
TUGboat, Volume 44 (2023), No. 1 21

Prehistory of digital fonts
Jacques André

Abstract
Over the second half of the 20th century, typography
moved from physical metal type to the abstractions
of digital computing. This revolution did not fol-
low a straight path. We examine here some of the
very first attempts to produce printed characters on
computers.

In the 1950s, to satisfy the needs of physicists,
the first vectorized letters (and numbers, signs, . . .)
were made on CRT screens and plotters. In the 1960s,
the dot matrix concept allowed consideration of char-
acters as surfaces, leading to digital phototypesetting.
In the 1970s, thanks to research in computer-aided
design, the way was opened to the fundamentals of
digital letter outlines. The first font formats occurred
in the late 1970s. The innovation of laser printers,
around 1985, marked the beginning of the mature
rendering of digital fonts, and the beginning of the
commercial font wars, where we will leave off.

1 Introduction
Some people think that digital outline fonts were
invented by Adobe, others say that they occurred
first with phototypesetting, while still others say . . .

One reason for this misunderstanding of history
is that there have been no detailed and technical
historical overviews of this subject1 (we hope this
paper could be a first attempt).

Copyright 2023 Adverbum. This article is a translation of His-
toire de l’écriture Typographique – le XXième siècle, tome II/II
– de 1950 à 2000 – Chapitre 5 : Histoire technique des fontes
numériques © 2016 – Adverbum pour les éditions Atelier Per-
rousseaux – France.

Translated and published with permission of the author
and publisher. Translation by Patrick Bideault, with assis-
tance from the author and Charles Bigelow.

Editor’s note: Preparing this original book chapter for
publication required extensive efforts. We profoundly thank
the author for undertaking the project at all, after his writing
of the original monumental volumes in French [5, 6] (for more
on this series of books, see https://tug.org/books/#andre),
and Patrick Bideault for the translation into English. We
also thank Charles Bigelow for the initial suggestion, and his
invaluable advice and assistance along the way. Christina
Thiele made useful initial translations to get the project off
the ground. Thanks, everyone.

1 In addition to the many specific studies which we will cite
below, let us mention some papers such as Knuth’s TEX his-
tory [79], a master’s thesis by C. Knoth [77], and the historical
introductions of books on digital fonts like Haralambous’s [57]
and Southall’s [117]. Two important studies (although on a
less general topic) have appeared since the French version of
this paper was published: Romano’s study of desktop publish-
ing [110] and Bigelow’s study on the Font Wars [27].

Another, more important, reason is that this
story did not follow a straight path, but rather
formed a set of rays converging towards the same
outcome. At the beginning of the 20th century, book
printing was done by experts, both for commercial
presses and for institutional documents. In parallel,
handwriting became less and less used, while the
typewriter industry grew.

During the second world war, a need for a new
kind of writing arose: Scientists needed to manip-
ulate drawings and annotate them with letters on
brand-new media, such as radar screens. So it was
engineers who drew letters as if they were mathe-
matical figures (Bézier, De Casteljau and Karow, for
example, were mathematicians or physicists working
in the industrial field, and were pioneers in this area,
as we’ll see). Some scientific developers contacted
prominent typographers, for example Higonnet and
Moyroud (at Lumitype) worked with Frutiger, while
Karow and Knuth worked closely with Zapf. These
first research concepts won over the manufacturers,
who thus created a new, popular mass market for
fonts. I personally think that the success of digital
fonts comes from this intimate collaboration of artists
and scientists, although it hasn’t always been easy!

In this article, we will try to show, without
claiming to be exhaustive, many various inventions,
even if some turned out to be dead ends. But let us
be clear, we do not tell the story of digital typeface
designs (even if we happen to cite them), but rather a
history of the technological inventions of digital fonts,
and the tools for manipulating them by computer.
Along the same lines, let’s say that this is a story
of digital fonts, not of text processing (even if TEX
users know that both are related, like METAFONT

and TEX).
For lack of space, and also to avoid making

this a story of computer science, we have forbidden
ourselves to go into many technical details. They can
be found notably in the books by Haralambous [57]
and Rubinstein [111].

Figure 1 shows the main tools or concepts stud-
ied here; it also shows the complexity of this story.
We will therefore follow a chronological approach,
with interludes to bring together some comparable
developments.

2 First computerized characters:
Line segments

Long before computer data processing, office oper-
ations were performed with equipment such as tab-
ulators and printers that used impact technology
as typewriters do. Since 1930 two companies were
leaders in this area: IBM and (in Europe) Bull. By

doi.org/10.47397/tb/44-1/tb136andre-prehistory

Prehistory of digital fonts

https://tug.org/books/#andre
https://doi.org/10.47397/tb/44-1/tb136andre-prehistory

22 TUGboat, Volume 44 (2023), No. 1

1955 1960 1965 1970 1975 1980 1985 1990

1955 1960 1965 1970 1975 1980 1985 1990

Presses, impact printers, typewriters
Phototypesetters

Scanning screens, plotters
Low resolution printers/screens

Raster screens/printers
Font format, models, systems

Computer graphics

Encoding standards
Computer world

�
M

ac
Ch

ica
go

�
IT

SY
LF

�
CS

D
�

Ika
ru

s

�
M

eta
fon

t’7
9

�
M

eta
fon

t’8
4

�
Ty

pe
1

�
Tr

ue
Ty

pe

�
PS

fon
ts

�
Op

en
Ty

pe

�
RU

NO
FF

�
Ru

n
len

gt
hs

�
Lu

cid
a

�
Co

mp
ut

er
M

od
ern

�
Ca

no
n

LB
P-

CX

�
Di

gis
et

�
TR

OF
F

�
RI

P
Lin

ot
ro

nic

�
Ca

lco
mp

�
He

rsh
ey

fon
ts

�
AS

CI
I

�
BC

D

�
La

tin
-1

�
Un

ico
de

; I
SO

10
64

6

�
IB

M
65

0
�

Fo
rtr

an

�
DE

C
PD

P-
1

�
IB

M
36

0

�
Un

ix
�

C
lan

gu
ag

e
�

DE
C

VA
X-

11

�
Xe

rox
Pa

rc

�
Su

n
�

Ap
ple

Lis
a

�
M

ac
int

os
h

�
IB

M
PC

�
W

ind
ow

s 3
.0

�
Br

es
en

ha
m

�
De

Ca
ste

lja
u

�
Bé

zie
r c

ur
ve

s

�
Fr

ed

�
Po

stS
cri

pt
�

PI
C

�
M

eta
Po

st

Figure 1: Chronology of the concepts and products that led to the birth of digital
fonts during the years 1955–1990.

Figure 2: Computer output printed by impact devices
were not always of high quality. . . Here, comments in a
program [23], 1975.

1945, the first computer outputs were made with
such equipment; impact devices remained in use up
to around 1995 (a few even later) though today, their
printer output may make us smile (figure 2).

Shortly thereafter, around 1950, cathode ray
screens and then plotter devices allowed drawing of
graphics and letters.

2.1 CRTs and plotters
Invented near the end of the 19th century, cathode
ray tubes saw their first applications (oscilloscope,
radar, television) in the first half of the 20th century.
But it was not until 1946 that they were equipped
with a binary memory that allowed drawings and
then alphanumeric symbols to be drawn on them
(figure 3). Early displays included EDSAC (1949),
the IBM 740 CRT (1954), and others at Manchester
University, MIT, and General Electric.

0 0 0 % start
0 1 7 % X upper left
1 14 1 % bottom right
0 1 1 % bottom left
1 14 7 % upper right
0 16 2 % A bottom left
...
1 27 2 % 1 bottom right
0 0 0 % return and loop

Figure 3: Cathode ray screen with XY scanning, and
its control program. A spotlight runs along the screen,
following the line segment connecting two consecutive
points whose coordinates are given. This spot can be
lit (thick lines) or switched off (dotted lines). The path,
kept in memory, is in a loop which allows the screen to
be refreshed (i.e. redisplayed).

It was on these that the first research was done
for the basis of what is now called CAD or Computer
Aided Design. To control such a screen, it suffices
to have a sequence of triplets of the form (e, x, y),

Jacques André

TUGboat, Volume 44 (2023), No. 1 23

where e is 0 or 1, indicating if the spot is lit, and
(x, y) the coordinates of the next point. It is these
triplets that we will later find in the run lengths of
photocomposition.

Plotters
During the same period, a little after 1950, plot-
ters first appeared, using the same principle of XY
plotting as CRT screens. The CalComp 565 plotter,
developed in 1958 in California, was the first widely
marketed machine and in some ways the archetype of
all these products. Other early plotters widely used
at that time included the Olivetti XY 600 and the
IFELEC 2025 S connected to an IBM 1130 computer.

The CalComp 565 plotter resembles the machine
that Nicolas-Jacques Conté had invented in 1800 to
engrave the plates of the Description de l’Égypte
[4, p. 156] (see figure 4) but is electromechanically
and computer-controlled. Its operation is analogous
to that of the CRT, with the light spot replaced by
a pencil that can be lifted or placed on a sheet of
paper. This plotter, and all the others, were thus
driven by commands sent by the computer according
to machine codes specific to each. They operated
with only three instructions, quite similar to those
of the CRT XY scan (figure 3). To get away from
the problem of machine dependency, higher-level
languages, such as FORTRAN (notably the PLOT
procedure), were soon used.

Plotters were first used in industrial drawing to
draw maps for geography, charts for statistics, and
so on. These jobs required additional commands,
such as “draw a circle with center (x, y) and ra-
dius R”. This was done by using routines that broke
the curves into small line segments. In the years
1960–1980 much research took place on the approxi-
mation of curves by line segments (curves of degree
one), then by curves of degree two, etc. This led to
the creation of data-processing languages dedicated
to the drawing of curves such as GPCP (A Gen-
eral Purpose Contouring Program of CalComp) then
HPGL (Hewlett Package Graphic Language) which
became ancestors of the Fred system at Xerox and
from there to PostScript at Adobe (discussed below).

2.2 Drawing letters with lines
Figure 5 shows that the Calcomp had the ability
to draw characters, essential in technical drawing
for legends and markings of all kinds. Characters
are treated as small drawings formed by a series of
line segments (right-hand image). To the characters
originally provided in the CalComp 565 (capitals,
numerals, and “a few special characters”) were grad-
ually added the other characters of various six-bit

Figure 4: Two drawing machines. Top: Conté’s manual
etching machine, 1800 [Courtesy CNAM]; bottom: the
Calcomp 565, the first electronic drawing machine, 1958
[Courtesy Wikipedia]. (These and following images are
grayscaled for print in TUGboat.)

Figure 5: Left: extract of cadastral map drawn and
written with a CalComp [Courtesy University of Denver
Special Collections and Archives]; right: detail of the
drawing of a letter R with line segments by a plotter.
Extract from a Calcomp manual [41].

Prehistory of digital fonts

24 TUGboat, Volume 44 (2023), No. 1

Figure 6: This linear neon tube fills the letter R like a
Peano curve. [Courtesy Depositphotos]

binary-coded decimal (BCD) codes of the time, and
then of seven-bit ASCII, then in its infancy. Eventu-
ally, given the extensive use of these symbols, Cal-
Comp “hardwired” the symbol plotting instructions,
making them very fast.

Other plotters were soon created. One example
is the Perthronic plotter from Aristo (Hamburg),
which as early as 1960 was plotting numbers using
so-called “stick digits”, characters drawn with only
straight lines. Today, plotters use standard vector
fonts.

Filling characters with strokes. A figure de-
fined by its outline can be filled in by hand with
fairly tight strokes. Foundry catalogs from the 1930s
show designs such as Prisma by Rudolf Koch (1931).
As early as 1925, Fernando Jacopozzi displayed the
letters “Citroën” (the famous French car maker) on
the Eiffel Tower by electric bulbs that were aligned
on wires (not a pixel array). This technique was used
extensively for signs with neon tubes (now in the Las
Vegas Neon Museum) and some letters could even be
filled in with a single tube using Peano’s curves (fig-
ure 6). At the end of the 1970s, METAFONT79 offers
the concept of “double draw” for filling in between
curves [80, chapter 6].

Figure 7: First attempts at filling letters with interior
tracings: two letters, inspired by Baskerville, from the
Bell system, 1967 [98]. [Courtesy Visible Language]

Bell characters. Under the direction of M. Math-
ews, a team at Bell Telephone (Murray Hill, USA)
studied, shortly after 1965, a character production
system for CRTs producing microfilms [98]. Charac-
ter outlines were defined using line segments with a
keyboard input system that allowed for the defini-
tion of several character sizes. Because the plotters’
strokes were thin, the letters were blackened by draw-
ing “inner outlines”, a technique that would be seen
again with Allen Hershey’s typefaces. Figure 7 shows
the principle.

Hershey typefaces. Around 1967, Allen Hershey
developed a series of fonts at the Naval Weapons Lab-
oratory (USA) that could initially be used with the
Calcomp. Well documented — see [61] and [128] —
and virtually copyright-free, they were widely dis-
tributed and used in the graphics world for years in
their native form; they are still used in vector form
today [38].

They were not written directly in the Calcomp
language but in their own format, which made it
easy to port them to other plotters. For Hershey,
a font is a database, whose elements include (in a
language called R-code) a glyph number (e.g. 516 for
P), the number of points describing the design (14
for P), two “abscissae” to deduce the slopes and the
width of the character, and finally the coordinates
of the points of the line segments. Each coordinate
was given by an alphanumeric sign according to the
transliterated ASCII type encoding: G = −11, H =
−10, . . . , R = 0, S = 1, . . . , [= 9, \ = 10, and so on;
recall that at that time available memory was very
limited and one had to find tricks to save space.

In general, each character is defined in three
modes: simplex (with a single stroke), duplex (two
strokes) and triplex (three strokes) simulating three

Jacques André

TUGboat, Volume 44 (2023), No. 1 25

G H I J K L M N O P Q R S T U V W X Y Z [\

F

G
H
I
J

K
L
M
N
O
P
Q

R

S
T
U
V
W

X
Y
Z
[

516 14G\KFK[RKFTFWGXHYJYMXOWPTQKQ

0,0

K,F

K,[

T,F

W,G
X,H

Y,J

X,M

X,O

W,P

T,QK,Q

Figure 8: Hershey’s P pattern. Above: a detailed plot,
with the R-code of this “P 516” below; the coordinates
are indicated by the letters FGH. . .
Below: the three Hershey simplex, duplex and triplex
P’s have different weights, simulated by the presence of
one, two or three lines. Drawings created after Hershey’s
tables [127].

Figure 9: Examples of Hershey’s characters: round,
blackletter, Cyrillic, CJK — all drawn with straight lines.
Based on [113]. [Courtesy Stewart Russel]

1 setlinewidth
1 setlinecap % rounded ends
0.5 4.5 moveto 4.25 4.5 lineto % top horizontal
4.5 4.25 moveto 4.5 0.75 lineto % right vertical
4.25 0.5 moveto 0.75 0.5 lineto % bottom hor.
0.5 0.75 moveto 0.5 1.5 lineto % left corner
1.75 0.75 moveto 2.75 2.75 lineto % diagonal
stroke

Figure 10: Left: an ‘a’ from Delorme;
right: corresponding PostScript instructions [47];
below: Delorme’s name in his font.

different weights. In addition to these weight varia-
tions, Hershey programmed a series of style variants
(cursive letters, blackletter, etc.), and also non-Latin
characters (including mathematical [128] and chemi-
cal characters, Cyrillic, and Japanese); see figure 9.

Microfilms. The first microfilm systems were
equipped with a CRT that also produced text, such
as the IBM 228, Alden, Benson, Control Data 280
systems, and others. A special mention to Stromberg-
Carlson who, after a 64-character set for XY scanning,
offered their 4600 Microfilm Recorder model with
112 characters, also using arcs, thin and thick strokes,
thanks to a four-coordinate system in a 4096× 3072
raster [105, p. 172]. These systems clearly influenced
the third-generation photocomposers (page 28).

2.3 New line-based typefaces
These line-based typefaces have had little influence
on digital fonts (except for the microfilm technique),
but they have played a vital role in computer science,
especially in CAD (Computer Aided Design), and
they could not be ignored.

Either for fun, or to simulate old fonts dating
back to the first plotters, digital stroked fonts can
still be found nowadays, such as VECTOR BATTLE.
Others are part of the typographic research of the
1980s.

The Delorme typeface. Christian Delorme de-
signed a typeface composed of cardboard strips, rect-
angular and rounded at the ends, allowing for a much
greater weight than that left by the tip of a pencil
(figure 10). The connection of the segments of these
thick straight lines gave the corners an illusion of
roundness. It was digitized in a PostScript font for-
mat using the so-called PaintType=3, as used for the
initial PostScript Courier (discussed below).

