
TUGBOAT

Volume 44, Number 2 / 2023
TUG 2023 Conference Proceedings

TUG 2023 154 Conference information and program
157 Eileen Wagner / A rally in Bonn: TUG 2023
162 Karl Berry, Robin Laakso / TUG 2023 Annual General Meeting notes

Methods 164 Barbara Beeton / What every (LA)TEX newbie should know
Publishing 170 Henning Hraban Ramm / Architectural guides for Bonn — book production with ConTEXt
ConTEXt 176 Henning Hraban Ramm / Calculating covers with ConTEXt

180 Willi Egger, Hans Hagen, Edith Sundqvist, Mikael P. Sundqvist /

New dimensions: Edith and Tove
186 Thomas A. Schmitz / Producing different forms of output from XML via ConTEXt

LATEX 192 LATEX Project Team / LATEX news, issue 37, June 2023
197 samcarter, Joseph Wright / Beamer news: 2023
200 Boris Veytsman / Updating the nostarch class
203 Oliver Kopp / The LATEX template generator:

How micro-templates reduce template maintenance effort
Fonts 207 Hans Hagen, Mikael P. Sundqvist / On bottom accents in OpenType math

209 Victor Sannier / A METAFONT for rustic capitals
213 Ulrik Vieth / An updated survey of OpenType math fonts
226 Mikael P. Sundqvist, Hans Hagen / Standardizing OpenType math fonts

Graphics 233 samcarter, Gert Fischer / Behind the scenes of the Great TikZlings
Christmas Extravaganza

236 Linus Romer / Curvature combs and harmonized paths in MetaPost
Software & Tools 240 Jim Hefferon / Using Asymptote like MetaPost

242 Didier Verna / Interactive and real-time typesetting
for demonstration and experimentation: ETAP

249 Island of TEX / Living in containers — on TEX Live (and ConTEXt) in a Docker setting
252 Martin Ruckert / News from the HINT project: 2023
255 Ben Davies / Bumpy road towards a good LATEX visual editor at Overleaf
256 Tom Hejda / Overleaf and TEX Live deployment
257 Rishikesan Nair T, Apu V, Hàn Thé̂ Thành, Jan Vaněk /

Primo — A new sustainable solution for publishing
Accessibility 262 Ulrike Fischer, Frank Mittelbach /

Automated tagging of LATEX documents — what is possible today, in 2023?
267 David Carlisle, Ulrike Fischer, Frank Mittelbach /

Report on the LATEX Tagged PDF workshop, TUG 2023
270 Ross Moore / Enhancing accessibility of structured information via ‘Tagged PDF’

Electronic Documents 275 Dennis Müller / An HTML/CSS schema for TEX primitives —
generating high-quality responsive HTML from generic TEX

Hints & Tricks 287 Hans Hagen / Cheats (or not): When \prevdepth = -1000pt

Multilingual
Document
Processing

289 Ondřej Sojka, Petr Sojka, Jakub Máca / A roadmap for universal syllabic segmentation
297 C.V. Radhakrishnan, K.V. Rajeesh, K.H. Hussain /

METAFONT/METAPOST and a complex Indic script: Malayalam
Abstracts 315 TUG 2023 abstracts (Gundlach, Island of TEX, Lisse, Mittelbach, Novotný, samcarter,

Šustek, Wright)

317 ArsTEXnica: Contents of issue 34 (May 2023)
317 La Lettre GUTenberg : Contents of issue 50 (2023)
318 ConTEXt Group Journal : 15th meeting (2021)
318 Die TEXnische Komödie: Contents of issue 2/2023
319 Zpravodaj : Contents of issue 2023/1–2

Reviews 319 George Grätzer / The gods smile at me: The LATEX Companion, third edition, and ChatGPT

322 John Lamb / Book review: The LATEX Companion, third edition, by Frank Mittelbach
with Ulrike Fischer

Advertisements 325 TUG 2023 advertisements
326 TEX consulting and production services

TUG Business 327 TUG institutional members
News 328 Calendar



TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships
2023 dues for individual members are as follows:

Trial rate for new members: $30.
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members may also choose to
receive TUGboat and other benefits electronically,
at a discount. All membership options are described
at tug.org/join.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions
TUGboat subscriptions (non-voting) are available to
libraries and other organizations or individuals for
whom memberships are either not appropriate or
desired. Subscriptions are delivered on a calendar
year basis. The subscription rate for 2023 is $115.

