

TUGDboat, Volume 37 (2016), No. 3

Initially, contrary to the Latin Modern name,
we considered including Cyrillic alphabets also. Hav-
ing thought the matter over, we decided, with regret,
to abandon this idea and concentrated our efforts on
OTF math fonts.

Besides diacritical characters, the Latin Mod-
ern fonts contain also a number of glyphs tradition-
ally present in TEX fonts, such as Greek symbols,
currency symbols, technical symbols, etc. Detailed
description of the contents of the fonts can be found
in the document entitled The Latin Modern Family
of Fonts. Technical Documentation, included in the
LM distribution package [11].

Two groups of glyphs are widely used in typog-
raphy but neglected to a certain extent in the CM
fonts, namely, caps and small caps and old style nu-
merals, also known as text figures or nautical digits;
the latter name originates from their widespread use
in tables in nautical almanacs at one time. For rea-
sons hard to explain, the caps and small caps were
implemented in the CM family as a separate font,
while the old style numerals (upright!) are in the
math italic font (cmmix).

The LM fonts incorporated caps and small caps
from the CM family, together with its width idiosyn-
crasy: the 1lmcsc10 font, like cmcsc10, has capital
letters wider than the 1mr10 font by circa 8%. There
are two caps and small caps fonts in the LM collec-
tion, namely, the regular and typewriter specimen,
1mcsc10 and 1lmtcscl0, as in CM, plus their oblique
variants, Imcsco10 and lmtcscol0, absent from CM.
In principle, small caps glyphs could be transferred
to other fonts, but we decided to not alter the fram-
ing of the original CM family, more so as CM has no
sans-serif caps and small caps; however, the prob-
lem of extending the LM family with bold counter-
parts of lmcsc10 and lmtcscl0 (and their oblique
variants), raised repeatedly by CM/LM users, needs
serious consideration.

Concerning old style numerals, we could not ac-
cept the CM oddity and included them in all text
fonts of the LM family. Further, all numerals come in
2 ‘flavors’: normal (fixed-width a.k.a. tabular) and
proportional (variable-width, having balanced side-
bearings) which altogether yields 4 variants—see
Figure 1.

The TFM format contains only 256 slots for
glyphs, thus, the whole repertoire of glyphs cannot
be accessed at once if TEX is used in a “traditional”
way, that is, with TFM files. In particular, access-
ing the different kinds of numerals when using Post-
Script Type 1 fonts plus TFM metrics turns out to
be clumsy; as a result, only tabular old style numer-
als are available in our package, in the TS1 encoding

Bogustaw Jackowski, Piotr Strzelczyk and Piotr Pianowski

Figure 1

<

S0 0 0

TUGDboat, Volume 37 (2016), No. 3
tabular (“normal’)

proportional

tabular old style ‘6‘ ‘8‘

proportional old style ’6‘ ‘8‘
(see below). On the one hand, OTF fonts seem more
convenient as they do not impose such a restriction;
for example, all numerals can be accessed by using
the OTF feature mechanism, more precisely, by the
features onum, lnum, pnum, and tnum [33]. On the
other hand, OTF metric data cannot, in general, be
fully compatible with TFM metric data because the
glyph widths in OTF fonts must be represented by
integer quantities. This should be considered a draw-
back by TEXies — see Section 4.4.

Following the KTEX tradition, we provided sev-
eral encodings for the LM fonts, namely:

CS (CS TUG) encoding (cs—*.tfm),

EC (Cork) encoding (ec-*.tfm),

L7X (Lithuanian) encoding (17x-*.tfm),

QX (GUST) encoding (gx-*.tfm),

RM (“regular math”, used in OT1 and OT4)

encodings (rm-*.tfm),
o Y&Y’s TEX'n’ANSI a.k.a. LY1 encoding
(texnansi-*.tfm),
o T5 (Vietnamese) encoding (t5-*.tfm),
¢ Text Companion for EC fonts a.k.a. TS1
(tsl-*.tfm).
The ITEX support for all these encodings, due to
Marcin Woliniski, is also part of the LM distribution.