Prehistory of digital fonts

26 TUGboat, Volume 44 (2023), No. 1

Figure 11: These alphabets composed in 1985 only of
horizontal, vertical and diagonal lines were designed
by computer, each line being letters “in the same
spirit”. Excerpt from Douglas Hofstadter, Metamagical
Themas [65, figure 24-14]. [Courtesy Perseus Books]

Douglas Hofstadter’s gridfonts. Douglas Hof-
stadter is a professor of cognitive science and com-
puter science, with adjunct appointments in phi-
losophy, comparative literature and other depart-
ments, at Indiana University in Bloomington, Indi-
ana, USA. Most famous for his book Gödel, Escher,
Bach: An Eternal Golden Braid, he is also known for
his research on letterforms, including a long essay in
response to Knuth’s “The concept of a meta-font”
[82], collected in his book Metamagical Themas [65,
ch. 13].

In his work, Hofstadter asks himself the ques-
tion of how to draw automatically (by computer,
using artificial intelligence programs) as many ‘a’s
as possible and then create the rest of the alphabets
in such a way that all the letters of a single alpha-
bet (which he calls gridfonts) share “the same spirit”
(figure 11). His research is more philosophical (what
is “the essence of ‘A’-ness”?; what does “in the same
spirit” mean?; etc.) than technical. But what we
note here is that he uses characters composed only
of strokes.

%FontType=1 PaintType=3 isFixedPitch=true
40 setlinewidth % bold => 80
0 setlinejoin
1 setlinecap
/A{/base currentlinewidth 2 div def

120 545 moveto 325 545 lineto % 1
520 base lineto % 2
280 545 moveto 80 base lineto % 3
30 base moveto 200 base lineto % 4
400 base moveto 575 base lineto % 5
165 210 moveto 440 210 lineto % 6
stroke } def % A

1 23

4 5

6

Figure 12: Adobe’s Courier font in PostScript. Left:
building the capital A with six stroked line segments
(the PostScript instructions are shown), as used in the
initial release of PostScript.
Right: in subsequent PostScript releases, Adobe used
outlines for Courier, as with all other bundled fonts.
(Excerpts from [12]).

Adobe’s Courier, v1. To enter the CAD market,
Adobe included the then-commonly used stroked
fonts in its PostScript language. Fonts supported
a so-called PaintType=3 mode where only stroke
instructions were used to draw the character, with
the fill operation having no effect; the thickness
of the strokes could be specified with the linewidth
parameter.

The first version of Adobe’s Courier [12], in-
cluded in the initial release of PostScript, was de-
fined using only thick strokes with rounded ends. In
subsequent releases of PostScript, Courier, like all
the other included fonts, was defined using outlines.
The two are compared in figure 12, while figure 13
shows a clever use of a fixed thickness to simulate
the variable thickness of the apostrophe.

3 Initial bitmap concepts
3.1 Screens, bitmaps and scanning
The first screens used XY scanning (page 22) but,
with the cost of memory decreasing, since 1950 CRT
screens with television scanning were in use. TV
scanning consists of filling a matrix of points line by

Jacques André

TUGboat, Volume 44 (2023), No. 1 27

a

0

1 2

3

b

Figure 13: Adobe Courier v1 apostrophe construction
(from [12]).

Figure 14: Two scanning methods for screens
(television, computer, etc.): above, XY scanning (direct,
by vectors); below, television scanning. Along white
arrows, the beam blackens the pixels of the screen;
with thin black lines, the beam writes nothing; raster
returns are indicated by a thinner beam. The pixels are
enormously magnified as large squares so as to show
the scan.

line (figure 14): the usable surface of the screen is
scanned from top to bottom, line by line, each one
from left to right, with a step as small as possible.
Some screens had a different scanning direction; for
example, the Digiset scanned vertically (figure 18).

The “carriage return” of the beam to refresh the
screen is called the “frame return”, the image of the
screen being assimilated to a frame.

3.2 Frame concept
Canvases existed long before computers, as fabrics
appearing in the Western world, as early as the
Neolithic period. These fabrics, when they are thick
and not too tight, define a kind of grid, and are
called canvas. Canvas fabric served as the base for
needlepoint embroideries and tapestries: a thread

Figure 15: Above, excerpt from Belle Prérie by
Le Bé, 1601 [coll. J.A.]; below, school exercise in
cross-stitch embroidery, late 19th century [Credit
Stefano Bianchetti/Les Éditions de l’Amateur].

of wool is passed through this grid, thus defining
“points” corresponding to the pixels of our bitmaps.
Cross-stitch embroidery began in the Middle Ages.

As early as 1600, Le Bé shows models of letters
embroidered with a grid of 10 × 14 such “pixels”.
Figure 15 shows that there were already solutions to
problems that we will see again with our computer
bitmaps: the diagonal of the N is not linear (as in
figure 21) and there are white squares at the junctions
of the letters; these limitations are used for aesthetic
purposes. Around 1750, the Encyclopedia of Diderot
and D’Alembert shows very beautiful alphabets on
a grid of only 7 × 7 pixels [50, Suppl. 3, pl. 4].

In the nineteenth century, with the introduction
of compulsory schooling, the embroidered alphabet
was substantively developed. The teaching of it was
abandoned by 1930.
Woven books. It is well known that Joseph Marie
Jacquard designed at the beginning of the 19th cen-
tury the first mechanical loom using punch tapes
(based on 18th century inventions) and so the first
computer automaton (Charles Babbage was inspired
by it to make his Analytical Engine [53]). Recent
studies [27, 107, 126] pay attention to the fact that
this machine was able not only to design graphics
but also texts, considering letters as a special case
of graphics (as PostScript and METAPOST would

Prehistory of digital fonts

28 TUGboat, Volume 44 (2023), No. 1

Figure 16: Detail of Les Laboureurs by Lamartine,
Lyons, 1878; shown through a lens, scaled ≈ ×3.5.
[Courtesy RIT Cary Graphic Arts Collection]

do a dozen decades later). In the city of Lyons
(France), some manufacturers exhibited their skill by
weaving books in silk on a Jacquard loom. Among
these books, extremely rare today, let us mention
Les Laboureurs by Lamartine, woven in 1878, and Le
Livre des Prières, 1886.

The weft thread behaves, when it is over the
warp thread, like a black rectangular pixel and when
under, like a white pixel. The succession of over/un-
der allows filling characters as in figures 18 and 54
below. The loom mechanism putting thread over
or under the frame was governed by punched tapes,
according to a bitmap, called “mise en carte”. It is a
paper with a grid of 1 cm square, each one divided in
10×10 pixels. It is not clear exactly how this bitmap
was “programmed”, to use a modern term. But it is
conceivable that the letter images were reproduced
from templates or pre-digitized models.

This Lamartine text (figure 16) has been com-
posed in body size close to 8 pt. The jewel-like preci-
sion of the book type has a digital resolution compa-
rable to laser printer resolutions of a century later.
As Bigelow says [27], these books show the true first
ancestors of digitized types.

Mosaics. Although the mosaics of the Greek, Ro-
man, early Christian, etc., times often have textual
inscriptions (figure 17), they are not true raster let-
ters in the sense that there is no regular raster (nei-
ther for the background, nor for the letters). Rather,
they are a construction with completely disordered
pixels, without being a random raster.

3.3 Photocomposers
The photocomposers of the first two generations used
characters photographed on film [6, ch. 1, Photocom-
position]. Generally, these typesetters were driven
by in-house tools. At the beginning of the 1970s,
the Unix group at Bell labs got a Graphic Systems
CAT phototypesetter. Joe Ossanna then wrote a
version of nroff (a text formatter for typewriters or
impact printers) that would drive it. A few years
later (around 1975) Brian Kernighan adapted troff
to C programming, to any kind of second genera-

Figure 17: Early Christian inscription (CIL
XIII 11479) in mosaic tesserae discovered
in 1905 in Avenches/Aventicum, Switzerland.
[Courtesy AVENTICVM]

tion typesetter [74], and even to mathematics (eqn
language) [76].

The third generation of photocomposers marks
the beginning of the use of digitized characters. The
first digital photocomposer was created in Kiel (Ger-
many) by Dr. Rudolf Hell [59, 117] whose company
specialized in special equipment, photography and
electronics.

Hell was inspired by the technique used for
the first microfilm systems (page 25). The image
of a typeface is projected onto the screen, with a
television-type scan (figure 14, but in this case, a
small technical difference, the scan is vertical and not
horizontal), then exposed, produced from a matrix
drawn by a typographer.

To do this, it drew (figure 18) the desired char-
acter on a large layer and marked with 1, or X, the
boxes to be blackened, the others with 0, or left them
empty. A programmer translated this drawing into
commands for the (vertical) scanning: number of the
column, number of the first pixel to be filled, number
of pixels. This is what we call run lengths.

3.4 About bitmaps
The grid of screens can be considered a matrix with
each element being 0 or 1. Each such element is
called a pixel (abbreviation of picture element). If
each element is a 0.1 inch square, i.e. if there are
10 pixels in an inch, the resolution of this grid is
said to be 10 dpi (dots per inch) (figure 19). The
resolution for phototypesetters was very high (often
1200 dpi, sometimes more), resulting in the naked eye
seeing very smooth curves and characters. On the
other hand, the screens of the first microcomputers
or Minitel (see page 33) had a resolution of only

Jacques André

TUGboat, Volume 44 (2023), No. 1 29

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1

1
1
1
1
1
1

1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v
v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

3 3 34
4 3 34
5 3 34
6 3 34
7 3 34
8 3 34
9 3 34

10 13 7
10 27 8
11 12 6
11 29 7
12 12 5
12 30 6
13 11 6
13 30 7
14 11 7
14 30 7
15 11 8
15 29 8
16 11 9
16 28 9
17 11 26
18 11 26
19 12 24
20 13 22
21 14 20
22 15 18
23 17 14

(a) (b) (c)

↓Scan direction

Figure 18: Principle of the Digiset: (a) the binary
matrix conceived “by hand” by the typographer,
(b) code by range (i.e. run-lengths), (c) image provided
by the photocomposer: the bands (here slightly
narrowed to distinguish them) are scanned from top to
bottom (the returns of screen are not indicated); the
gray corresponds to a phase of non-illumination (the
screen and the paper are not exposed) and the black
with a phase of illumination (thus exposed).

1 inch 1 inch

Figure 19: The same triangle rendered as a bitmap at
10 dpi and 20 dpi resolutions.

72 dpi, with resulting “pixelated” mosaic-appearing
characters.

Such a bitmap is a virtual image to be displayed
on screen or printed on paper, resulting in a few
differences from the theoretical matrix: the pixels
which should be square are often round, like the trace
left by rays of light (figure 20); in addition, some
output devices (in particular, the LN printers from
Digital Equipment Corporation (DEC), the Ricoh
printers and some from Xerox, still in use at the end
of the 1980s, and some of the black and white screens
of the time) did not work by blackening a white zone,
but by blackening initially all the paper and by then
writing, by sweeping, the white where it is necessary.
This gave appreciably different results according to
the machine used (figure 20).

The underlying problem with bitmaps is that we
go from a continuous world to a discontinuous one.
One result in particular is that any slant in relation
to the direction of the pixels presents pixelations
or so-called staircase effects. Several methods have
been used to reduce these effects; they cannot be

a b c

Figure 20: Influence of exposure modes: (a) theoretical
form; (b) “white then black” mode; (c) “black then
white” mode (here white is gray). After Pierre
MacKay [92].

a b c
Figure 21: Bresenham’s algorithm (1962).
(a) A line segment drawn directly using the Cartesian
equation y=ax+b with integers; (b) the same line
segment drawn using Bresenham’s algorithm: a slight
shift allows continuity (no breaks as in a); c) another
line segment (with less slant) drawn also using
Bresenham’s algorithm, still ensuring continuity.

eliminated (even when using vector fonts, contrary
to what we sometimes read in the press). First, and
most simply, increase the resolution, i.e. decrease the
size of the pixels (figure 19).

Second, use a concept of bitmap not based solely
on black and white, but with more subtle possibilities,
such as grayscale screens (figure 22) that will appear
around 1980, and LCD (Liquid Crystal Displays) at
the end of the 1990s (page 52).

Third, and most generally, researchers found
ways to reduce the artifacts in bitmaps by using
techniques from computer graphics. If we draw a
line y = ax + b by writing a loop giving to x the
integer values 3, 4, . . . , 18 for which we calculate the
corresponding integer value y and then blacken the
box (x, y), we obtain figure 21a, which is not satisfac-
tory since the slanted line segment is cut in two. In
1962, an IBM engineer, Jack Elton Bresenham, who
was working on the first Calcomp plotter using bit-
maps, looked at the problem. The Cartesian method
doesn’t work because the rounding done to take the

Prehistory of digital fonts

30 TUGboat, Volume 44 (2023), No. 1

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 22: A line segment, left: expected; middle: with
Bresenham algorithm; right: with Bresenham algorithm
on a grayscale screen at the same resolution.

integer part causes such dropouts. This is correctable,
but the correction method known used operations
on real numbers, which were very time consuming
(especially for computers of that time). Bresenham’s
algorithm starts from the parametric form of the
equation of the line and for each point studies its
neighbors [39]. It thus manages to optimize the plot
by using only integer operations, which is extremely
fast; figure 21b shows the result obtained. This al-
gorithm has been improved to deal with borderline
cases and adapted to other curves (including circles)
and even to grayscale screens (figure 22). This is,
in a way, the archetype of all computer graphics
programs used in typography!

3.5 Bitmap fonts
To these technical problems, type designers brought
an artistic solution: circumvent the problem by using
no or few diagonal lines.

Thus, Adrian Frutiger, who experienced “the
passage from lead to CRT, so greedy in memory, then
to vectorized representations [. . .] then to Bézier
curves” [102, p. 286], says about his Méridien font,
which had already been adapted from lead to Lu-
mitype, “When I saw what the digitization gave,
with all these small stairs, I was horrified. [. . .] So I
tried to get around the technical deficiencies by draw-
ing. It was necessary to avoid the slight curvatures
of the slightly curved solids and the concave serifs,
which would have made the pixelation visible . . . ”
He then drew the Breughel font, which takes these
adaptations into account (figure 23). His specific
recommendations were to avoid the stairstep render-
ing by the absence of oblique lines, in particular, to
flatten the serifs; to increase the curvature of the
curved solids, or on the contrary to flatten them (left
side and right side of the two stems of the ‘n’); to
prevent the ink traps of the holes by enlarging them,
and so on.

Other type designers for the CRT had the same
problem, for one, Ladislas Mandel with his Galfra
design (figure 24). Hermann Zapf also studied the
digitization of a subtle typeface design he had de-
signed for lead, Optima, and refrained from complet-

Figure 23: The defects of the Frutiger Meridian scan
(left) were corrected by hand, resulting in the Breughel
design (right) [102, p. 290].

Figure 24: The ‘a’ in Ladislas Mandel’s Galfra typeface
(~1978): left, hand-drawn; right, pre-digitized. [94]

Figure 25: Hermann Zapf preferred not to finish this
draft of his Optima typeface for a printer at less than
300 dpi, which could not render the design well [129].

ing this work for printers with less than 300 dpi [129,
p. 103] (figure 25).

Despite these shortcomings, and the heavy work-
load involved, many fonts were designed character
by character for the three generations of phototype-
setters (figure 26). Many fonts were marketed for or
sold with photocomposers.

Jacques André

TUGboat, Volume 44 (2023), No. 1 31

Figure 26: Left: ‘a’ of the Videocomp composer (1967)
with scan and frame return diagram, from a newspaper,
1971. Right: one of the first fonts for Hell’s Digiset,
Demos by Gerard Unger, 1975 [Courtesy Gerard Unger].

3.6 Research of new typographies and
imitations of pixelated characters

While designers like Frutiger and Mandel sought to
free themselves from technical contingencies, others
used them as a means of expression.

Crouwel’s New Alphabet. The Dutchman Wim
Crouwel [18, 45] was attracted to digital fonts, which
he discovered thanks to Rudolf Hell. One of the first
fonts he designed, directly in bitmaps for CRTs, is
New Alphabet, in 1967 (figure 27). Since he could
not solve the problem of curves or even diagonals,
which are always stairstepped in digital rendering,
he decided not to use them. So he adapted his fonts
to the machine, using only horizontals and verticals,
with slightly diagonalized junctions. But then some
characters became unconventional (the A for exam-
ple!). His typeface was not without criticism at the
time. In 1983, Charles Bigelow wrote: “A letter is
something other than a collection of bits. All curves
are eliminated. All shapes are simplified. From a
purely technical point of view, the result is an undeni-
able success: each letter reproduces itself impeccably,
even through the largest frames. This new alphabet
has only one disadvantage: it is unreadable. It is
unacceptable. Without legibility, there is no com-
munication [. . .] Who can distinguish letters from
numbers?” [24]. We also owe to Crouwel the some-
what more customary typeface Claes Oldenburgh
(figure 28).

In addition, the look of bitmapped mosaic char-
acters inspired graphic designers. In 1982, Michel
Olyff took up the concept of bitmap by drawing
pixels, by hand, one by one for his famous poster
(figure 29), inspired by a doily embroidered during
the first world war.

ABCDEFGHijklm

nopqrstuvwxyz

01234567890

Figure 27: New Alphabet is a typeface designed by
Wim Crouwel in 1967, banning all curves and diagonals;
there are no upper/lowercase distinctions. Above, the
digitized version [courtesy The Foundry]. Below, the
original ‘A’ (reprogrammed from [18]).