Institutional memberships
Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and TUG. It also provides a discounted member-
ship rate, site-wide electronic access, and other ben-
efits. For further information, see tug.org/instmem
or contact the TUG office.

Trademarks
Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: August 2023]

Printed in U.S.A.

Board of Directors

Donald Knuth, Ur Wizard of TEX-arcana
†

Arthur Rosendahl, President∗

Boris Veytsman∗, Vice President
Karl Berry∗, Treasurer
Klaus Höppner∗, Secretary
Barbara Beeton
Johannes Braams
Max Chernoff
Kaja Christiansen
Ulrike Fischer
Jim Hefferon
Tom Hejda
Jérémy Just
Frank Mittelbach
Ross Moore
Norbert Preining
Raymond Goucher (1937–2019),

Founding Executive Director
Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See tug.org/board for a roster of all past and present
board members, and other official positions.

Addresses

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 815 301-3568

Web
tug.org

tug.org/TUGboat

Electronic mail

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

TEXnical support,
public mailing list:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2023 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not
be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a
particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice
are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another
language, except that the TEX Users Group must approve
translations of this permission notice itself. Lacking such
approval, the original English permission notice must
be included. An information notice to the TUGboat editors

regarding such redistribution is appreciated.



2023 Conference Proceedings

TEX Users Group

Forty-fourth annual TUG conference

Bonn, Germany

July 14–16, 2023

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 44, NUMBER 2, 2023

PORTLAND, OREGON, U.S.A.



154 TUGboat, Volume 44 (2023), No. 2

The forty-fourth annual conference of the TEX Users Group

https://tug.org/2023 tug2023@tug.org

Conference committee

Barbara Beeton

Karl Berry

Gert Fischer, co-principal organizer

Ulrike Fischer, co-principal organizer

Robin Laakso

Paulo Ney de Souza

Conference artwork : Jennifer Claudio

Sponsors

TEX Users Group

DANTE e.V.

Google

GUTenberg Association

Overleaf

Pearson Addison-Wesley

STM Document Engineering Pvt Ltd

with generous assistance from many

individual contributors.

Thanks to all!

DANTEe.V. O

TEXFolio

Participants

Nils Ackermann

Giedrius Andreikėnas, VTEX

Nelson H F Beebe

Barbara Beeton, TUGboat

Doris Behrendt, DANTE e.V.

Denis Bitouzé, LMPA, Univ. du Littoral Côte d’Opale

Johannes Braams, TEXniek

Erik Braun, CTAN

Gyöngyi Bujdosó, University of Debrecen

David Carlisle

Paulo Cereda, Overleaf

Ben Davies, Overleaf

Yann Denichou

Christine Detig, Schrod Net & Publication Consultance

Luzia S. Dietsche, DANTE e.V.

Karin Dornacher, DANTE e.V.

Carl-Clemens Ludwig Ebinger

Gert Fischer, Bär Backup Crew - B.B.C.

Ulrike Fischer, The LATEX Project

Thomas Flinkow

Ben Frank, Island of TEX

Velicia “Vhe” Frazier-Ratajczak

Deimantas Galčius, VTEX

Sasha Göbbels, Overleaf

Ulrich Grabowsky

Steve Grathwohl

Enrico Gregorio, Università di Verona

Patrick Gundlach, speedata GmbH

Jochen Günther

Jasper Habicht

Jim Hefferon, St Michael’s College

Tom Hejda, Overleaf

Klaus Höppner, DANTE e.V.

Jérémy Just, ENS Lyon, CNRS

Jonas Karneboge

Oliver Kopp, JabRef e.V.

Stefan Kottwitz, LaTeX.org

Reinhard Kotucha

Marcel Krüger

Robin Laakso, TEX Users Group

Eberhard W Lisse, Omadhina Internet Services Ltd

Manfred Lotz, CTAN, DANTE e.V.