TFM files nominally representing the same en-
coding do not always define the same set of charac-
ters; for example, the character sets of cmr10.tfm
and cmtt10.tfm differ. The original CM fonts com-
prise 7 different character sets, with an idiosyncratic
difference between the cmr10 and cmr5 layouts. As
a remnant of the CM design, there are 5 different
character sets of the LM text fonts:

1. 821 glyphs (basic set): 1mb10 1mbo10 lmbx10
1mbx12 1mbx5 1mbx6 1mbx7 1mbx8 lmbx9
Imbxil0 1mbx010 Imdunh10 1mdunol0 1mri10
Imr12 Imrl7 1mr5 1lmr6 1lmr7 lmr8 1mr9
Imril0 Imril2 Imri7 1Imri8 1mri9 lmrol0

321

Imrol2 1mrol7 1lmro8 lmro9 lmss10 lmss12
Imss17 1mss8 1mss9 1mssbol0 1mssbx10
Imssdc10 1mssdol0 1mssol0 1lmssol2 1lmssol7
Imsso8 1msso9 1mul0 1mvtk10 1mvtkol10
Imvt110 1Imvtlol10 1mvtt10 lmvttol0

2. 824 glyphs: 1mssq8 lmssqbo8 lmssqbx8
Imssqo8
extra characters: varI varIJ varIogonek

3. 814 glyphs: 1mcsc10 lmcscolO
missing characters: f_k ff ffi £f1 fi fl
longs

4. 785 glyphs: 1mtk10 1mtko10 1mt110 1lmtlc10
Imtlcol0 1Imtlol0 Imtt10 Imttl12
Imtt8 Imtt9 Imttil0 1mttol0
missing characters: f_k ff £fi £f1 fi fl
Germandbls hyphen.prop IJ ij permyriad
servicemark suppress trademark
varcopyright varregistered zero.oldstyle
zero.prop one.oldstyle one.prop
two.oldstyle two.prop three.oldstyle
three.prop four.oldstyle four.prop
five.oldstyle five.prop six.oldstyle
six.prop seven.oldstyle seven.prop
eight.oldstyle eight.prop nine.oldstyle
nine.prop

5. 784 glyphs: 1mtcsc10 lmtcsol0
missing characters: as in 4, also longs

4.4 Compatibility issues

We did our best to provide outline fonts that can be
used as a replacement for CM fonts. To a certain
extent, we managed to achieve this goal, namely,
the PostScript drivers which process TEX documents
typeset with CM metric files, can use either CM or
LM PostScript Type 1 fonts—special map files for
PostScript Type 1 fonts are available for this pur-
pose. The metric files, however, cannot be used
replaceably, because the typesetting algorithms are
intrinsically unstable —even tiny (rounding) errors
may yield glaringly different results.

Therefore, LM users also cannot expect Post-
Script Type 1 and OTF fonts to be used replace-
ably. Recall that the OTF format requires integer
number representation for glyph widths. The “refer-
ence” quantity is the em unit: 1 em = 2048 units for
fonts using splines of the 2" degree, 1 em = 1000
units for fonts using splines of the 3'¢ degree (e.g.,
our LM and TG fonts). Therefore, in our case, the
difference in width is on average 1/2000 em (twice
as large as the variation in the EC widths), that is,
circa 0.005 pt for 10-point fonts.

Because the MetaType1 sources of the LM fonts
are the result of conversion from PostScript Type 1,

GUST e-foundry font projects

322

the widths stored in the LM TFM files are not iden-
tical to the respective original CM widths. They
are closer, however, to the original quantities by an
order of magnitude compared to the EC and OTF
widths. At the cost of great effort (by referring to
the Metafont sources), we might have eliminated
rounding errors in LM widths. But it would not
cure the problem of (non-)replaceability, as widths
are not the only source of trouble. Differences in
heights and depths of glyphs may also yield unex-
pected behavior of the TEX typesetting algorithm.

The problem of heights and depths in TEX turns
out to be unavoidable, and quite serious: the TFM
format permits by design only 16 different heights
and depths, including the obligatory entries contain-
ing the value zero. If there are in fact more heights
and depths in a given font, their number is cleverly
reduced to 16 by Metafont (as well as by the Meta-
Post and TFtoPL programs). One of the certainly
unwanted results is that the same glyph in different
encodings may have different heights and/or depths!
For example, the height of the letter ‘A’ is 6.88875 pt
in the rm-1mr10.tfm file (this layout is an extension
to 256 slots of the cmr10 layout), it is 6.99648 pt in
the t5-1mr10. tfm file (Vietnamese layout), while in
the canonical cmr10.tfm file it is 6.83331 pt.