Crouwell-catalogue
Figure 28: The Foundry’s Architype Catalogue
font, digitized in 2003 from the Claes Oldenburg font
designed in 1970 by Wim Crouwel, which was clearly
inspired by bitmap drawings like those in figure 20.
[Courtesy The Foundry]

For its part, the Honeywell-Bull computer com-
pany used very pixelated characters for its poster of
the SICOB computer show in 1982 (figure 30).

3.7 Matrix printers
The principle of drawing characters by a matrix of
dots has existed since the end of the 19th century;
e.g. the pin points of punches, characters for Smith
typewriters in 1910, and then characters written at
the top of IBM-026 punched cards. It was taken up
by dot matrix printers in Japan in 1968 and spread
to the USA via the LA30 and then LA36 from DEC.

The basic principle is as follows: a print head
comprises a number of vertically-aligned pins allow-
ing the spontaneous generation of a column of points.
They are propelled by electromagnets and, through
a carbon ribbon, print the points of the character
images. The characters are defined by a matrix of
points, often 5 × 7 but which, by shifting, in fact
defined 9 lines — figure 31 shows the principle.

A 5 × 7 matrix does not give good results, so
manufacturers improved the quality of the characters,
while often providing two modes: one of draft quality,

Prehistory of digital fonts

32 TUGboat, Volume 44 (2023), No. 1

Figure 29: Poster by Michel Olyff (1982) inspired by
the pixels of embroidery and printers. [Courtesy Michel
Olyff]

Figure 30: Poster of the Honeywell-Bull Company for
the SICOB computer show, 1982.

the other of “mail quality”. This higher quality was
generally obtained either by the simultaneous passage
of the reading head with a slight shift in x and y
giving more continuity to the final design, or by using
a larger number of pins, or both (figure 32).

Figure 31: Principle of dot matrix printing and
construction of characters by overprinting [52].

Figure 32: Above: classic character printing of a
5 × 7 dot matrix with a 9-pin matrix head. Bottom
left: construction of bold on a dot printer using a
superposition of two images slightly offset in x and y.
Right: result of printing a normal B and a bold B.
[From a Sanders commercial brochure, circa 1980]

Similarly, italics could be simulated by a slant
but also by a more adequate design. Unlike daisy
wheel printing, it was then possible to use several
character styles, weights, etc. in one line without
manual operation. Of course, all these dies were
drawn by hand (today’s character displays on LED-
type lamp panels are made by filling in characters
defined by their outlines).

Dot matrix printers were used extensively from
the 1970s–1990s as the printers distributed with the
early personal computers. The emblematic exam-
ple remains the 9-pin LaserWriter of the original
Macintosh (figure 36). They were dethroned in the
mid-1980s by the arrival of laser printers.

Jacques André

TUGboat, Volume 44 (2023), No. 1 33

Figure 33: A typical Minitel screen, the home page of
the French electronic white pages.

3.8 Three historical cases
The screens appearing with the first mass-market
computers had low resolution which, given the enor-
mous size of the pixels forming the characters, gave
typography by computer a bad reputation.

Around 1980, two machines were created which
used these bitmapped characters (for screen only or
with printer), emblematic of this time: in France,
the Minitel and in the United States, the Macintosh.
We add here a third example, that of a font which
was probably the first one designed for such highly
“mosaic” characters, Lucida.

3.8.1 The Minitel
Studies on Minitel started in 1979 at CCETT2 in
Rennes (France). The initial goal was to launch a
videotex network accessible by a low-cost terminal
and then to make an “Electronic Directory” available
to all telephone subscribers, which was a commer-
cial and long-lasting success — it was not completely
ended until 2012 [97, 93].

The Minitel was a passive computer terminal,
consisting only of a keyboard and a screen. The
screen (figure 33) was a text matrix with a size of 25
lines by 40 columns. A line of text could thus receive
40 characters, of fixed size as for a typewriter; this
is around 1980.

Each character was formed on a grid of 7 pixels
in width by 10 pixels in height (a little larger than
the 5× 7 of matrix printers). These typefaces were
much criticized at the time. For many people (es-
pecially typographers), it was the first contact with

2 Centre commun d’études de télévision et
télécommunications: Joint Center for Television and
Telecommunications Studies

Figure 34: The Minitel characters had been tested
with several variants, the choice having been made
following readability studies [35, p. 56].

computerized typefaces. However, they had been the
subject of extensive legibility studies (in the spirit
of the work done since Javal, see [26]). Figure 34
shows some of the typeface models used for testing
at CCETT.

3.8.2 The “original” Macintosh
The Macintosh was the first mass-market personal
computer launched by Apple Computer, in January
1984. The project was started at the end of 1978
by Jef Raskin, who wanted to create a computer
that was easy to use and inexpensive, and therefore
accessible to average consumers. He joined forces
with Burrell Smith and then, in 1980, with Steve
Jobs who introduced the mouse (which he had seen
working at PARC, page 47). In some aspects, notably
the graphical user interface, the Macintosh followed
the Apple Lisa computer, released a year earlier.

The Macintosh’s display device was a 1-bit CRT
screen (black and white) with a resolution of 512×342
pixels. The desktop processing (DTP) standard
(which we still find for web images), correspond-
ing to 72 dpi, would come from there. This value is
not insignificant. It is close to the 72.27 typographic
points per inch of the Americans: 8 points (pixels)
of the screen measured thus 8 points (typographic);
a character of 12 typographic points was drawn with
12 pixels, including the slope. To this computer, it
was also possible to connect a printer with 9 pins,
the ImageWriter, designed by the Japanese company
Itoh and already in use at Apple. This printer had

Prehistory of digital fonts

34 TUGboat, Volume 44 (2023), No. 1

Figure 35: The first Macs were noted for the quality of
their fonts; for the general public, these were the first
computerized fonts seen! At left, a menu (composed
in Chicago) allowing the user to choose a font, its
variant (bold, italic, etc.) and its body; at bottom,
demonstration of font combinations [Images from the
Guide Marabout du Macintosh, 1984; courtesy Susan
Kare]. At right, the Font Mover icon, by Susan Kare for
the original Macintosh (1982).

a resolution of 144 dpi. A printed text thus had
the same size as its image displayed on the screen,
but with twice the resolution (one screen pixel corre-
sponding to four pixels on paper).

This first Mac came with four fonts, all designed
by Susan Kare, to whom we also owe nearly all the
Mac icons (such as the Font Mover icon, figure 35).
These fonts were named Chicago, Geneva, New York
and Monaco (figure 36). Chicago was a special case:
it was the “system” font used to display the Mac’s
commands and which existed only in size 12, deliber-
ately a little bold. These fonts were drawn directly
on screen by Susan Kare, in a grid, using a small
editor designed by Andy Hertzfeld, letter by letter,
size by size. Hertzfeld also wrote small programs
to distort these characters to make several variants
such as bold, italic, shaded, raised, etc. (figure 35),
each of which can be combined.

These fonts were usable by the Mac’s word pro-
cessing system, MacWrite, which was one of the first
mainstream WYSIWYG applications. Professional
typographers, who obviously didn’t take this new
“typography” seriously, found it hard to accept that
a few years later this same Mac would offer typefaces
printed with a quality bordering on their tradition.

edp

1
Figure 36: Three of the original Macintosh fonts:
Chicago (12pt), New York (12pt) and Geneva (14pt).
[Courtesy Dafont and Susan Kare]

Figure 37: Bigelow & Holmes showed, with their
Pellucida font initially conceived for the VAXstation,
that even with the low screen resolution of the
original Mac, one could improve the readability of the
characters. [Macworld, 1985]

Chicago ABC XYZ abc xyz
Geneva ABC XYZ abc xyz
Monaco ABC XYZ abc xyz
New York ABC XYZ abc xyz
Figure 38: The four main fonts of the original
Macintosh, redesigned in TrueType by Bigelow &
Holmes using Ikarus, from the original bitmaps by
Susan Kare [29, 66]. The nominal size shown here is
32 pt. [Courtesy Bigelow & Holmes]

Let’s anticipate the rest of this article a bit. . .
These first bitmapped fonts were redrawn in True-
Type by Charles Bigelow and Kris Holmes (figure 38),
who used a beta version of the IkarusM software, us-
ing only line segments and circular arcs for the curves
(like Renaissance drawings, page 35); these were con-
verted into quadratic splines. TrueType Chicago was
designed to render bit-for-bit the same (except for a
few symbols) as the original Chicago bitmap font, at
the system size; the other TrueType designs diverge
further from the originals [29].

Jacques André

TUGboat, Volume 44 (2023), No. 1 35

Figure 39: Lucida, first released in 1984, was the first
typeface design designed for low-resolution printers. The
image shows the Lucida seriffed lowercase ‘a’ at three
resolutions corresponding to 8, 10, and 24 point fonts
on a 300 dpi laser printer. The effects of undersampling
(insufficient resolution) are evident. At left, the lowest
resolution shows a strongly aliased image with “jaggies”
that disrupt the curved and diagonal letter elements.
At right, the highest resolution still shows noise
along the contours. When these idealized bitmaps
are reconstructed as actual images by a laser printer,
the sharp images of the stairsteps are smoothed, but
some distortion of the forms remain. (Text and images
from [30].)

3.8.3 Lucida
Although it is a font rather than a computer system,
and although it was released later than the previous
examples, let us point out that Lucida by Bigelow
& Holmes was the first font designed specifically for
(not adapted to) low-resolution printers, such as the
300 dpi laser printers of the time (figure 39 and [125]).
They also created (by hand) a companion screen font,
Pellucida (figure 37).

4 Mathematical character models
It was immediately tempting to have the computer
do the tedious work of preparing the run lengths
previously mentioned, and as early as 1965 computer
scientists began to write such systems. The basic
idea, used almost universally, was to consider that
a character is a mathematical surface (defined by
its contours) which is projected onto a bitmap and
which must be filled. We will first recall that these
contours have been known since antiquity, then we
will see how they have been improved and adapted
to the needs of typography.

In general, these models were based on the exis-
tence of an already-drawn character that was to be
scanned (Ikarus for example), but some went further
by proposing tools to prepare these outlines (e.g. CSD
with a modular approach, or METAFONT by using
the ductus of calligraphers). Figure 1 showed the
chronological evolution of these systems and tools.

4.1 Models in antiquity
It is known that during Roman antiquity, since at
least the beginning of our era, patterns of lettering

Figure 40: The Roman capitals on the Trajan column
were drawn with a ruler and compass. Study by Edward
Catich, 1968 [42].

Figure 41: Above, the O capital as seen by
Tory, Champfleury, 1529; below, a trigonometric
interpretation [13].

were already being used with the ruler and compass.
Thus, the capitals of the famous Trajan column (ded-
icated in 113 CE) have been shown to be rigorously
based on straight line segments and arcs of a circle
(figure 40).

During the Renaissance, various authors pro-
posed models for the letters engraved on the pedi-
ments of public or religious buildings based on the
Roman capitals and using the only constructions

Prehistory of digital fonts

36 TUGboat, Volume 44 (2023), No. 1

Wooden spline

?

Figure 42: Historical tools for complex curve drawing.
Top: French curve used when preparing dies for
Linotype, around 1930; bottom: wooden spline used in
naval carpentry, around 1990 [54].

then known, the ruler and the compass. These mod-
els are those of Damiano de Moile, Felice Feliciano,
Luca Pacioli, Luca Orfei, etc. They were frequently
quoted by typographers [1, 36, 101, 121, 130] or an-
alyzed mathematically [13, 81]. It was Dürer in
Germany and then Tory (figure 41) in France, in the
sixteenth century, who made the first models sub-
stantively applied to typefaces for printed texts, with
not only capitals but also lowercase letters. This way
of modelling typefaces with a ruler and compass was
long-lasting, since it is found in the eighteenth cen-
tury (e.g. the Romain du roi [15]) and in preparatory
drawings by Eric Gill in 1927.

Many professions (carpenters, marine carpen-
ters, architects, industrial designers, road engineers,
boilermakers, for automobiles and airplane wings,
etc.) have had the problem of drawing harmonious
curves passing through a certain number of points
but which could not be drawn with the compass in
a simple way (that is, without using many arcs of
circles). This was solved manually by using tools
(figure 42) such as the French curve or the spline (a
word that will soon be found again in this article!).

4.2 Curves, mathematics and approximation
Mathematical studies on curves were initiated by the
Greeks and the Romans and developed at length by
their successors, in particular at the end of the 17th
and the beginning of the 18th century (Euler, Monge,
Cauchy, Legendre, etc.), with the theory developed
further in the 20th century (Hermite, Bernstein, . . .).

When the equation of a curve is not known, it
can be approximated by simpler pieces of curves.

Lines and circles. The simplest curves are line
segments. This is what plotters did, where the curved
body of an R is replaced by five straight line segments
(figure 5, right). Less simple curves are circles. This
is what Tory did (figure 41), replacing the vaguely
elliptical lower curve of his O by four arcs of circles
[13].

Conics. For a long time, mathematicians looked
for curves more complex than straight lines and cir-
cles. It turned out that circles belong, together with
the parabola, the hyperbola and the ellipse, to the
class of conics. It is therefore natural that some font
models use conics and in particular parabolas; for ex-
ample, Coueignoux (page 38 and [43]) and TrueType
(figure 70).

Superellipses and spirals. Some ellipses have
a more rectangular shape, or even the shape of a
rectangle with rounded corners: the superellipses
(called super eggs by the Danish poet–designer Piet
Hein, 1905–1996). Typographers have used them
(figure 43). But, what interests us most here is that
these curves have also been used to draw pieces of
type outlines, for example in the Itsylf (page 38),
CSD (page 38) and METAFONT [80] systems.

The kinematic study of road layouts, then of rail-
roads and highways, led to the use of special curves
for the connection between two straight segments
(change of direction of a road for example). The most
“comfortable” trajectory is not a circular arc but a
clothoid arc (or Cornu spiral or Euler spiral). These
spirals were used in typography by Purdy for the
Varityper (figure 44) and some researchers currently
recommend the use of such clothoids [90].

Bézier quadratics and cubics. Shortly after
1950, when computer graphics started developing,
engineers needed to define curves to calculate profiles
of, for example, automobile body panels. This simu-
lated what marine carpenters used to do, i.e. to use,
as in figure 42, physical splines, which first meant
to cut these large curves (now called splines) into
smaller pieces. Of course, the small pieces had to
joined together while keeping the curve smooth. This
is how Pierre Bézier, an engineer at Renault (where

Jacques André

TUGboat, Volume 44 (2023), No. 1 37

Figure 43: Superellipses have been used in type design,
notably for ‘O’. Top: Melior by Hermann Zapf (1952);
middle: Eurostile by Aldo Novarese (1962) [Courtesy
Peter Karow]; bottom: Lucida Grande Mono DK by
Bigelow & Holmes (2014) with, inside, an ellipse with
the same axes [Courtesy Charles Bigelow].

he had already created Unisurf, the archetypal CAD
software), studied the curves that now bear his name
(Bézier curves or B-splines), which are in fact spe-
cial cases of Hermite and Bernstein polynomials. To
be practically usable, these curves had to be easily
and quickly computable. The French mathematician
De Casteljau (at Citroën) discovered a very efficient
algorithm for plotting based on binary divisions.

Let’s just show here the Bézier curves used in
typography and in particular the two most common
models, the quadratic and cubic splines (figure 45).
Their names derive from “quad” (square, therefore
two) and cube (three), terms with which, since the
Renaissance, mathematicians named the powers of
two and three.

The cubic Bézier curves (figure 45, bottom) are
defined by four points P0, P1, P2 and P3, i.e. by the
two tangents P0–P1 and P3–P2. The curve passes
through the points P0 and P3 and is included in
the parallelogram P0–P1–P2–P3, which gives a first

Figure 44: Approximation of a character via pieces of
spirals. Top: an illustration of the principle (from [70],
with permission of Peter Karow);
bottom: an advertisement by Varityper (appeared in
U&lc, Aug. 1984).

P0

P2

P1

P (t) = P0(1− t)2 + 2P1t(1− t) + P2t
2

Quadratic Bézier spline

P0

P3

P1 P2

P (t) = P0(1− t)3 + 3P1t(1− t)2 + 3P2t
2(1− t) + P3t

3

Cubic Bézier spline

Figure 45: Diagram and formulas of two Bézier curves
frequently used in digital typography.

Prehistory of digital fonts

38 TUGboat, Volume 44 (2023), No. 1

approximation. Introduced in the typographic world
by Xerox, and made widely known by Adobe, they
are used by many font formats.

Quadratics (figure 45, top) are defined by the
triangle P0–P1–P2 and are in fact pieces of parabolas.
They are also used in some font formats, notably
TrueType (see figure 70). They ensure the continuity
of tangents at junctions, but not those of curves, and
therefore need to be divided into smaller segments
than cubic curves. Thus, although each quadratic
piece inherently takes fewer points to define than a
corresponding cubic, more pieces are needed. When
converting from quadratics to cubics, the curves are
not quite equivalent.

5 First contour-based fonts
The trial and error period of the 1960s is not well
known. But, thanks to Lynn Ruggles [112], we can
mention a few names.