Stephan Lukasczyk, DANTE e.V., University of Passau

Jakub Máca

Carla Maggi

Henri Menke, PGF/TikZ

Ralf Mispelhorn

Frank Mittelbach, The LATEX Project

TUG2023—Bonn, Germany—July 14–16, 2023

doi.org/10.47397/tb/44-2/tb137confinfo



TUGboat, Volume 44 (2023), No. 2 155

Ross Moore, Macquarie University

Dennis Müller, FAU Erlangen-Nürnberg

Philipp Müller

Gerd Neugebauer, CTAN

Leah Neukirchen

Vı́t Novotný

Marei Peischl, peiTEX

Bernd Raichle

Henning Hraban Ramm

Thomas Ratajczak, German Armed Forces

Oliver Rath, genua GmbH

T Rishikesan, STM Document Engineering

Linus Romer

Martin Ruckert, Munich University of Applied Sciences

Victor Sannier, GUTenberg Association

Volker RW Schaa, DANTE e.V.

Thomas A. Schmitz, Bonn University

Michael Schlueter, Schlueter Consultancy

John Schrader

Joachim Schrod, Schrod Net & Publication Consultance

Torsten Schuetze

A M Shanmugam, STM Document Engineering

Martin Sievers, DANTE e.V.

Ondřej Sojka

Petr Sojka, Masaryk University

Jonathan P. Spratte

Mikael Persson Sundqvist, Lund University

Jan Šustek

Heiko Thimm, Kremer und Thimm GmbH

Sigitas Tolušis, VTEX

Rajeesh Keezhe Veettil

Didier Verna, EPITA Research Lab

Boris A Veytsman, Chan Zuckerberg Initiative,

George Mason University, TUG

Ulrik Vieth

Stefan Vollmar, MPI for Metabolism Research

Eileen Wagner

Anselm von Wangenheim, pdf2tex.com

Alan Wetmore

Alexander Willand

Joseph Wright, The LATEX Project

Uwe Ziegenhagen

TUG2023 program

Thursday,

July 13

14:00 PDF Developers’ Workshop

15:00 Excursion—Guided walking tour of downtown Bonn

19:00 Reception & registration at Hotel Leoninum

Friday,

July 14

08:00 registration

08:30 Boris Veytsman, TEX Users Group Welcome

08:45 Ulrike&Gert Fischer, Carla Maggi,

Paulo Cereda, samcarter

Behind the scenes of the Great TikZlings Christmas

Extravaganza

09:15 Oliver Kopp, JabRef e.V. JabRef as BibTEX-based literature management software

09:45 Jan Šustek On generating documented source code by blocks in TEX

10:15 Barbara Beeton, TUGboat What every LATEX newbie should know

10:45 break & registration

11:15 Martin Ruckert, Munich University of

Applied Sciences

News from the HINT project

11:45 Dennis Müller, FAU Erlangen-Nürnberg An HTML/CSS schema for TEX whatsits

12:15 Patrick Gundlach, speedata GmbH News from boxes and glue: How do the TEX algorithms help

in developing a new typesetting engine?

12:45 lunch

14:00 Joseph Wright, samcarter Beamer news

14:15 samcarter The tcolorbox inner beamer theme

14:30 Boris Veytsman, Chan Zuckerberg

Initiative, George Mason Univ., TUG

The update of the nostarch class

15:00 Ben Davies, Overleaf Bumpy road towards a good LATEX visual editor

15:30 Didier Verna, EPITA Research Lab Interactive and real-time typesetting for demonstration

and experimentation

16:00 break

16:30 Eberhard W. Lisse,

Omadhina Internet Services Ltd

Introduction to Typst

17:00 Jakub Máca, Petr Sojka, Ondřej Sojka Universal syllabic pattern generation



156 TUGboat, Volume 44 (2023), No. 2

TUG 2023 program (continued)

Saturday,

July 15

08:30 Henning Hraban Ramm Architectural guides for Bonn—book production with ConTEXt

09:00 Thomas Schmitz, Bonn University Producing different forms of output from XML via ConTEXt

09:30 Vı́t Novotný Markdown 3: What’s new, what’s next?