This is not the end of the list of possible sources
of incompatibility between CM and LM fonts. Posi-
tioning of the accents is also a long story. These and
related aspects are explained minutely in [12].

Finally, let us consider a somewhat atypical ex-
ample of incompatibility between the LM and CM
fonts related to Donald E. Knuth’s mistake in a CM
ligtable program, uncorrectable for obvious rea-
sons but basically harmless; namely, roman.mf con-
tains the following:

% three degrees of kerning
k#:=-.5u#; kk#:=-1.5u#; kkk#:=-2u#;
ligtable "k":
if serifs: "v": "a" kern -u#, fi
"w": "e" kern k#, "a" kern k#,
"o" kern k#, "c" kern k#;

The culprit is the if serifs clause: the kern pair
‘ka’ appears twice in the TFM files of serif fonts with
the values —u# and —0.5u#, respectively, as is eas-
ily seen in the following fragment of the cmr10.pl
file (the respective lines are marked with arrows):
(CHARACTER C k

(CHARWD R 0.527781)
(CHARHT R 0.694445)

(COMMENT
(KRN C a R -0.055555) <
(KRN C e R -0.027779)
(KRN C a R -.027779) <«
(KRN C o R -0.027779)

TUGhboat, Volume 37 (2016), No. 3

(KRN C c R -0.027779)
)
)

Moreover, there are no ‘va, ‘vc¢’; ‘ve’, and ‘vo’ kern
pairs in sans-serif fonts, although there are ‘kc’; ‘ka’,
‘ke’, ‘ko’, ‘wa’, ‘wc’, ‘we’, and ‘wo’ kern pairs in these
fonts. We could not see the reason for ignoring ‘v’
in this context, thus we decided to add the relevant
kern pairs in the LM fonts; we also added quite a
few other kern pairs missing, in our opinion, from
the CM fonts, for example, ‘€V’ and ‘kV".

Summing up, we believed that we had good rea-
sons for giving up the struggle for a “100-percent
compatibility” between LM and CM metrics, what-
ever that would mean, and to confine ourselves to
providing the mentioned replaceability of outlines.

5 The TEX Gyre collection of fonts

Heartened by the results of the LM enterprise, we
accepted without hesitation the next proposal: the
“LMization” of the family of fonts provided by Ghost-
script as a replacement for the renowned Adobe base
35 fonts, generously released by the URW++ com-
pany under free software licenses.

o ITC Avant Garde Gothic (book, book oblique,
demi, demi oblique)

¢ ITC Bookman (light, light italic, demi,
demi italic)

o Courier (regular, regular oblique, bold,
bold oblique)

¢ Helvetica (medium, medium oblique, bold,
bold oblique)

o Helvetica Condensed (medium, medium
oblique, bold, bold oblique)

o New Century Schoolbook (roman, roman
italic, bold, bold italic)

o Palatino (regular, regular italic, bold,
bold italic)

¢ Symbol

o Times (regular, regular italic, bold,
bold italic)

o ITC Zapf Chancery (medium italic)
o ITC Zapf Dingbats

Since our aim was “LMization”, we excluded the
Symbol and ITC Zapf Dingbats non-text fonts from
the scope of our interest.

After a brief (but heated) debate, the name of
the project and of its constituent fonts were coined.
The project was dubbed TEX Gyre (TG) and the
following names were accepted (the respective file
name kernels, original Adobe names and Ghostscript,
that is, URW, names are given in parentheses):

Bogustaw Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGDboat, Volume 37 (2016), No. 3

o TG Adventor (qag /ITC Avant Garde Gothic /
URW Gothic L)

o TG Gyre Bonum (gbk / ITC Bookman /
URW Bookman L)

o TG Cursor (qcr / Courier / Nimbus Mono L)
o TG Heros (qhv / Helvetica / Nimbus Sans L)

o TG Heros Condensed (ghvc / Helvetica
Condensed / Nimbus Sans L Condensed)

o TG Schola (qcs / New Century Schoolbook /
Century Schoolbook L)

¢ TG Pagella (gpl / Palatino / URW Palladio L)

¢ TG Termes (qtm / Times / Nimbus
Roman No9 L)

o TG Chorus (qzc /ITC Zapf Chancery /
URW Chancery L)

We initially considered including Cyrillic alpha-
bets, but, as in the case of the LM fonts, we eventu-
ally abandoned this idea, also with regret, the more
so as the Ghostscript fonts at that time contained
an (apparently unfinished) set of Cyrillic glyphs.