ITSYLF, the first font generation system, 1968.
Ruggles considers this to be one of the very first sys-
tems specifically dedicated to type design, although
it was never made operational. This system, IT-
SYLF [100], developed by Mergler and Vargo, had two
novel features compared to the few existing systems.
First, it used conics, more precisely superellipses (or
Lamé curves), rather than arcs of circles, to approxi-
mate the curves. The arcs of curves are defined by
superellipses of the form (X/A)F +(Y /B)F = 1. For
two values of A and B, we can vary F and obtain a
series of more or lesser curved lines passing through
these two points A and B.

Second, it does not define a font, but a family,
thanks to a skeleton and parameters allowing to
refine the final shape. These parameters are defined
for the E, and then adapted automatically to the
other letters. Figure 46 shows the skeleton of a C
and variations calculated automatically for this C by
varying the parameters. The whole font would thus
always be homogeneous.

This is not far from what will be possible a few
years later with METAFONT (page 41).

CSD, FRANCE and Coueignoux’ works, 1973.
The Frenchman Philippe Coueignoux developed, in
1973 at MIT (USA), what Knuth considers “the first
use of sophisticated mathematics to describe let-
terforms by computer” [82]. His work was mainly
published in his two theses, Compression of Type
Faces by Contour Coding in 1973 and Generation of
Roman printed fonts [43] in 1975, the latter being
widely cited: even though his “academic” research
did not lead directly to industrial developments, his
ideas are found in many later systems.

Figure 46: The ITSYLF system of Mergler and Vargo
(1968). On the left, the schematic of the C, with
indications of the parameters (W, W1, T, V1, . . .).
On the right, top: letters printed by varying these
parameters; bottom: from the basic C, the C of Times
Roman can be defined. [Courtesy Visible Language]

Figure 47: Coueignoux’s use (in 1973) of conics:
the curves (in dotted lines) are defined by the four
coordinates of the points A and B and by the distance
from C to the curve. Bottom, examples of parameters to
define a character. [43]

Coueignoux [43] describes a model for encod-
ing character outlines, which he developed appar-
ently without knowing the concurrent work of Karow
(which we’ll discuss subsequently). As in ITSYLF
(though without knowing it either), Coueignoux uses
line segments for stems, bars, etc., and conics for
the arcs of terminals and superellipses for bowls.
Similarly, characters are defined using parameters.

What is new is that Coueignoux uses a struc-
tured grammar (like those of Chomsky, well known
to academic linguists and computer scientists since

Jacques André

TUGboat, Volume 44 (2023), No. 1 39

Figure 48: Some basic CSD primitives and extracts
from the generic grammar. [43]

Figure 49: The FRANCE software, by Coueignoux in
1975, makes it possible to find the breakpoints of splines
and segments. [43]

about 1965) to define his characters. Primitives form
the basic elements allowing to define characters. This
is an incremental definition of characters, of which
we find new attempts since the beginning of our
third millennium [67]. This generic method is associ-
ated with a font production system, CSD (Character
Simulated Design), as shown in figure 48, bottom.

Moreover, the FRANCE system (Font Retrieval:
A Natural Coding of Edges) is a program that does
what is now called autotracing (like Ikarus, as we
will see): starting from a character known by its
representation in the form of a matrix of points,
it deduces an algebraic description, using splines
(figure 49).

Figure 50: The first Ikarus hardware, 1973. [73]

Figure 51: Using the Ikarus “mouse”; here in the
context of the Euler project at Stanford (1983), led by
Bigelow, Knuth, and Southall, with characters designed
by Zapf. [119]

6 Ikarus
URW (named after its first two founders, Rubow and
Weber) was established in 1971 in Hamburg, Ger-
many. Peter Karow joined the company in 1972 and
was responsible for the automation of the production
of fonts for photocomposers. See his background and
his research and development in [68, 71, 72, 73].

Peter Karow’s first “customer” was Walter Bren-
del [73], a type designer who was responsible for fonts
such as Lingwood and Volkswagen and who was then
starting a digital type library for photocomposers
(this was only around 1970; it became the basis of
the “TypeShop Collection” of Elsner+Flake). His
customers wanted modifications to his fonts, such as
“blacker”, “spaced out more”, “shaded”, etc., which
could not be done on the bitmaps and had to be
done from the drawings themselves. Karow first
made tests with characters cut from 15 cm high vinyl
plates (quite similar to Frutiger’s scratch cards) and
then understood the interest in digitizing the char-
acters to work with reusable formats.

Prehistory of digital fonts

40 TUGboat, Volume 44 (2023), No. 1

Figure 52: Left: outline of a ‘b’ with its guide points
for Ikarus; right: the same after translation from IK
format to bitmaps, here at low resolution. [70]

Karow substantially started his project at the
end of 1972, in collaboration with Aristo, a CAD
company from Hamburg, who was responsible in
1960 for the Perthronic table which drew stick let-
ters (page 24), and later for the Aristogrid tablet
with cursor. He named it Ikarus in May 1973. The
commercialized system included (figure 50) a digi-
tizing tablet controlled by a cursor, cousin of the
mouse (figure 51), and a computer with CRT and
alphanumeric screen, keyboard, etc. Ikarus was writ-
ten in Fortran and was quickly adapted to the VAX
and Sun minicomputers on which many professionals
used it. (These workstations were called “mini” in
comparison to the large computers of the time, but
were still almost entirely used only by companies and
had nothing to do with personal computers.)

Ikarus was, first, a system for digitizing char-
acter drawings. By clicking — with the cursor box
moved over the enlarged character on the tablet —
on a starting point, angles (or corners), points dis-
tributed on the curve (and in particular the ends of
the curves and the points of inflection) and tangents
(with the help of two points allowing measurement
of the angle) for breaks in continuity, one obtained
a set of coordinates, stored in a format named IK
[68]. The system analyzes these points and deduces
a mathematical description of the contour of this
character using cubic splines. The first applications
of this system were to calculate directly the bitmaps,
or more precisely the run lengths, making it possible
to control a photocomposer and in particular the
Digiset (page 28).

The next applications of this system were for
plotters that only worked with line segments and
arcs (page 23). When using this format to draw the
outline of such a character, the IK format was then
transformed into another format, DI, describing the
outline with vectors and circular arcs. The center

Figure 53: Left: approximation of a ‘b’ by arcs of
circles [56]; right: Bitstream advertisement based on the
construction of a ‘b’ by arcs of circles [U&LC, vol. 12,
no. 4, Feb. 1986].

and radius coordinates were calculated by Ikarus
based on the points of the IK format [68].

Early Ikarus customers also used this DI format,
either locally (e.g. for arches, Bigelow, page 34) or
systematically for all curves (this was the case for
the early Bitstream fonts, figure 53 and [6, chap. 6]).

In the 1980s, URW played an important role as
a font vendor and, following the advent of PostScript,
improved Ikarus.

7 Filling, rendering and hinting
7.1 Bitmaps and filling
Filling of characters which are defined by their con-
tours requires calculating the zones of the bitmap
which will be scanned, line by line, by the laser beam
(which comes back to calculating the run lengths
of the photocomposition, see page 28), taking into
account the theoretical contour. We reuse the scan
conversion techniques developed since the 1960s for
computer graphics. The principle is to follow the
curve line by line and mark the pixels whose centers
are inside the contour delimited by the curve (fig-
ure 54). This method was adapted to characters in
the 1980s by researchers such as Ackland, Bétrisey,
Gonczarowski, Hersch and Pavlidis [60, 109]. Similar
methods are used as well with METAFONT84 and de-
scribed in [57, appendix F.1.4] and [83, chapter 24].

The difficulty is to determine the angles (e.g.
vertex of an A) and not to fill in extra or omit some
pixels (dropout) because of singularities of the curve.
Bad detection of such points explains why some
printers of the 1980s erroneously drew horizontal
lines across the whole page, the point of a V, for
example, having been badly detected.

These filling operations are not independent of
those of rendering and hinting (discussed below)

Jacques André

TUGboat, Volume 44 (2023), No. 1 41

6 6 8

Outer

Inner

Figure 54: Principle of the filling of a character by
marking the limits of the internal zones (inner span)
and external (outer span) of the zones to blacken in a
bitmap on which one projects the theoretical curve of
the character [60]. [Courtesy Roger Hersch]

nn n
6 pt 6 pt 8 pt

Figure 55: For the same glyph (with thick black lines),
the blackened pixels depend on the definition (here,
pixel size of 6 pt and 8 pt) and on the precise position of
this glyph in the grid.

which allow more precisely refining the choice of
the pixels to blacken.

7.2 Rendering improvements, hinting
The filling algorithm does its job well, but the results
depend on the resolution (see figure 55 for cases
of 6 pt or 8 pt pixels) and also on the position in
the grid (again figure 55, the two 6 pt cases, and
figure 56). Many rendering defects appear in this way,
for example unevenness of descenders, disappearance
of thin parts (serifs, ties, swashes), appearance of
holes, etc.

This phenomenon is only noticeable for small
and medium sizes and low resolutions (< 200 dpi,
which is (commonly) the case for screens and for
the first laser printers). To limit these phenomena,
many fonts have been designed specifically for specific
screen sizes (e.g. sizes 10 to 12). Let us cite Verdana
by Matthew Carter (1996), the typefaces Base 9 and
Base 12 from Zuzana Licko (1995) and Hachette
Multimédia by Olivier Nineuil (1996).

The Ikarus system, and those that we will see
later on (METAFONT, Fred, etc.), had all the infor-
mation to prepare the bitmaps; the basic idea being
to make (very slight) shifts in the theoretical curve

Figure 56: Examples of needed rendering
improvements (in 1 and 3 the top of the curve is
too close to a pixel border: the result is bad) and, right,
some of the cases studied by Karow since 1981. [68]

←−δx
↓
δy

Figure 57: Simple example of hinting. Left: the outline
of an H; center: how it would normally be translated
into pixels; right: displacements, downwards for the
bar and backwards for the right stem, give a better
rendering.

so that the filling would be more in the spirit of what
is expected (figure 57). But with the appearance of
PostScript, or rather raster image processors (RIP),
we will see that it is more complicated.

There is no perfect solution to this problem even
today, but many approaches have been made. De-
scriptions of these methods can be found for example
in [57, 60, 70, 109] and, recently, some manufactur-
ers’ websites explain their methods. The difficulty
lies in the way to express what one wants to do in
a language (or by a method) accessible to the type
designer, who is the only one competent for these
drawing problems. Hinting methods are thus char-
acteristic of font systems, whether Ikarus, Type 1,
TrueType or OpenType.

8 TEX and METAFONT

Around 1975, the American mathematician Don-
ald Knuth was revising a volume in his magnum

Prehistory of digital fonts

42 TUGboat, Volume 44 (2023), No. 1

Figure 58: The book in which Donald Knuth first
presented (1979) both TEX and METAFONT. [80]

opus, The Art of Computer Programming (in brief,
TAOCP), and realized that the typesetting and print-
ing methods that had become prevalent — not only
the composition of mathematics but also that of
text — were falling far short of the quality of his
earlier editions. He then embarked on the adven-
ture of building himself a typesetting system using
digital fonts for which he also defined a construc-
tion tool. This is the TEX+METAFONT “couple”,
with Knuth’s first publications in 1978–79 [78, 80]
(figure 58), which TUGboat readers know well!

In the 1970s, there were few text editors (see e.g.
[55, 108, 124]) and they were devoted to dedicated
devices with hardwired fonts: typewriter terminals,
line printers, and, rarely, second generation photo-
typesetters (only n/troff, the Unix documentation
language from Bell Labs, can be cited). Furthermore,
researchers were in the early stages of mathemati-
cally defining digital fonts (new tools such as CSD
and Ikarus were still confidential). So Knuth felt
obliged to create something new! For a general view
of this story, see [22], and let’s mention right away
that Donald Knuth has published extensively about
TEX and METAFONT (see in particular [80], [82] and
[86]). Many practical aspects can also be learned in
Fonts & Encodings by Yannis Haralambous [57].

For his TEX system, originally intended for works
including significant mathematics, Knuth also needed
a font for mathematics. He decided to design such a
font himself and soon realized that he needed a pro-
gram to design not just characters, but entire fonts

and even font families. This is how METAFONT was
born, around 1979.

Since the primary purpose of TEX and META-
FONT was to typeset TAOCP, it was necessary to test
METAFONT output with something better than the
impact printers then in use. Fortunately, Stanford
University had a copy of the first raster printer,
Xerox’s XGP (see section 9.3). As early as 1977,
Knuth was able to use it, thanks to drivers written
by Frank Liang and Michael Plass (two of his Ph.D.
students). Around 1980, David Fuchs (another of his
students) implemented the new concept of device-
independent drivers (DVI), including one for the
new Versatec chemical printer used then in the TEX
project. This was before the first laser printer (see
page 48).

8.1 Basic principles of METAFONT

Knuth embarked on an historical study of typog-
raphy. He learned that, unlike the hot metal types
made with a Benton pantograph (and also unlike pho-
totypesetter fonts with optical lenses), traditional
movable types did not use geometric scaling. For
example, the glyph of an A at body size 16 pt is not
just two times larger than the same A at body size
8 pt. Reasons can be due to human vision, printing
details (such as ink spreading), etc. That means that
a model for font has to use mathematical variables to
be general. His study of old type models [81, 86] (as
well as the references cited earlier, page 35) showed
that characters may be mathematically defined by
curves. Furthermore, from studying calligraphy, he
discovered the importance of the ductus (the shape
and order of the strokes used to compose letters) to
draw characters, and that a letter can be defined as
the trace of a pen moving (along the ductus).

Unlike Ikarus and other products that proposed
tools to digitize existing types (at least as sketches),
Knuth wanted METAFONT to enable creating a char-
acter family from scratch, and without the user hav-
ing to know any underlying mathematics. Typically,
a user says “I would like a nice curve crossing points
(0,0), ..., (6,0)” and METAFONT chooses the
best spline (figure 59). This is why METAFONT is
categorized as a declarative programming language
(about which we will say nothing further, as beyond
our scope here).

8.2 METAFONT79, and experimentation
Here we appended “79” to METAFONT since Knuth
published the first version of METAFONT in 1979.
(He first produced machine-drawn letters in 1977,
writing directly in the SAIL language.) He developed
METAFONT79 concurrently with the first version

Jacques André

TUGboat, Volume 44 (2023), No. 1 43

9
8
7
6
5
4
3
2
1
0

2cm,2cm

0,0 6cm,0

4cm,2cm

% thick line:
draw (0,0)..(2cm,2cm)..(4cm,2cm).. (6cm,0);
% bunch:
for a=9 step -1 until 0:
draw (0,0)..(2cm,a*.2cm)..(4cm,2cm).. (6cm,0);
endfor

Figure 59: This bunch of curves (top) was produced
by the given METAFONT794 program (below).
(Coordinates are added for readability.)

of his Computer Modern typeface (January 1980)
with the help of renowned calligraphers and typog-
raphers, such as Charles Bigelow, Matthew Carter,
Kris Holmes, Richard Southall, and Hermann Zapf.
Their remarks, as well as those of his computer sci-
ence students (especially John Hobby, who designed
the key algorithms of METAFONT [63]), led Knuth
to completely revise the METAFONT language and
program, which he first released in 1984.

During those years, 1980–1984, all of the above,
along with many others such as Vaughan Pratt, Lynn
Ruggles, John Seybold, Gerard Unger, et al., were
involved with the Stanford Digital Typography Pro-
gram of that time, a set of lectures, seminars, work-
shops, etc., dedicated to a mix of mathematicians
or designers. They strongly influenced METAFONT

(see [22, p. 89]). When it’s necessary to distinguish
between METAFONT’s two major incarnations, we
specify METAFONT79 or METAFONT84 below.

The main goal of METAFONT79 was to produce
all the bitmaps of each font of a family, at all expected
body sizes. That implies the strong use of param-
eters and variables. In figure 59 you can see that
the abscissa of the second point is defined by using a
parameter, a, as a scaling factor (2cm, a*.2cm), i.e.
this abscissa is not a numeric constant but a variable.
In practice, these variables may represent the body
size, boldness, or any other dependencies (for practi-
cal examples of such parameters, see figure 63 and
figure 64). This is immediately clear for program-
mers; however, if you look at any glyph description
in graphical tools such as Fontographer, Fontforge,

4 In this figure, and in forthcoming ones, METAPOST has
been used instead of METAFONT79 or METAFONT84: these
languages are, in that case, almost equivalent.

z90 z91

z92

z93

z94

z95

z96

epen ...; %grey:
draw z90--z91--z92..z93..z94..z95..z96;
cpen 20; %black
draw z90--z91--z92..z93..z94..z95..z96;
cpen 2; %white
draw z90--z91--z92..z93..z94..z95..z96;

Figure 60: Three stacked e characters designed with
METAFONT, using the same ductus (the path z90 ..
z96). The black one and the white one are each painted
with a circular pen (a round brush) with diameters of,
respectively, 20 and 2; the grey one uses a more complex
pen (marked here with black double arrows): its length
and orientation depend on the position along the path.

Fontlab, and Glyphs, you’ll see that coordinates of
glyphs are always constant.