10:00 Rishi T, Apu V, Hàn Thé̂ Thành,

Jan Vaněk, STM Document Engineering

Primo—The new sustainable solution for publishing

10:30 break

11:00 Ross Moore, Macquarie University Tagged PDF, derived HTML and aspects of accessibility

11:30 Ulrike Fischer, LATEX Project Automated tagging of LATEX documents—

what is possible today?

12:00 Joseph Wright, LATEX Project Supporting backends in expl3

12:30 Frank Mittelbach, LATEX Project The LATEX Companion, 3rd edition—

Anecdotes and lessons learned

13:00 lunch

14:00 Jim Hefferon, St Michael’s College Using Asymptote like MetaPost

14:30 Linus Romer Curvature combs and harmonized paths in MetaPost

15:00 Rajeesh KV Metafont, MetaPost and a complex-script typeface

15:30 Victor Sannier, GUTenberg Association A METAFONT for rustic capitals

16:00 break

16:30 Ulrik Vieth An updated survey of OpenType math fonts

17:15 Mikael Sundqvist, Lund University Extending OpenType math, making choices

17:45 Tom Hejda, Overleaf TEX Live and Overleaf revisited

Sunday,

July 16

08:30 Island of TEX Living in containers—on TEX Live in a docker setting

09:00 Joseph Wright Further adventures in Unicode-land: Refining case changing

09:30 Oliver Kopp The LATEX template generator: How micro-templates reduce

template maintenance effort

10:00 Island of TEX The Island of TEX 2023—sailing the smooth seas of ideas

10:30 break

11:00 Frank Mittelbach 38 years with LATEX—A personal picture story

12:00 Boris Veytsman Closing

≈ 12:15 pm end/lunch

C
o
n
fe
re
n
c
e
p
h
o
to

c
o
u
rt
e
sy

A
la
n

W
e
tm

o
re
.



TUGboat, Volume 44 (2023), No. 2 157

A rally in Bonn: TUG 2023

Eileen Wagner

Thursday, July 13

TUG 2023 took place in Bonn, Germany, after three
years of online-only meetings due to the COVID-19
pandemic. Our local hosts, Ulrike and Gert Fis-
cher, invited us to the Hotel Leoninum, a retirement
home and hotel that provided a sense of calm and
conviviality.

Beyond the usual updates on kernel, key pack-
ages, and favorite editors, this year’s topics focused
on continued efforts in accessibility, related research
around hyphenation, and various experiments in Uni-
code and more. It wouldn’t be TUG without the riv-
eting demos, be it specific publishing house setups,
private practice workflows, or yes, even writing The

LATEX Companion itself. There was a stream of live
tweets and toots about the conference on #TUG2023.

Friday, July 14

The conference took place at the Old Church of the
hotel, a repurposed seminary from the 19th century.
This was not only befitting the sanctity of the TUG,
but also enabled speakers to preach to the choir, from
the quire.

The president, Boris Veytsman, opened the con-
ference at 8:30 sharp. He noted that this is the
first in-person conference since the beginning of the
COVID-19 pandemic, which is special for him and
many attendees.

Ulrike and Gert Fischer, Carla Maggi, Paulo
Cereda and samcarter kicked off the talks with a
lighthearted peek behind the scenes of generating
the annual Great TikZlings Christmas Extravaganza
video.1 samcarter went into detail on how each scene
was created in Beamer and then stitched together
from PDF to PNG to MP4. The talk ended with a
compilation of various duck-themed animations.

Next, Oliver Kopp urged the audience to (re)con-
sider JabRef as BibTEX-based literature management
software. Their recent work rewired the GUI and
switched to BibTEX as its internal data model, which
means no conversions are needed. New features such
as integrated web search, drag-and-dropping PDFs
with metadata, grouping options, and data quality
control are truly exciting. Almost as importantly,
Oliver described their efforts to have JabRef included
as a potential student project at university computer
science programs. This meant a lot more contribu-
tions for JabRef, and a lot more computer science
students who worked on a real-world package with

1 github.com/TikZlings

their code actually being used. Their contribution
framework on GitHub2 is a great place to start.