We expected that the main effort would be the
making of extra glyphs plus maybe correcting out-
lines here and there. To our surprise, quite a few
glyphs required tuning because of evident errors in
outlines. One of the most striking examples is the
glyph ‘eight’ from the URW Schoolbook bold font® —
see Figure 2.

Figure 2

Mostly, we removed redundant or wrong nodes
(points) from the outline definitions, deleting more
than 5% of them in all. In the case of TG Pagella,
however, the insertion of extra nodes turned out nec-
essary. The chart in Figure 3 shows some statistics
for the upright TG fonts. The diagram concerns the
version of the Ghostscript fonts which we used as
our starting point. We used circa 350 glyphs from

5 Recently, the font has been renamed to ‘C059 bold’; the
bug was removed from the Ghostscript distribution only in
2015, although the TEX Collection 2016 distribution still con-
tains (due to the legacy reasons) the faulty glyph.

323

each font. The total number of nodes in these glyphs
varied from circa 10,000 to 25,000 per font. In the
current release, the TG text fonts count almost 1100
glyphs each with the number of nodes varying from
circa 30,000 to 65,000 (for sans-serif and serif italic
variants, respectively; see [14]).

100 mmmmm percentage of untouched nodes
90 + mmmmmm percentage of untouched glyphs
80
70 1
60
50 1
40 1
30 1
20 -
- 107
%0-=n=£t£m£;353=°“°
X EESE3e8E8BEZZ:isBiE

5.1 Repertoire issues

The difference in the number of glyphs between the
TG and LM text fonts (the former having circa 250
glyphs more per font) is due mainly to the presence
of small caps in the TG fonts (225 glyphs per font).
Also unlike the LM fonts, each TG font contains the
complete Greek alphabet and a few technical glyphs,
such as ‘lozenge’ and ‘Iscript’.6 Except for these, the
LM and TG fonts share the same repertoire of glyphs
and the same set of TFM encodings (see Section 4.3).

The ETEX support for these encodings was also
provided by Marcin Wolinski.

5.2 Compatibility issues

The consistency of the widths of the original Adobe
and the respective TG glyphs was one of our main
concerns, as the TG fonts were meant as potential
replacements for the Adobe fonts. It turned out,
however, that the original font metric files [27], con-
tained apparent metric flaws which we decided, with
some hesitation, not to retain.

A typical example (concerning Helvetica, a.k.a.
Nimbus Sans L, a.k.a. TG Heros) is depicted in Fig-
ure 4. Both Spanish ‘i’ and Scandinavian ‘¢’ glyphs
belong to the Adobe Standard Encoding set, hence

6 For historical reasons, the LM fonts contain a few ad-
ditional variants of the base, left, and right double quotes,
absent from the TG fonts.

GUST e-foundry font projects

324

one can expect that they should be considered im-
portant and thus unchangeable. Nevertheless, we
could not see a reason for using widths different
from the ‘!” and ‘o’ widths, respectively, and cer-
tainly there is no substantiation for the asymmetry
of sidebearings, especially in the case of ‘g’; there-
fore, we decided to alter the metrics.

Figure 4

Fortunately, there are few such cases in the TG
collection; each is mentioned in the documentation
of the TG fonts [14].

Because the original widths for the TG fonts,
unlike in the LM collection, were integer numbers,
there is no metric discrepancy between the Post-
Script Typel and OTF font formats, as far as widths
are concerned. Heights and depths, however, are
subject to the same restrictions as discussed in Sec-
tion 4.4.