One of the characteristics of METAFONT is that
variables may be defined with geometrical equations.
For example, the intent in a design that the three
stems of an ‘m’ are equally spaced horizontally might
be expressed as

x2 − x1 = x3 − x2

if points 1, 2, and 3 are at the bottom ends of the
three stems; whereas the intent that they all end on
the same vertical position would be

y1 = y2 = y3.

The principal objects handled by METAFONT

are the splines that the user may define with a draw
instruction, and the points of the plane where the
spline goes; see the example in figure 60.

Prehistory of digital fonts

44 TUGboat, Volume 44 (2023), No. 1

Unlike almost all other digital font systems,
METAFONT79 does not offer the user a way to de-
scribe the characters by their outlines but used only
a pen metaphor for drawing glyphs: it assumes their
definition via the ductus of a polygonal or elliptical
pen, as done by calligraphers and the early printers.
Figure 60 shows a nib (white line) which starts from
point z90, goes straight to point z92 and arrives at
point z96 after having drawn a Garamond-like e.

METAFONT79 allows defining curves more pre-
cisely, e.g. by defining angles at some points. Various
kinds of pens are supported in METAFONT79: circu-
lar with various diameters (e.g. the white and black
curves in figure 60), elliptical pens, and more gen-
eral pens that have to be mathematically defined.
Erasers are special pens that erase some part of a
previous painted area.

The tools we have just mentioned (curves, pens)
are those from the user’s point of view. Internally,
it was a different situation altogether. Knuth and
his students used sophisticated mathematics to de-
termine the curves finally drawn or painted. Let’s
summarize by saying they used polynomial curves, in-
cluding cubics (Knuth does not use the word “Bézier”
in [80] — probably because it was not fashionable at
that time!).

8.3 METAFONT84
As we mentioned earlier, the people testing META-
FONT79 found it was difficult to be used as a design
tool by non-programmers, and Knuth completely
redefined METAFONT [82], notably with the help of
John Hobby [63]. Among the new added concepts,
Bézier curves are now intensively used, both inter-
nally and from the user’s point of view. Characters
may be defined by their outlines (described with
control points) and related instructions to fill the
surface they define. This can be explicitly used by
type designers as in PostScript (see below, page 49):
figure 61 shows the same e of figure 60, but defined
with Bézier control points (you may compare the syn-
tax with that used by TikZ, ctan.org/pkg/tikz.)

However, METAFONT always focuses on the use
of pens to draw characters, the creation of Computer
Modern being the primary goal. Thanks to new
procedures (pickup, penstroke, penpos, etc.), it
is possible to define new types of pens, their local
positioning, their paths, etc. The variation of the
pens’ marks, together with the use of parameters,
makes it possible to draw a whole family of charac-
ters at once. For example, figure 62 shows that the
arches of an ‘n’ are defined (without any reference
to outlines) by variable pen positions, here penpos i.

z0
z1

z2

z3
z4z5

z6

z7

z8

z9
z10

z11

z12

z13
z14

z15

z16z17z18

z19

z20

z21

z24

z27

z0=...; ... z27=...;
fill z0--z1 ..controls z2 and z3 ..z4

..controls z5 and z6 ..z7

..controls z8 and z9 ..z10

..controls z11 and z12 ..z13--z14

..controls z15 and z16 ..z17

..controls z18 and z19 ..z20
--cycle withcolor .7white;

unfill z21 ..controls z22 and z23 ..z24
..controls z25 and z26 ..z27--cycle;

Figure 61: METAFONT84 allows painting a character
from outlines described as Bézier curves. Compare with
figure 60. (Labelled dots and tangents are added for
convenience.)

More complex examples are in the final Computer
Modern fonts (see section 8.4).

As a programming language, METAFONT offers
many possibilities; let’s just quote here the fact that
“definitions” (also called “macros”) allow, for exam-
ple, making serifs compatible to each character of
a font, like the incremental primitives of CSD (fig-
ure 48) or like, today, making a serif font with Glyphs
using “corner components”.

8.4 Computer Modern and others
The first large typeface family defined using META-
FONT was Computer Modern (also called “cm”); the
design was based on Monotype Modern 8A. It was
created by Donald Knuth himself, with advice and
assistance from Hermann Zapf, Charles Bigelow and
Richard Southall. It was in fact the first “total

Jacques André

https://ctan.org/pkg/tikz

TUGboat, Volume 44 (2023), No. 1 45

3r
3

3l

4r 4 4l

bdc
bdc+oo

88l

8r

8’

9l

9r

9

10l10r
10

11l11r 11

� � � � � �

� � � $ (

, 0 4 8 < ?
weight=(i/63); % weight = function of i
loose=...
z3=...; z4=...; % left stem ends
penpos4(weight,180); % pen # 4
penstroke z3e..{down}z4e; % stroke left stroke
z11=...;
penpos11(weight,180); % pen 11
z8=...; penpos8(loose,angle(...)); % pen 8
y9l=bdc+oo; x9=.68[x8,x10]; % point 9
penpos9(.87[loose,weight],-136); % pen 9
%
penstroke z8e..z9e..z10e---z11e; % arch and stem

Figure 62: METAFONT allows the construction of a
typeface family based on the ductus alone. Above, the
principle; below, a selection of 18 n’s with different
thicknesses and, below, an extract from the METAFONT

program. After Haralambous [57], with kind permission.

cmchar "The letter e";
beginchar("e",7.25u#+max(.75u#,.5curve#),x_height#,0);
italcorr .5[bar_height#,x_height#]*slant+.5min(curve#-
1.5u#,0);
adjust_fit(if monospace: .25u#,.5u# else: 0,0 fi);
numeric left_curve,right_curve;
left_curve=right_curve+6stem_corr=curve if not serifs: -
3stem_corr fi;
...
path testpath; testpath=super_arc.r(2,3) & super_arc.r(3,4);
y1'r=y0r=y0l+.6[thin_join,vair]; y1'l=y0l; x1'l=x1'r=x1;
forsuffixes $=l,r:
x0$=xpart(((0,y0$)--(x1,y0$)) intersectionpoint testpath);
endfor
fill stroke z0e--z1'e; % crossbar
penlabels(0,1,2,3,4,5); endchar;

Figure 63: Definition of the Computer Modern
character e in METAFONT84 [84]. The variables such
as bar_height, x_height, monospace are defined in a
driver file, given values as desired for a particular font.

typography pack” [37], since it includes not only
roman, italic and bold combined, but also variants
of (real) small capitals, serif and sans serif typefaces,
fixed width typefaces, and more. Not to mention a
very large number of mathematical symbols [84].

All these typefaces have a family resemblance,
and for good reason: they are defined by a single
METAFONT program with many parameters. Knuth
defined about sixty parameters (figure 64) to gener-
ate all these fonts; the entire family is completely
described in a whole book, Computer Modern Type-
faces [84]. Figure 63 shows a part of the definition
of the model for the e’s.

Although METAFONT is reputed to have been
little used, hundreds of fonts have been created with
it (an “incredible list” has been compiled by Luc De-
vroye [49]), especially for languages with non-Latin
alphabets (Unicode did not exist for quite a few
years after TEX and METAFONT), and in particular
for ancient languages (including full accented Greek).

Richard Southall used METAFONT again to cre-
ate Colorado (figure 65) by Ladislas Mandel [116].
This font, intended for the composition of telephone
directories, required character to remain very read-
able even at very small body sizes.

8.5 METAFONT and type design
As we mentioned (section 8.2), many type designers
have evaluated METAFONT, both during its devel-
opment, and after. We previously discussed Hof-
stadter’s answer [65] to Knuth’s “Concept of a meta-
font” [82]; see also, for example, [32, 31]. Here are
some highlights.
Family of fonts, parametrization One of META-

FONT’s strong ideas is to draw a whole family
of fonts and not just one font. To express these
instructions, parameters, etc., the designer must
express them in the METAFONT language, which
is in fact a programming language. And this is
the problem

Some type designers, such as Gerard Unger
[122, 123], did not fail to say “Besides being
a designer, I have no objection to acting as a
system operator; but I don’t want to become a
programmer — let alone a parameterizer.”

WYSIWYG or not Not all designers are ready to
program, as they are used to working on char-
acter images and not on how to obtain these
images. At a low level, let us say that it is easier
for them to drag a dot on a screen and see what
happens to some outline than to change the co-
ordinates of this point in some program, experi-
ment with the effect, running the program each

Prehistory of digital fonts

46 TUGboat, Volume 44 (2023), No. 1

Figure 64: The 62 parameters that define Computer Modern, shown via selected characters [57].

Jacques André

TUGboat, Volume 44 (2023), No. 1 47

Figure 65: Specimen of Colorado, a font for telephone directories by Mandel, designed
with METAFONT by Richard Southall [117]. Real size; the first four lines are body size
6 pt, with 0.5 point leading. [Courtesy Kris Holmes]

time, until achieving the desired outline. Rich-
ard Southall [115, 117] and Dave Crossland [44]
have studied this issue extensively.

Curves METAFONT84 uses Bézier curves, namely
cubic splines. It seems Knuth considered these
splines to be, mathematically, nicer than others
(including conics). However some designers (at
least ones used to Ikarus and later TrueType
fonts) prefer to use quadratic splines as they
provide (require) more points to control, and
these points are closer to the expected outline,
so more controllable. See figure 70.

Ductus model The ductus model (and the related
concept of pen in METAFONT) is surely good
for calligraphy or Oriental scripts based on sep-
arate strokes. However, this concept was largely
abandoned for type design since the time of Al-
dus Manutius (around 1500), this abandonment
being the precise differentiation between calli-
graphic writings and typographical ones. Since
that time, typographers see types as surfaces,
for which outlines are everywhere. Alas, the
surfaces are less suitable for parameterizing, for
example, the boldness of the arches.

9 Xerox PARC

The American company Xerox was founded in 1940
to exploit a new photocopying process, xerography,
and quickly became the world leader in the very
profitable market of photocopiers. Just before 1970,
the company embarked on an emerging discipline,
that of information technology applied to the “office
of the future” (by “office”, we mean not only the
work of secretaries, but also the administration of
companies and workshops and research centers with
their technical drawings), a discipline that would
come to be called Office Automation.

At the end of the 1960s, we were still in the era
of heavy computing, the computer market being held
by IBM, Bull-Honeywell, Control Data, etc. Mini-
computers were also beginning to appear (notably

the PDP series from Digital Equipment Corporation),
especially in the industrial world, and systems such
as Unix (1971), primarily in the academic and re-
search world. But, discreetly, a very different kind
of computing was born, whose pioneers included
Vannevar Bush, who had the first conception of hy-
pertext; Douglas Engelbart, inventor of many of the
modern concepts in the human–machine interface, in-
cluding the mouse; without forgetting the American
military, which funded significant research, including
the ARPAnet, from which the Internet developed.

In 1970, Xerox created a research center in ad-
dition to its headquarters in Rochester (New York),
with a strong focus on physics and chemistry, the
Xerox Palo Alto Research Center (PARC; for its his-
tory, see [88] and [99]), located in California in what
would later be called Silicon Valley. The mission
of Xerox PARC is simple, at least in its statement:
“Invent the office of the future.”

9.1 Alto
Thanks to the proficiency of the researchers (many
from Stanford and Berkeley), successes came very
quickly: invention of the concept of the personal com-
puter, and a prototype (Alto) with a screen and user
interface with windows, icons, etc., manipulated by a
mouse (it had been invented some years earlier, but
this was the first use of it), invention of prototype
printers, xerographic, chemical (like a modified Ver-
satec) and laser; all were bitmapped, with resolutions
between 300 and 400 dpi.

For the Alto, PARC developed a large variety of
software, mostly office tools. These include: Bravo,
the first WYSIWYG (What You See Is What You Get)
text editor; drawing software including Draw, which
allowed curves (actually cubic splines), hand draw-
ings, and text elements to be integrated into a fig-
ure; Press, a “universal” (or portable, i.e. printer-
independent) page description language (PDL), devel-
oped in 1975 for a complete description of documents
(text and figures). This last would be followed by

Prehistory of digital fonts

48 TUGboat, Volume 44 (2023), No. 1

Figure 66: Screen images of the creation of fonts on
the Alto (around 1975). With Fred: placing control
points on a scan and improvements; with Prepress: a
filled and improved bitmap (shades of gray indicate
corrections, additions or deletions of pixels). [Courtesy
Patrick Baudelaire [19] and Amelia Hugill-Fontanel
(RIT Cary Graphic Art Collection)]

InterPress by Charles Geschke and John Warnock in
1980, and both would serve as a model for PostScript
(see page 49).

9.2 The Alto font model
All Alto software used the same font model, devel-
oped by Bob Sproull and Patrick Baudelaire [20, 118].
The font creation system (figure 66) included an in-
teractive spline editor and a filling program [19].
The first one, Fred, was written by Patrick Baude-
laire (who had already designed the graphic language
Draw, with procedures to draw splines). Fred pro-
jected onto a screen the image of a character to be
digitized and, thanks to the mouse, one could draw
the control points using B-splines (figure 66).

This Alto system was never commercialized, but
was frequently presented and published in confer-
ences and expert meetings and thus served as a cata-
lyst. The Alto spawned many important successors,
two of which are especially noteworthy:

• In 1978 Apple launched its personal computer
project that would lead to the Macintosh (see

page 33). In 1979, Steve Jobs bought from
Xerox the right to exploit the research done at
PARC, and Apple would benefit greatly from
these revolutionary concepts.

• In 1982, Charles Geschke and John Warnock,
two members of the PARC team (where they
had developed InterPress based on Fred+Pre-
press), created Adobe, a company specialized in
electronic publishing.

9.3 Birth of laser printers
Xerox was a leader in photocopying, and by 1972 had
produced the first raster printer (XGP, the Xerox
Graphics Printer, had a resolution of 192 dpi) to gain
substantial use by computer scientists (at Carnegie-
Mellon, Stanford, MIT, Caltech, and the University
of Toronto).

Another PARC team worked on laser printers,
led by Gary Starkweather. The first laser printer,
EARS, was built and used with the Alto in 1973–76.
In 1976 came the Dover printer, and in 1977 a color
prototype. The first commercial product resulting
from the work of Xerox PARC was the Xerox 9700
laser printer, inspired by the EARS prototype for
the laser technology (at 300 dpi). It was distributed
starting in 1977 and was a huge success worldwide.

IBM (which had been working on the problem
of replacing impact printers since the 1960s) released
an equivalent machine, the IBM 3800, in 1976. The
Japanese company Canon also tackled the problem
in the early 1970s and joined forces with Hewlett-
Packard to produce a “big” laser printer, the HP
2680. It was not until 1983 that the first desktop
printer, Canon’s 300 dpi LBP-CX, was marketed by
HP as the HP LaserJet. The same LBP-CX engine
would be used in the Apple LaserWriter, the first
commercial printer supporting PostScript.

10 Dissemination of the digital fonts concept
Through the end of the 1970s, research and develop-
ment (technical and commercial) on digital typogra-
phy was mainly carried out by small companies and
university research laboratories. After 1980, thanks
to laser printers, the concept of digital fonts spread
at a very high speed and we have seen the birth and
growth of foundries and development companies to
the point where we are sometimes convinced that
digital fonts were invented by Apple, Adobe, etc. It
should be remembered that all the research, both
earlier and today, could only be spread thanks to the
community of researchers, scientific conferences and
publications.

Jacques André

TUGboat, Volume 44 (2023), No. 1 49

Typesetting with photocomposers was followed
in particular by the ATypI conferences, but also re-
vealed by experts like John W. Seybold, who created
a consulting company for the graphic industries in
1963. In 1971, he launched, with his son Jonathan,
the bi-monthly magazine The Seybold Report which
remained for many years the canonical reference mag-
azine for typesetting developments.

On the other hand, knowledge of digital fonts
(apart from photocomposers) spread, initially, more
in university circles and private research laboratories.
This dissemination was made energetically and enthu-
siastically thanks to people interested and capable in
two skills, at first sight mismatched: typography and
data processing. The first attempts probably have
been the Stanford classes, workshop and conferences
organized at the end of the 1970s by Donald Knuth
and his team around METAFONT (see page 42).

Let us quote too, in general: the ACM’s Special
Interest Group on Computer Graphics (SIGGRAPH),
the magazine Visible Language (with articles by
Vargo [100], Unger [122], and many others), the
proceedings of the August 1983 conference of the
ATypI at Stanford University [32, 31], the publica-
tion in 1983 of a “popular science” article by Bigelow
(typographer) and Day (specialist in computer im-
age processing) [28], the conferences Electronic Pub-
lishing and Raster Imaging and Digital Typography
[109], and much more. All these communications
are worthwhile above all because of the contacts
that were made possible. Let us not forget also the
publication of several books accessible by both com-
munities, typographers and scientists, such as those
by Seybold [114], Rubinstein [111], Alison Black [33]
then Jorge De Buen [46], and Yannis Haralambous
[57]. Finally, it is also worth mentioning magazines
specialized in typography (U&lc, Eye, PRINT), etc.
or not (like TUGboat!).

11 Adobe and PostScript
As we have seen, John Warnock and Charles Geschke
worked at Xerox PARC and developed the InterPress
page description language there. Because of the
lack of interest by Xerox to commercially develop its
revolutionary products, they left Xerox and founded
Adobe in 1982.

There, Warnock and Geschke started to develop
PostScript and looked for a desktop printer to mar-
ket this language. For his part, Steve Jobs, at Apple,
was looking to replace the ImageWriter (a dot ma-
trix printer) of the first Macintosh, and discovered
the LBP-CX Canon printer. Jobs then convinced
Warnock to license PostScript to Apple for the Laser-
Writer, which would be marketed by Apple. A third

partner then intervenes: Jonathan Seybold (son of
John W. Seybold) had introduced to Apple another
former PARC staff member, Paul Brainerd, who then
founded the Aldus company, which developed Page-
Maker, and was another early PostScript licensee. It
was the beginning of the success of PostScript and
the success of Adobe.

In addition, Seybold’s involvement had impli-
cations for the world of photocomposition — Aldus
also entered this market. Linotype would be the
first typesetter company to discover the importance
of PostScript, and in 1984 released a PostScript
raster image processor on its Linotronic 101 pho-
tocomposers, and then on the following model, the
Linotronic 300. These photocomposers with 1270,
2540 and even 3300 dpi showed the very high quality
of the PostScript fonts, which one could only imag-
ine until then because of the relatively low 300 dpi
resolution of the LaserWriter.

PostScript, conceived at the beginning for office
automation, thus became the universal language (at
least a portable language) in the world of pre-press
and traditional printing.

Along with the commercial dissemination of
PostScript — the customers being OEM (Original
Equipment Manufacturer) companies in data pro-
cessing and in particular the manufacturers of print-
ers, photocomposers and computers — Adobe made
efforts to spread knowledge of PostScript program-
ming, which went far to expand its use. The best
known is the publication of three manuals, respec-
tively red (a reference manual), blue (a tutorial book
of “recipes”) and green (more oriented toward docu-
ments); see [7] to [10]. A fourth book (black, on the
Type 1 format) would be published during the font
wars.

We also find efforts to spread knowledge of Post-
Script in the booklets, sometimes luxurious, dis-
tributed by the branches like Adobe-France, in par-
ticular with font specimens.

11.1 The PostScript language
Based on graphic languages like Draw from PARC,
and even more on InterPress, PostScript is a page
markup language and not a document formatting
language: it is up to the formatter to compose text, to
hyphenate a word at the end of a line, etc. PostScript
is designed to be the output language of typesetting
programs; it is therefore analogous, in a general way,
to the DVI language output by the original TEX.

Graphics supported in PostScript include line
drawings, formed by line segments and Bézier curves
(also supported in PARC’s Fred software). Characters
are only drawings, so in PostScript they become

Prehistory of digital fonts

50 TUGboat, Volume 44 (2023), No. 1

/HH 100 def /H HH 2 div def
newpath
0 H moveto HH 0 rlineto 0 HH rlineto
HH neg 0 rlineto
closepath
.5 setgray fill % gray
HH HH moveto
H neg H rlineto
H neg H 0 HH H H rcurveto
H H HH 0 H H neg rcurveto closepath
1 0 0 setrgbcolor fill % red
0 setgray % black
/Helvetica findfont 50 scalefont setfont
25 HH moveto (TYPO) show

TYPO

Figure 67: Example (typical around 1985) of
PostScript program using Bézier curves (by the
instruction rcurveto) and its result (the yellow grid,
with a step of 50 points, is added).

procedures (routines) to draw them. A font is a
dictionary of procedures for drawing characters, and
their use is limited to two groups of operations: the
selection of a font (with global metric properties and
geometric properties depending on the graphic state)
and the writing of a sequence of characters in this
font. This simplicity of definition hides, however, a
whole typographic machinery to which we will return.

The PostScript machinery. While PostScript is
innovative in term of structures and possibilities, its
most important feature is undoubtedly the way in
which it functions. Until now, the drawing or font
software computed bitmaps and sent them to the
printer, but PostScript is more incremental [7]: the
generation of bitmaps is done inside the printer; or,
in front of the photocomposers, in a device called a
Raster Image Processor (RIP).

Without going into details, we give two exam-
ples of PostScript programs. The first, figure 10,
shows a letter ‘P’ with line segments used to approx-
imate the curve of the bowl; we can observe that
the instructions there resemble those of plotters and
screens (figure 3). The other, figure 67, uses more
concepts.

11.2 Type 3 and PostScript fonts
The font model defined using only the PostScript
language [7] is what is now called Type 3. But in 1984,
this number (3) only corresponded to a completely
general method of generating characters, unlike the
later-known Type 1 format, a less general method
but additionally provided with hinting procedures.

PostScript characters are thus procedures (pro-
grams) describing their contours using line segments
and Bézier curves. Their definition is independent of
any particular size: PostScript uses geometric scal-
ing, i.e. computes the coordinates scaled according
to the desired body height, purely mathematically.

The PostScript font machinery is a special case
of the general PostScript machinery, see [7] and [14].
It is important to remember that bitmaps are com-
puted at the time of use; however, a caching mecha-
nism allows these computations to be done only once
per page for a given character, in a given font, at
a given body height, etc. (unless this mechanism is
disabled, see below).

Glyphs and encoding tables. Internally, a Post-
Script font defines its characters by their name: the
character ‘e’ corresponds a PostScript procedure
named /e. In fact, a PostScript font mainly con-
sists of glyph-drawing procedures in the sense well-
known today, but practically unknown then, in the
1980s. At the time of selecting a font, the Post-
Script interpreter builds an access table to at most
256 characters of the font, and an encoding vector
to access this table, similar to character access via
the inputenc package of LATEX (in the years before
Unicode). Also, just as TEX uses TFM (TEX Font
Metric) information for typesetting, Adobe defined
AFM (A for Adobe) metric information to accompany
PostScript fonts.

With PostScript level 2, in 1991, it would be-
come possible to call a character by its name (e.g.
‘/ffi glyphshow’) even when it is not in the 256
character table. The list of these glyphs gradually
became a standard for numeric fonts (via the so-
called glyphlist file) and equivalences with Unicode
names were made shortly before 2000.

Dynamic fonts. PostScript, like METAFONT, al-
lows variables to be used in writing plot instructions,
including characters. If these variables are given, for
example, random values in METAFONT, since the
bitmaps are calculated once when generating the
fonts, before any final print, these values are not re-
evaluated. A typical example is the Punk font [85]
where each occurrence of ‘E’ is the same, though its
form was generated randomly by METAFONT. That
is, if we ran METAFONT again before typesetting the
text, the ‘E’ would be different (figure 68, top).

By default, it is the same with PostScript since
a cache mechanism avoids recalculating the bitmaps,
for efficiency. However, with Type 3 fonts, the cache
mechanism can be disabled. As a result, using a
Type 3 version of Punk [103], we can get “real” ran-
dom characters (before Beowolf by Erik van Blokland
and Just van Rossum, for example) as shown in fig-
ure 68, bottom.

Beyond this playful aspect, this mechanism al-
lows generating characters depending on the context
(body, neighborhood, . . .) or on, say, the time of day.
However, few fonts have been developed in Type 3

Jacques André

TUGboat, Volume 44 (2023), No. 1 51

Figure 68: The same text written with Knuth’s
punk font: above with METAFONT [85], below in a
PostScript Type 3 version [103]. In the first line, all
E’s are identical, which is not the case in the second.

format (although see [48, Type 3 Software]), and
even fewer commercialized. The model was too gen-
eral and required training to be able to interact with
the font. Thirty years later, this concept has recently
been rediscovered under the name of variable fonts
and is very fashionable.

11.3 Type 1 fonts
Those who used PostScript at its beginning with
the Type 3 font model with its cache mechanism
thought that Adobe had hidden a “magic bullet” for
fonts, and they were not wrong. Adobe kept more
or less jealously secret a font model allowing faster
and better rendering: Type 1. It was provided to
certain foundries, under restrictive conditions, only
after March 1985, and was not made public until
1990, with the publication of the “black book” at the
time of the font wars [10].

Type 1 PostScript fonts work in essentially the
same way as Type 3 fonts, but differ from Type 3
in that they are more professional or commercial by
nature and, above all, by the possibility of program-
mable hinting.

Professional aspects. Although Adobe did not
provide any typeface production software, third party
software, such as Fontographer, saved designers from
programming in raw PostScript. Type 1 fonts use
the same Bézier curve contour description procedures
as Type 3, and PostScript in general, but have a few
other lower-level procedures that are particularly well
suited to typography (vertical stems, horizontal lines,
junctions, etc.) and are much more efficient than the
general lineto and curveto operators of Type 3.

Type 1 fonts also offer a series of controls related
to font secrecy (copyright, identification number) etc.,
and elaborate encryption methods! The encryption
algorithm was disclosed by Adobe in the Type 1 book.

Hinting. More important typographically, hinting
instructions in Type 1 allow giving instructions to
the bitmap rendering procedures to improve the fi-
nal drawing of the characters (see earlier discussion
and examples, page 41). We have seen that Ikarus
proposed them as early as 1983 (figure 56). Earlier,

G
45 145

vstem
520 605

vstem

575 595
vstem

0 baseline

649 caps-height

471 x-height

660 hstem
630 hstem

290 hstem
265 hstem

14 hstem
-11 hstem

Figure 69: Hinting in Type 1 PostScript fonts is done
through “blue lines”. Here they define various horizontal
(hstem) and vertical (vstem) thicknesses. Following [10].

Fred and METAFONT did not need explicit hinting
because they generated the bitmaps themselves.

The Type 1 hinting operators are complicated.
and are intended primarily to help render fonts at
relatively high (printer) resolutions, not for screens.
The method chosen by Adobe was that of so-called
“blue lines”, entered by the designer to specify con-
straints (figure 69).

11.4 The Adobe font library
As mentioned above, Adobe did not initially offer
any tools for writing fonts. Instead, Adobe entered,
if not revolutionized, the font market by digitizing
a huge number of fonts and implementing them in
PostScript. According to Peter Karow [71, p. 269],
the first 250 outline-based fonts distributed by Adobe
were purchased from URW.

12 As a matter of conclusion
With the advent of PostScript and laser printers, the
prehistory of the digital fonts ends. Let us say simply
in a few words what happened next . . .

• The widespread adoption of PostScript with its
cubic Bézier curves, including for printing, had
immediate consequences for other software in the
field, which adapted to the current tastes. For
example, TEX quickly supported PostScript with
a new DVI conversion program, dvips; META-
FONT itself was not changed, but a companion
program METAPOST [64] was developed to out-
put encapsulated PostScript instead of bitmaps;

Prehistory of digital fonts

52 TUGboat, Volume 44 (2023), No. 1

Figure 70: The same ‘e’ implemented, on the left,
in TrueType (quadratic splines) and, on the right, in
Type 1 (cubic splines). After Bringhurst [40, p. 184].

in addition, programs such as Metafog were de-
veloped to extract the curves from inside META-
FONT and output Type 1 or Type 3 fonts. Troff
also had PostScript output early. Ikarus kept
its IK format but made a BE version where the
original conics are translated into cubic Béziers
(the translation is straightforward).

Other conic spline formats were tried. Let us
mention in particular the F3 format of Vaughan
Pratt for Sun [106, pp. 144, 331].

• But Adobe kept to itself the rights to the Type 1
format and machinery, so other manufacturers,
notably Apple, later joined by Microsoft, de-
veloped an alternative. This led to the birth
of the TrueType format and to the release by
Adobe to the public of the Type 1 format, in
1989. Each model, Type 1 and TrueType, has
its own partisans defending the superiority of
their hints or their particular splines, according
to the needs of type designers (figure 70 has a
comparison).

• The various font formats and new encodings, in
particular Unicode, provided for portability of
fonts, and their use for languages with different
character sets.

• In the late 1970s, screens were developed with
pixels that are not black or white, but grayscale.
At the end of the 1990s, liquid crystal displays
appeared where pixels could be divided into sub-
pixels. In the 2000s, three sub-pixel renderers
were in use: Adobe’s CoolType, Apple’s ATSUI
(Type Services for Unicode Imaging, using the
Quartz2D engine), and Microsoft’s ClearType.
All have been significantly enhanced and/or re-
placed in the years since.

• A whole collection of font creation systems were
developed (FontForge, Fontlab, Fontographer,
FontStudio, Glyphs, etc.). Many of them were

developed by individuals (such as Von Ehr, Yuri
Yarmola, and George Williams) before being
taken over by larger companies.

• The most important point of this period is what
is called “the font wars” opposing TrueType and
Type 1 supporters (see Bigelow [27]). Although
the background was technical (choice of conics
or cubics and especially method of hinting), it
played out mainly with commercial connotations.
TrueType and Type 1 eventually converged with
OpenType (1993).

• At the time of the original “movable types”, a
cast was a set of classified types, possibly with
the mechanical composition (e.g., the Monotype
machines). With the second generation photo-
typesetters we see appear side information: the
width tables. These then also existed for digi-
tal Hershey fonts. In the Ikarus formats, TEX
and METAFONT, and PostScript fonts accom-
panied these width tables with information on
ligatures and kerning (TFM and AFM respec-
tively). OpenType has taken over and consid-
erably increased this mechanism of side tables
(gpos, etc.). Its strength is thus based on the
experience of all the preceding work.

• It seems to us personally that the evolution
of the future fonts will be based on the side
tables by increasing their content (in particular
by the use of variables) but also by using these
tables not just at the time of their loading, but
also during composition (these will then be real
variable fonts).
Finally, we would like to point out that all the

tools (except tentatively METAFONT) that we have
shown are more manufacturing tools — the drawing
of a character that already exists, even if only in the
form of a sketch, than creation (from scratch). As
yet, we have no answer to the philosophical questions
of Douglas Hofstadter (What is the essence of a-
ness?) or Richard Southall (Are the shape and the
appearance of a character identical?).

By way of final words, I’d like to conclude with
an homage to Southall by quoting these words by
Gerry Leonidas [89]:

Richard’s ideas about “models” and “pat-
terns” in type design are the definitive starting
point for any discussion of typemaking, and —
with some adjustments for terminology — ab-
solutely essential in any review of typeface
design processes with digital tools. In fact,
the growth of rendered instances of typeforms
across many devices make his ideas more rel-
evant than ever, and prove that his approach

Jacques André

TUGboat, Volume 44 (2023), No. 1 53

provides the key ideas for discussing typeface
design across type-making technologies. To-
gether with some texts by Robin Kinross, his
writings [for a list, see [16]], are amongst the
very few indispensable texts for any theoreti-
cal discussion of typeface design.

Acknowledgments
The author would like to thank the many people who
provided illustrations for this article, and also the
people who helped him in the drafting of this text and
then its revision, in particular Patrick Baudelaire,
Charles Bigelow, Yannis Haralambous, Roger Hersch,
Vania Joloboff, Peter Karow, Christian Laucou, and
Alan Marshall.

For this publication in TUGboat, he would also
like to thank Patrick Bideault for his English trans-
lation, and Barbara Beeton and Karl Berry for their
deep proofreading and remarkable work as editors.

References
[1] Histoire de l’écriture typographique –

De Gutenberg au xviie siècle, by
Yves Perrousseaux.
Atelier Perrousseaux éd./Adverbum, 2004.

[2] Histoire de l’écriture typographique –
Le xviiie siècle, tome I/II, by
Yves Perrousseaux.
Atelier Perrousseaux éd./Adverbum, 2010.

[3] Histoire de l’écriture typographique –
Le xviiie siècle, tome II/II, by
Yves Perrousseaux.
Atelier Perrousseaux éd./Adverbum, 2010.

[4] Histoire de l’écriture typographique –
Le xixe siècle français, by Jacques André
and Christian Laucou.
Atelier Perrousseaux éd./Adverbum, 2013.

[5] Histoire de l’écriture typographique –
Le xxe siècle, de 1900 à 1950, collective
work under the direction of Jacques André.
Atelier Perrousseaux éd./Adverbum, 2016.

[6] Histoire de l’écriture typographique –
Le xxe siècle, de 1950 à 2000, collective
work under the direction of Jacques André.
Atelier Perrousseaux éd./Adverbum, 2016.

[7] Adobe Systems Inc., PostScript Language
Reference Manual, first edition, Reading, MA:
Addison-Wesley, 1985; second edition, 1991.

[8] Adobe Systems Inc., PostScript Language
Tutorial and Cookbook, Reading, MA:
Addison-Wesley, 1985.

[9] Adobe Systems Inc., PostScript Language
Program Design, Reading, MA: Addison-Wesley,
1988.

[10] Adobe Systems Inc., The Type 1 Format
Specification, Reading, MA: Addison-Wesley,
1990.