6 OTF math fonts

The chronic problem of lack of math support for the
TG collection became the impetus for our third ven-
ture: math fonts for the LM and TG collections in
the OTF format. The recent update of the LM and
TG fonts took place at the end of 2009. The math ex-
tension for the OTF format ([29]) had been released
and there existed the FontForge font editor ([25])
capable of generating such fonts. So we embarked
upon an expedition into unknown regions—since
then we have focused our attention on the work on
OTF math fonts, again with the benevolent encour-
agement and support from the TEX users groups.
As we should have expected, the task turned
out interesting and absorbing, and, according to Hof-
stadter’s Law,” we spent more time on it than we ex-
pected. From the very beginning, we aimed at mak-
ing a collection of mutually consistent math OTF

7 Hofstadter’s Law: It always takes longer than you ex-
pect, even when you take into account Hofstadter’s Law—
Douglas R. Hofstadter.

TUGDboat, Volume 37 (2016), No. 3

fonts and we underestimated the heterogeneity of
the sources of additional alphabets and the problem
of interrelationships — works on subsequent fonts en-
tailed moving backwards to the fonts which we had
prematurely considered ready. Nevertheless, in 2011,
we happily announced the release of our first math
OTF font, namely, Latin Modern Math. Altogether,
six math fonts have been released by the GUST e-
foundry so far [9, 10]:

o TG Latin Modern Math
TG Bonum Math
TG Schola Math
TG Pagella Math
TG Termes Math

o TG DejaVu Math
This amounts to nearly half of all OTF math fonts re-
leased in the world. Besides these, the following OTF
math fonts have been released: Asana by Apostolos
Syropoulos, Neo-Euler and XITS by Khaled Hosny,
STIX by the STI Pub companies,® Cambria Math by
Microsoft,? Lucida Math by Bigelow & Holmes, and
Minion Math by Johannes Kiister; the latter three
fonts are distributed commercially.

[R R

6.1 OTF math font contents

Math OTF fonts, as we expounded in [10], are truly
nasty beasts. In accordance with [35] and [37], they
are expected to contain a plethora of glyphs: let-
ters, arrows, math operators and delimiters, geomet-
rical shapes, technical symbols, etc. The presence of
some of them, particularly the (over)abundance of
peculiar geometrical shapes and arrows, is hard to
substantiate in our opinion.

Initially, we planned also releasing the math
companion to the TEX Gyre sans-serif fonts, TG Ad-
ventor and TG Heros, but the Unicode specification
for the contents of math fonts, [37], turned out defi-
nitely “serif-oriented”. Let us take, for example, the
arrangement of the LM Math font shown in Table 1:
following the cited specification, we combined sev-
eral LM source fonts into a single complex font. As
the table clearly shows, the basic subsets, that is,
plain, bold, italic and bold italic are assumed to con-
sist of serif glyphs by default. It is not obvious how

8 The STIX project began through the joint efforts of
American Mathematical Society (AMS), American Institute of
Physics Publishing (AIP), American Physical Society (APS),
American Chemical Society (ACS), Institute of Electrical and
Electronic Engineers (IEEE), and Elsevier Science; these com-
panies are collectively known as the STI Pub companies.

9 Cambria Math was the first math font published, con-
forming to the specification MATH — The mathematical type-
setting table [29]. It was released by Microsoft in 2007, along
with a MS Office version equipped with the capability of han-
dling the math font and editing math formulas.

Bogustaw Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGDboat, Volume 37 (2016), No. 3

the table should be adjusted to suit sans-serif math
fonts. Work on this issue is in progress.

category charset source fonts
plain (upright, serif) |L*, G, D [1mr, lmmi (upright)
bold L, G,D |lmbx, lmmib (upright)
italic L, G Immi
bold italic L, G Immib
sans-serif L,D lmss
sans-serif bold L, G,D |lmssbx
sans-serif italic L lmsso
sans-serif bold italic |L, G lmssbo
calligraphic L eusn (slanted)
bold calligraphic L eusb (slanted)
Fraktur L eufm
bold Fraktur L eufb
double-struck L,D bbold (by Alan Jeffrey)
monospace L, D Imtt

L, G, D— Latin, Greek and digits, respectively

L*— contains also diacritical letters and punctuation
All the alphanumeric glyphs specified in the table,
except for the “plain” ones (first row), are given
special mathematical Unicode slots — see [37]

Table 1

The original CM fonts, and thus the LM fonts,
do not contain the complete sans-serif Greek. We
generated the missing glyphs using modified Meta-
font sources in order to generate outlines instead of
bitmaps