[11] Jacques André, Création de fontes en typographie
numérique, Mémoire d’HDR, Université Rennes I,
29 sept. 1993, 124 pp. theses.hal.science/tel-
00011218/file/andre.pdf

[12] Jacques André, Courier – Histoire d’un caractère
– De la machine à écrire aux fontes numériques,
éd. du Jobet, 1993.
jacques-andre.fr/fontex/courier.pdf

[13] Jacques André, De Pacioli à Truchet : trois
siècles de géométrie pour les caractères, 4 000 ans
d’histoire des mathématiques : les mathématiques
dans la longue durée – 13e colloque Inter-IREM
d’épistémologie et histoire des mathématiques,
IREM-Rennes, mai 2000,
pp. 1–38. hal.inria.fr/inria-00000956

[14] Jacques André and Justin Bur, Métrique des
fontes PostScript, Cahiers Gutenberg, n° 8 (1991),
pp. 29–50.
http://numdam.org/item/CG_1991___8_29_0/

[15] Jacques André and Denis Girou,
Father Truchet, the typographic point, the
Romain du roi, and tilings, TUGboat, Vol. 20
(1999), No. 1, pp. 8–14.
tug.org/TUGboat/tb20-1/tb62andr.pdf

[16] Jacques André and Alan Marshall,
Richard Southall: 1937–2015, TUGboat,
Vol. 36 (2015), No. 2, pp. 100–102.
tug.org/tugboat/tb36-2/tb113southall.pdf

[17] Jacques André and Moncef Mlouka (eds.),
Workshop on Font Design Systems, INRIA-Sophia,
May 1987. See also [109], 1989.

[18] Augustin, Wim Crouwel, Index Grafik, 7 avril
2014. http://indexgrafik.fr/wim-crouwel/

[19] Patrick Baudelaire, The Fred User’s Manual,
Internal Report, Xerox Palo Alto Research
Center, Palo Alto, California, 1976.

[20] Patrick Baudelaire, The Xerox Alto Font
Design System, in [31].

[21] Patrick Baudelaire and M. Stone, Techniques
for Interactive Raster Graphics, SIGGRAPH 80
Proceedings, Computer Graphics, Vol. 14, No. 3,
1980.

[22] Barbara Beeton, Karl Berry and David
Walden, TEX: A Branch in Desktop Publishing
Evolution, Part 1, IEEE Annals of the History
of Computing, Vol. 40, No. 3, Jul./Sept. 2018,
pp. 78–93. ieeexplore.ieee.org/document/
8509554/

[23] Yves Bekkers, Daniel Herman, and Michel
Raynal, Conception et réalisation d’une
machine-langage de haut niveau adaptée à
l’écriture de systèmes, Ph.D. thesis, Rennes
University, 24 sept. 1975.

[24] Charles Bigelow, Les caractères rationalisés,
in La manipulation de documents (Jacques
André, ed.), INRIA-Centre de Rennes, mai 1983,
pp. 15-27.
jacques-andre.fr/japublis/manip83.pdf

Prehistory of digital fonts

https://theses.hal.science/tel-00011218/file/andre.pdf
https://theses.hal.science/tel-00011218/file/andre.pdf
https://jacques-andre.fr/fontex/courier.pdf
https://hal.inria.fr/inria-00000956
http://numdam.org/item/CG_1991___8_29_0/
https://tug.org/TUGboat/tb20-1/tb62andr.pdf
https://tug.org/tugboat/tb36-2/tb113southall.pdf
http://indexgrafik.fr/wim-crouwel/
https://ieeexplore.ieee.org/document/8509554/
https://ieeexplore.ieee.org/document/8509554/
https://jacques-andre.fr/japublis/manip83.pdf

54 TUGboat, Volume 44 (2023), No. 1

[25] Charles Bigelow, Review and Summaries
of The History of Typographic Writing —
The 20th century. Originally published in three
parts in TUGboat Vol. 38 (2017); combined:
tug.org/books/reviews/tv38bigelow.pdf

[26] Charles Bigelow, Typeface Features and
Legibility Research, Vision Research, Vol. 165,
Dec. 2019, pp. 162–172.
doi.org/10.1016/j.visres.2019.05.003

[27] Charles Bigelow, The Font Wars, Parts 1
and 2, IEEE Annals of the History of Computing
(Special issue: History of Desktop Publishing),
Vol. 42, No. 1, Jan./Mar. 2020, pp. 7–40.
doi.org/10.1109/MAHC.2020.2971202
doi.org/10.1109/MAHC.2020.2971745

[28] Charles Bigelow and Donald Day, Digital
Typography, Scientific American, Vol. 249, No. 2,
pp. 106–119, Aug. 1983.

[29] Charles Bigelow and Kris Holmes, Notes
on Apple 4 Fonts, Electronic Publishing,
Vol. 4, No. 3, Sept. 1991, pp. 171–181.
http://cajun.cs.nott.ac.uk/compsci/epo/
papers/volume4/issue3/ep050cb.pdf

[30] Charles Bigelow and Kris Holmes, The Design
of Lucida: An Integrated Family of Types for
Electronic Literacy, in Text Processing and
Document Manipulation (J.C. van Vliet, ed.),
Cambridge University Press, 1986.

[31] Charles Bigelow and Kevin Larson (eds.),
Visible Language (Special issue: Reflecting on 50
Years of Typography, Vol. 50, No. 2, Aug. 2016.
journals.uc.edu/index.php/vl/issue/view/
461

[32] Charles Bigelow and Lynn Ruggles (eds.),
Visible Language (Special issue: The Computer
and the Hand in Type Design), Vol. 19, No. 1,
Winter 1985. journals.uc.edu/index.php/vl/
issue/view/369

[33] Alison Black, Typefaces for Desktop Publishing:
A User Guide, London: Architecture Design and
Technology Press, 1990.

[34] Lewis Blackwell, 20th-Century Types, Lawrence
King Publishing, 2004.

[35] Gérard Blanchard (coordinated by), L’écriture
télématique, années zéro, Les Cahiers de Lure,
1985.

[36] Gérard Blanchard, L’eredita Gutenberg,
Gianfranco Altieri Editore, 1989.

[37] Gérard Blanchard, Aide au choix de la
typo-graphie – Cours supérieur, Atelier
Perrousseaux éd., 1998.

[38] Paul Bourke, Hershey Vector Font based
on the Hershey character set, Oct. 1977.
http://paulbourke.net/dataformats/hershey/

[39] Jack E. Bresenham, Algorithm for computer
control of a digital plotter, IBM Systems

Journal, Vol. 4, No. 1, Jan. 1965, pp. 25–30.
doi.org/10.1147/sj.41.0025

[40] Robert Bringhurst, The Elements of
Typographic Style, Hartley & Marks publishers,
4th edition, 2015.

[41] CalComp Software Reference Manual,
California Computer Products Inc.,
Oct. 1976. archive.org/details/bitsavers_
calcompCalceManualOct76_6872751

[42] Edward M. Catich, The Origin of the Serif:
Brush Writing and Roman Letters, Davenport, IA:
The Catfish Press, 1968.

[43] Philippe J.M. Coueignoux, Generation
of Roman Printed Fonts, Ph.D. thesis,
Massachusetts Institute of Technology, Dept.
of Electrical Engineering and Computer Science,
1975. dspace.mit.edu/bitstream/handle/1721.
1/27408/02149218-MIT.pdf

[44] Dave Crossland, “Why didn’t METAFONT

catch on?”, TUGboat, Vol. 29 (2008), No. 3,
pp. 418-420.
tug.org/TUGboat/tb29-3/tb93crossland.pdf

[45] Typographic Architectures typographiques, texts
by Wim Hendrik Crouwel, Catherine de Smet
and Emmanuel Bérard, Editions fsept F7, Paris,
2007.

[46] Jorge De Buen, Manual de diseño editorial,
Santilano, Mexico, 2000,

[47] Christian Delorme and Jacques André,
Le Delorme, un caractère modulaire et dépendant
du contexte, Communication et langages,
Vol. 86 (1990), pp. 64–76. www.persee.fr/web/
revues/home/prescript/article/colan_0336-
1500_1990_num_86_1_2261

[48] Jean-Luc Devroye, Type Design, Typography,
Typefaces and Fonts: An encyclopedic treatment
of type design, typefaces and fonts. Web page
closed on May 6, 2022. http://luc.devroye.
org/fonts.html

[49] Jean-Luc Devroye, METAFONT links, in [48].
http://luc.devroye.org/metafont.html

[50] Diderot & D’Alembert, Encyclopédie, ou
Dictionnaire Raisonné des Sciences, des Arts et
des Métiers, 1751–1772.
encyclopedie.uchicago.edu

[51] Albrecht Dürer, Of the just shaping of letters.
www.zigzaganimal.be/elements/just_shaping_
scan.pdf

[52] Jean-Jacques Eltgen, Techniques d’impression
d’images numérisées, Techniques de l’ingénieur,
art. E-5-670, 1992.

[53] James Essinger, Jacquard’s Web: How a hand
loom led to the birth of the information age.
Oxford, U.K.: Oxford University Press, 2004.

[54] Bernard Ficatier and Hugues Roche, Concevoir,
relever et dessiner des plans de voiliers classiques
et traditionnels, Douarnenez: Chasse-marée, 2004.

Jacques André

https://tug.org/books/reviews/tv38bigelow.pdf
https://doi.org/10.1016/j.visres.2019.05.003
https://doi.org/10.1109/MAHC.2020.2971202
https://doi.org/10.1109/MAHC.2020.2971745
http://cajun.cs.nott.ac.uk/compsci/epo/papers/volume4/issue3/ep050cb.pdf
http://cajun.cs.nott.ac.uk/compsci/epo/papers/volume4/issue3/ep050cb.pdf
https://journals.uc.edu/index.php/vl/issue/view/461
https://journals.uc.edu/index.php/vl/issue/view/461
https://journals.uc.edu/index.php/vl/issue/view/369
https://journals.uc.edu/index.php/vl/issue/view/369
http://paulbourke.net/dataformats/hershey/
https://doi.org/10.1147/sj.41.0025
https://archive.org/details/bitsavers_calcompCalceManualOct76_6872751
https://archive.org/details/bitsavers_calcompCalceManualOct76_6872751
https://dspace.mit.edu/bitstream/handle/1721.1/27408/02149218-MIT.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/27408/02149218-MIT.pdf
https://tug.org/TUGboat/tb29-3/tb93crossland.pdf
https://www.persee.fr/web/revues/home/prescript/article/colan_0336-1500_1990_num_86_1_2261
https://www.persee.fr/web/revues/home/prescript/article/colan_0336-1500_1990_num_86_1_2261
https://www.persee.fr/web/revues/home/prescript/article/colan_0336-1500_1990_num_86_1_2261
http://luc.devroye.org/fonts.html
http://luc.devroye.org/fonts.html
http://luc.devroye.org/metafont.html
https://encyclopedie.uchicago.edu
https://www.zigzaganimal.be/elements/just_shaping_scan.pdf
https://www.zigzaganimal.be/elements/just_shaping_scan.pdf

TUGboat, Volume 44 (2023), No. 1 55

[55] Richard Furuta, Jeffrey Scofield, and
Alan Shaw, Document Formatting Systems:
Survey, Concepts, and Issues, Computing
Surveys, Vol. 14, No. 3, Sept. 1982, pp. 417–472.
doi.org/10.1145/356887.356891

[56] Pierre-Marie Gallois, Quand Paris Était
Ville-Lumière, L’Âge D’homme, 2001.

[57] Yannis Haralambous, Fonts & Encodings,
O’Reilly, 2007.

[58] Tamir Hassan, Changyuan Hu, and
Roger D. Hersch, Next Generation Typeface
Representations: Revisiting Parametric Fonts,
ACM DocEng 2010 conference, Sept. 2010,
pp. 181–184. lspwww.epfl.ch/publications/
typography/ngtrrpf_10.pdf

[59] Rudolf Hell, Le Digiset, composeuse binaire
électronique, Caractère, vol. 16, no 11, 1965,
pp. 5–16.

[60] Roger Hersch (ed.), The Visual and Technical
Aspects of Type, Cambridge University
Press, 1993. lspwww.epfl.ch/publications/
typography/vataot.html

[61] Allen V. Hershey, Calligraphy for Computers,
U.S. Naval Weapons Laboratory, 1967, 500pp.
archive.org/details/hershey-calligraphy_
for_computers

[62] Allen V. Hershey, A Computer System for
Scientific Typography, Computer Graphics and
Image Processing, Vol. 1 (1972), pp. 273–385.

[63] John D. Hobby, Digitized Brush Trajectories,
Ph.D. thesis, Stanford University, Aug. 1985.
tug.org/docs/hobby/hobby-thesis.pdf

[64] John D. Hobby, A User’s Manual for
METAPOST. AT&T Bell Laboratories Computing
Science Technical Report 162, 1992. With
updates: tug.org/docs/metapost/mpman.pdf

[65] Douglas Hofstadter, Metamagical Themas,
Basic Books, 1985.
archive.org/details/MetamagicalThemas

[66] Kris Holmes, Dossier — Calligraphy, Lettering,
Signage and Graphic Design, Filmmaking and
Articles, Keepsake for the Frederic Goudy Award,
Rochester Institute of Technology, 2012.

[67] Changyuan Hu and Roger D. Hersch,
Parameterizable Fonts Based on Shape
Components, IEEE Computer Graphics and
Applications, Vol. 21, No. 3, May/June 2001,
pp. 70–85. lspwww.epfl.ch/publications/
typography/pfbosc.pdf

[68] Peter Karow, Digital Formats for Typefaces,
URW Verlag, Hamburg, 1987.
archive.org/details/
digitalformatsfo0000karo

[69] Peter Karow, Digital punch cutting, Electronic
Publishing, Vol. 4, No. 3, Sept. 1991, pp. 151–170.
http://cajun.cs.nott.ac.uk/compsci/epo/
papers/volume4/issue3/ep044pk.pdf

[70] Peter Karow, Digital Typefaces: Description and
Fprmats, Springer-Verlag, 1994. books.google.
com/books?id=oomrCAAAQBAJ

[71] Peter Karow, Two decades of typographic
research at URW: A retrospective, in [109,
pp. 265–304 (1998)].

[72] Peter Karow, Font Technology: Methods and
Tools, Springer Science, 2012.

[73] Peter Karow, Digital Typography & Artificial
Intelligence, On the occasion of the presentation
of the third Dr. Peter Karow Award for Font
Technology & Digital Typography to Dr. Donald E.
Knuth at the ATypI Amsterdam 2013 conference,
Adobe and Dutch Type Library, 2013.

[74] Brian W. Kernighan, A Typesetter-independent
TROFF, Computing Science Technical
Report No. 97, Bell Labs, revised, Mar. 1982.
archive.org/details/typesetter-independent-
troff

[75] Brian W. Kernighan, PIC — a language
for typesetting graphics, Proceedings of the
ACM SIGPLAN SIGOA Symposium on
Text Manipulation, June 1981, pp. 92–98.
doi.org/10.1145/800209.806459 Revised
publication, May 1991: archive.org/details/
pic-graphics-language

[76] Brian W. Kernighan and Lorinda L. Cherry,
A System for Typesetting Mathematics,
Communications of the ACM, Vol. 18, No. 3,
Mar. 1975, pp. 151–157. dl.acm.org/doi/10.
1145/360680.360684

[77] Christopher Knoth, Computed Type Design,
Master Art Direction, ECAL Lausanne, 2011.
christoph-knoth.com/shared/computed_type_-
_christoph_knoth.pdf

[78] Donald E. Knuth, “TAU EPSILON CHI: A
System for Technical Text”, STAN-CS-78-675.1,
Computer Science Department, Stanford
University, Stanford, California, Nov. 1978.
purl.stanford.edu/jy605yq4819

[79] Donald E. Knuth, Mathematical Typography,
Bulletin (N.S.) of the American Mathematical
Society, Vol. 1, No. 2, 1979, pp. 337–372.
doi.org/10.1090/S0273-0979-1979-14598-1

[80] Donald E. Knuth, TEX and Metafont —
New directions in typesetting, Digital Press
and American Mathematical Society, 1979.

[81] Donald E. Knuth, The Letter S,
The Mathematical Intelligencer, Vol. 2 (1980),
pp. 114–122.

[82] Donald E. Knuth, The Concept of a Meta-Font,
Visible Language, Vol. 16, No. 1, Jan. 1982,
pp. 3-27. journals.uc.edu/index.php/vl/
article/view/5329

[83] Donald E. Knuth, The METAFONTbook,
Computers & Typesetting, Reading, MA:
Addison-Wesley, 1986.

Prehistory of digital fonts

https://doi.org/10.1145/356887.356891
https://lspwww.epfl.ch/publications/typography/ngtrrpf_10.pdf
https://lspwww.epfl.ch/publications/typography/ngtrrpf_10.pdf
https://lspwww.epfl.ch/publications/typography/vataot.html
https://lspwww.epfl.ch/publications/typography/vataot.html
https://archive.org/details/hershey-calligraphy_for_computers
https://archive.org/details/hershey-calligraphy_for_computers
https://tug.org/docs/hobby/hobby-thesis.pdf
https://tug.org/docs/metapost/mpman.pdf
https://archive.org/details/MetamagicalThemas
https://lspwww.epfl.ch/publications/typography/pfbosc.pdf
https://lspwww.epfl.ch/publications/typography/pfbosc.pdf
https://archive.org/details/digitalformatsfo0000karo
https://archive.org/details/digitalformatsfo0000karo
http://cajun.cs.nott.ac.uk/compsci/epo/papers/volume4/issue3/ep044pk.pdf
http://cajun.cs.nott.ac.uk/compsci/epo/papers/volume4/issue3/ep044pk.pdf
https://books.google.com/books?id=oomrCAAAQBAJ
https://books.google.com/books?id=oomrCAAAQBAJ
https://archive.org/details/typesetter-independent-troff
https://archive.org/details/typesetter-independent-troff
https://doi.org/10.1145/800209.806459
https://archive.org/details/pic-graphics-language
https://archive.org/details/pic-graphics-language
https://dl.acm.org/doi/10.1145/360680.360684
https://dl.acm.org/doi/10.1145/360680.360684
https://christoph-knoth.com/shared/computed_type_-_christoph_knoth.pdf
https://christoph-knoth.com/shared/computed_type_-_christoph_knoth.pdf
https://purl.stanford.edu/jy605yq4819
https://doi.org/10.1090/S0273-0979-1979-14598-1
https://journals.uc.edu/index.php/vl/article/view/5329
https://journals.uc.edu/index.php/vl/article/view/5329

56 TUGboat, Volume 44 (2023), No. 1

[84] Donald E. Knuth, Computer Modern Typefaces,
Reading, MA: Addison-Wesley, 1986.

[85] Donald E. Knuth, A Punk Meta-Font,
TUGboat, Vol. 9 (1988), No. 2, pp. 152–168.
tug.org/TUGboat/tb09-2/tb21knut.pdf

[86] Donald E. Knuth, Digital Typography,
xvi+685pp. CSLI Lecture Notes, no. 78, Stanford,
California, 1999.

[87] Eliyezer Kohen, A simple and efficient way to
design middle resolution fonts, in [17, pp. 3–19]
and [109, pp. 22–33 (1989)].

[88] Sacha Krakowiak, Xerox PARC et la naissance
de l’informatique contemporaine, Interstices
(revue Inria en ligne), 2012. interstices.info/
jcms/int_64091/xerox-parc-et-la-naissance-
de-l-informatique-contemporaine

[89] Gerry Leonidas, Farewell, Richard Southall,
17 June 2015. leonidas.net/2015/06/17/
farewell-richard-southall/

[90] Raph Levien and Carlo H. Séquin, Interpolating
Splines: Which is the fairest of them all?,
Computer-Aided Design & Applications, Vol. 6,
No. 1, 2009, pp. 91–102. http://graphics.
berkeley.edu/papers/Levien-IIS-2009-06/

[91] Pierre MacKay, The KATIB System, a
revolutionary advancement in Arabic script
typesetting by means of the computer, Scholarly
Publishing Vol. 8, No. 2, 1977, pp. 142–150.

[92] Pierre A. MacKay, Looking at the Pixels.
Quality Control for 300 dpi Laser Printer Fonts,
Especially METAFONTs, in [109, pp. 205–217
(1991)].

[93] Julien Mailland and Kevin Driscoll, Minitel:
The Online World France Built Before the Web,
20 June 2017. spectrum.ieee.org/minitel-the-
online-world-france-built-before-the-web

[94] Ladislas Mandel, Un caractère pour annuaires
téléphoniques, Communication et langages, n° 39,
1979, pp. 51–61.

[95] Ladislas Mandel, Naissance d’une écriture –
Réflexions sur la typographie et la télématique,
dans L’écriture télématique, années zéro [35,
pp. 41–49].

[96] Ladislas Mandel, Du pouvoir de l’écriture,
Atelier Perrousseaux éd., 1998.

[97] Marie Marchand, La Grande Aventure du
Minitel, Librairie Larousse, 1987.

[98] M. V. Mathews, Carol Lochbaum, and
Judith A. Moss, Array: Three Fonts of
Computer-drawn Letters, The Journal of
Typographic Research, Vol. 1, No. 4, Oct. 1967,
pp. 345–356. journals.uc.edu/index.php/vl/
article/view/5008

[99] Paul McJones, Xerox Alto file system archive,
Computer History Museum, last revised
9 Nov. 2017. xeroxalto.computerhistory.org

[100] H.W. Mergler and P.M. Vargo, One Approach
to Computer Assisted Letter Design, The Journal
of Typographic Research, Vol. 2, No. 4, Oct. 1968,
pp. 299–322. journals.uc.edu/index.php/vl/
article/view/5032

[101] Stanley Morison, On Some Italian Scripts of
the XV and XVI Centuries, in Letter forms,
typographic and scriptorial: Two essays on
their classification, history, and bibliography,
Typophiles, pp. 95–129, 1968.

[102] Heidrun Osterer and Philipp Stamm,
Adrian Frutiger – Caractères: L’œuvre Complète,
Walter de Gruyter, Switzerland, 2012.

[103] Victor Ostromoukhov and Jacques André,
Punk : de METAFONT à PostScript, Cahiers
GUTenberg, n° 4 (1989), pp. 23–28.
http://numdam.org/item/CG_1989___4_23_0/

[104] Scott Pakin, The Comprehensive LATEX Symbol
List, 2021. ctan.org/pkg/comprehensive

[105] Arthur Phillips, Computer Peripherals &
Typesetting, London, Her Majesty’s Stationery
Office, 1968.

[106] Vaughan Pratt, Techniques for conic splines,
ACM SIGGRAPH Computer Graphics,
Vol. 19, No. 3, July 1985, pp. 151–159.
doi.org/10.1145/325165.325225

[107] Lilian M.C. Randall, A Nineteenth Century
‘Medieval’ Prayerbook Woven in Lyon, in Art the
Ape of Nature: Studies in Honor of H.W. Janson,
Moshe Barasch, Lucy F. Sandler (eds), New York,
NY: Harry N. Abrams, 1981, pp. 651–668.

[108] Brian K. Reid and David Hanson, An annotated
bibliography of background material on text
manipulation, Proceedings of the ACM SIGPLAN
SIGOA Symposium on Text Manipulation, ACM
SIGPLAN Notices, Vol. 16, No. 6, June 1981,
pp. 157–160. doi.org/10.1145/800209.806467

[109] RIDT, conference series proceedings:
• Raster Imaging and Digital Typography,

Lausanne, Oct. 1989 (Jacques André and
Roger Hersch, eds.), Cambridge University
Press, 1989. books.google.com/books?id=
mj09AAAAIAAJ

• Raster Imaging and Digital Typography II ,
Boston, Oct. 1991 (Robert A. Morris
and Jacques André, eds.), Cambridge
University Press, 1991. books.google.com/
books?id=Q9KtGcpfNgUC

• Raster Imaging and Digital Typography,
special issue of Electronic Publishing
Origination Dissemination and Design,
(Jacques André, Jakob Gonczarowski,
and Richard Southall, eds.), Wiley,
1994. books.google.com/books?id=
gJcVAQAAIAAJ

• Electronic Publishing, Artistic Imaging,
and Digital Typography (Roger Hersch,

Jacques André

https://tug.org/TUGboat/tb09-2/tb21knut.pdf
https://interstices.info/jcms/int_64091/xerox-parc-et-la-naissance-de-l-informatique-contemporaine
https://interstices.info/jcms/int_64091/xerox-parc-et-la-naissance-de-l-informatique-contemporaine
https://interstices.info/jcms/int_64091/xerox-parc-et-la-naissance-de-l-informatique-contemporaine
https://leonidas.net/2015/06/17/farewell-richard-southall/
https://leonidas.net/2015/06/17/farewell-richard-southall/
http://graphics.berkeley.edu/papers/Levien-IIS-2009-06/
http://graphics.berkeley.edu/papers/Levien-IIS-2009-06/
https://spectrum.ieee.org/minitel-the-online-world-france-built-before-the-web
https://spectrum.ieee.org/minitel-the-online-world-france-built-before-the-web
https://journals.uc.edu/index.php/vl/article/view/5008
https://journals.uc.edu/index.php/vl/article/view/5008
https://xeroxalto.computerhistory.org
https://journals.uc.edu/index.php/vl/article/view/5032
https://journals.uc.edu/index.php/vl/article/view/5032
http://numdam.org/item/CG_1989___4_23_0/
https://ctan.org/pkg/comprehensive
https://doi.org/10.1145/325165.325225
https://doi.org/10.1145/800209.806467
https://books.google.com/books?id=mj09AAAAIAAJ
https://books.google.com/books?id=mj09AAAAIAAJ
https://books.google.com/books?id=Q9KtGcpfNgUC
https://books.google.com/books?id=Q9KtGcpfNgUC
https://books.google.com/books?id=gJcVAQAAIAAJ
https://books.google.com/books?id=gJcVAQAAIAAJ

TUGboat, Volume 44 (2023), No. 1 57

Jacques André, and Heather Brown, eds.),
Lecture Notes in Computer Science #1375,
Springer-Verlag, 1998. books.google.com/
books?id=bo453EDNBp4C

[110] Frank Romano (with Miranda Mitrano),
History of Desktop Publishing, Oak Knoll Press,
2019.

[111] Richard Rubinstein, Digital Typography — an
introduction to type and composition for computer
system design, Reading, MA: Addison-Wesley,
1988.

[112] Lynn Ruggles, Letterform Design Systems,
Stanford University Technical Report
STAN-CS-83-971, 1973. http://i.stanford.
edu/pub/cstr/reports/cs/tr/83/971/CS-TR-83-
971.pdf

[113] Stewart C. Russell, Hershey Font Outlines,
May 2014. scruss.com/wordpress/wp-content/
uploads/2014/05/hershey_samples.pdf

[114] John Seybold and Fritz Dressler,
Publishing From the Desktop, New York, NY:
Bantam Books, 1987. archive.org/details/
publishingfromde0000seyb

[115] Richard Southall, Interfaces between the
designer and the document, in Structured
documents (Jacques André, Richard Furuta,
and Vincent Quint, eds.), Cambridge University
Press, 1989, pp. 119–131. dl.acm.org/doi/10.
5555/73173.73179

[116] Richard Southall, METAFONT in the
Rockies: The Colorado Typemaking Project,
in EP’98 [109, 167–180 (1998)]; link.
springer.com/chapter/10.1007%2FBFb0053270.
Republished in Computers and Typography 2
(Rosemary Sassoon, ed.), Intellect Books, 2002;
books.google.com?id=wdYmvQD5C8IC

[117] Richard Southall, Printer’s Type in the
Twentieth Century — Manufacturing and Design
Methods, The British Library/Oak Knoll Press,
2005.

[118] Bob Sproull, Font Representations and
Formats, Internal note, Xerox PARC, Mar. 1977.
xeroxparcarchive.computerhistory.org/
indigo/printingdocs/.FONTFORMATS.PRESS!
1.pdf

[119] David R. Siegel, The Euler Project at Stanford,
The Department of Computer Science, Stanford
University, Stanford, 1985.

[120] David Sudweeks, Type Trends: Superelliptical
Type, FontShop Typographic Trends, Nov. 2012.
fontshopblog.wordpress.com/2012/11/22/type-
trends-superelliptical-type

[121] Edward Tufte, Visual Explanations — Images
and Quantities, Evidence and Narrative, Cheshire,
CT: Graphic Press, 1997.

[122] Gerard Unger, The Design of a Typeface, Visible
Language, Vol. 13, No. 2, Apr. 1979, pp. 134–149.
journals.uc.edu/index.php/vl/article/view/
5266

[123] Gerard Unger, in Other Replies to Donald E.
Knuth’s article “The Concept of a Meta-Font”,
Visible Language, Vol. 16, No. 4, Oct. 1982,
pp. 353–356. journals.uc.edu/index.php/vl/
issue/view/360

[124] Andries Van Dam and Eric E. Rice, On-line
Text Editing: A Survey, Computing Surveys,
Vol. 3, No. 3, Sept. 1971, pp. 93–114.
doi.org/10.1145/356589.356591

[125] Yue Wang, Interview with Charles Bigelow,
TUGboat, Vol. 34 (2013), No. 2, pp. 136–167.
tug.org/TUGboat/tb34-2/tb107bigelow-
wang.pdf

[126] Matthew Westerby, The Woven Prayer Book:
Cocoon to Codex, Satellite Series. Paris, France &
Chicago, IL, USA: Les Enluminures, 2019.

[127] Norman M. Wolcott and Joseph Hilsenrath,
A Contribution to Computer Typesetting
Techniques: Tables of coordinates for Hershey’s
Repertory of Occidental Type Fonts and Graphic
Symbols, National Bureau of Standards,
NBS Special Publication 424, Apr. 1976.
scruss.com/wordpress/wp-content/uploads/
2014/04/tables_of_coordinates_for_
hersheys_repertory_of_occidental_type_
fonts-wolcott_and_hilsenrath.pdf

[128] Norman M. Wolcott, FORTRAN IV Enhanced
Character Graphics, National Bureau of
Standards, Institute for Computer Sciences
and Technology, NBS Special Publication
500-32, Apr. 1978, 64 pp. archive.org/details/
fortranivenhance5003wolc

[129] Hermann Zapf, Hermann Zapf and His Design
Philosophy, Chicago, IL: Society of Typographic
Arts, 1987. Introduction by Carl Zahn.

[130] Herman Zapf, Vom Formgesetz der
Renaissance-Antiqua, Der Polygraph, Heft 21.

� Jacques André
https://jacques-andre.fr

Prehistory of digital fonts

https://books.google.com/books?id=bo453EDNBp4C
https://books.google.com/books?id=bo453EDNBp4C
http://i.stanford.edu/pub/cstr/reports/cs/tr/83/971/CS-TR-83-971.pdf
http://i.stanford.edu/pub/cstr/reports/cs/tr/83/971/CS-TR-83-971.pdf
http://i.stanford.edu/pub/cstr/reports/cs/tr/83/971/CS-TR-83-971.pdf
https://scruss.com/wordpress/wp-content/uploads/2014/05/hershey_samples.pdf
https://scruss.com/wordpress/wp-content/uploads/2014/05/hershey_samples.pdf
https://archive.org/details/publishingfromde0000seyb
https://archive.org/details/publishingfromde0000seyb
https://dl.acm.org/doi/10.5555/73173.73179
https://dl.acm.org/doi/10.5555/73173.73179
https://link.springer.com/chapter/10.1007%2FBFb0053270
https://link.springer.com/chapter/10.1007%2FBFb0053270
https://books.google.com?id=wdYmvQD5C8IC
https://xeroxparcarchive.computerhistory.org/indigo/printingdocs/.FONTFORMATS.PRESS!1.pdf
https://xeroxparcarchive.computerhistory.org/indigo/printingdocs/.FONTFORMATS.PRESS!1.pdf
https://xeroxparcarchive.computerhistory.org/indigo/printingdocs/.FONTFORMATS.PRESS!1.pdf
https://fontshopblog.wordpress.com/2012/11/22/type-trends-superelliptical-type
https://fontshopblog.wordpress.com/2012/11/22/type-trends-superelliptical-type
https://journals.uc.edu/index.php/vl/article/view/5266
https://journals.uc.edu/index.php/vl/article/view/5266
https://journals.uc.edu/index.php/vl/issue/view/360
https://journals.uc.edu/index.php/vl/issue/view/360
https://doi.org/10.1145/356589.356591
https://tug.org/TUGboat/tb34-2/tb107bigelow-wang.pdf
https://tug.org/TUGboat/tb34-2/tb107bigelow-wang.pdf
https://scruss.com/wordpress/wp-content/uploads/2014/04/tables_of_coordinates_for_hersheys_repertory_of_occidental_type_fonts-wolcott_and_hilsenrath.pdf
https://scruss.com/wordpress/wp-content/uploads/2014/04/tables_of_coordinates_for_hersheys_repertory_of_occidental_type_fonts-wolcott_and_hilsenrath.pdf
https://scruss.com/wordpress/wp-content/uploads/2014/04/tables_of_coordinates_for_hersheys_repertory_of_occidental_type_fonts-wolcott_and_hilsenrath.pdf
https://scruss.com/wordpress/wp-content/uploads/2014/04/tables_of_coordinates_for_hersheys_repertory_of_occidental_type_fonts-wolcott_and_hilsenrath.pdf
https://archive.org/details/fortranivenhance5003wolc
https://archive.org/details/fortranivenhance5003wolc

	Introduction
	First computerized characters: Line segments
	CRTs and plotters
	Drawing letters with lines
	New line-based typefaces

	Initial bitmap concepts
	Screens, bitmaps and scanning
	Frame concept
	Photocomposers
	About bitmaps
	Bitmap fonts
	Research of new typographies and imitations of pixelated characters
	Matrix printers
	Three historical cases
	The Minitel
	The ``original'' Macintosh
	Lucida

	Mathematical character models
	Models in antiquity
	Curves, mathematics and approximation

	First contour-based fonts
	Ikarus
	Filling, rendering and hinting
	Bitmaps and filling
	Rendering improvements, hinting

	TeX and Metafont
	Basic principles of Metafont
	Metafont79, and experimentation
	Metafont84
	Computer Modern and others
	Metafont and type design

	Xerox PARC
	Alto
	The Alto font model
	Birth of laser printers

	Dissemination of the digital fonts concept
	Adobe and PostScript
	The PostScript language
	Type 3 and PostScript fonts
	Type 1 fonts
	The Adobe font library

	As a matter of conclusion