Jan Šustek followed with his work on generat-
ing documented sources by blocks. The goal is to
write source code as well as its documentation in
a single file. This was made possible by modifying
certain OpTEX macros and using nested blocks. The
audience was equally awed by the capability of this
macro and the fact that they met a real-life plain
TEX user—on macOS, no less.

Barbara Beeton reviewed frequently asked ques-
tions on tex.stackexchange so you don’t have to!
She turned these questions into an introduction to
key concepts in TEX, titled “what every newbie
should know”. The article is highly recommended
for those frequently introducing TEX to new users.

After a coffee break, Martin Ruckert came with
news from the HINT project. HINT is a file format,
viewer, and engine (HiTEX) that renders TEX doc-
uments in a resizable and searchable viewer. (See
TUG 2019 and 2020 for more details.) He introduced
the issue of optimizing for small font sizes (<10 pt).
Outline fonts, along with some tricks in rounding
and interpolation, can help glyphs become better
defined. Support for links, labels, and outlines were
added in HINT as well. Martin showed that some
commands are better than others when supporting
variable window sizes. For that, HINT needs to de-
sign more macros. Did you know that you need to
type ‘La TEX’ in Unicode to find ‘LATEX’ because
between ‘a’ and ‘T’ we use a glue and not a kern?
Martin’s next projects might include bi-directional
typesetting and subpixel rendering. Thankfully he’s
going into retirement from teaching this fall, so we
can expect even more updates soon.

Dennis Müller then introduced an HTML/CSS
Schema for TEX primitives. But first he talked about
RusTEX, which is an engine in Rust that is close
to pdfTEX. Right now there is a difficult tool chain
for producing HTML involving LATEXML, OMDDoc,
MMT, and more, which “might only work on Martin
Kohlhase’s computer”. Dennis’ goal was to combine
everything in one package with the same representa-
tion format for both humans and machines. This way
you can inject additional services such as JavaScript.
He used an AI—“a good old-fashioned symbolic
AI”—to help with the conversion, and so far the
results look promising.

Patrick Gundlach makes a lot of catalogues, and
is maintaining a project called ‘boxes and glue’ that
brings TEX’s typesetting engine to more folks (imple-
mented in Go). His motivation is mainly that there

2 github.com/orgs/JabRef/projects/3

doi.org/10.47397/tb/44-2/tb137wagner-tug23

A rally in Bonn: TUG 2023

https://github.com/TikZlings
https://github.com/orgs/JabRef/projects/3
https://doi.org/10.47397/tb/44-2/tb137wagner-tug23


158 TUGboat, Volume 44 (2023), No. 2

are some trivial limitations for LuaTEX: no https
requests, for example, which he really needs! He has
his work cut out for him: on the backend with fonts,
language, nodes, PDF library, and on the frontend
with font families, colors, CSS/HTML, accessibility,
page layout, and so on. (And then an application
on top!) His boxes and glue engine is “pretty fast”
outputting 300 pages per second, which is much bet-
ter than the 50 pages per second he had with his old
catalogue software. He also described some lessons
learned, starting with “PDF looks like an innocent
file format. . . ” He confirmed the audience’s suspi-
cion that, once set up properly, the typesetting is
much faster than the previous InDesign process.

With that, we headed to lunch, with tables
sprawling from the hotel restaurant to the sunny
terrace. Delegates gathered shortly before the af-
ternoon sessions to take a group picture. One of
the sponsors distributed a number of rubber ducks,
brightening the post-lunch spirits.

samcarter (and Joseph Wright) gave updates on
beamer. While their efforts still focused on maintain-
ing backwards compatibility, they also made sure
to ship some usability improvements. For exam-
ple, transparent backgrounds now work as expected;
there is a flexible interpretation of the aspectratio
option; title pages are more modular; the geometry
calculation was renewed.

This transitioned to another talk by samcarter
on tcolorbox, a new theme for the beamer class. It
replaces normal beamer blocks with tcolorboxes of
the same look and feel. tcolorbox makes it easy to
modify the appearance of blocks, accommodating all
kinds of user requests (“Can I have the rectangular
block with rounded shadows?”). Keep them coming!

Boris Veytsman took the floor to describe his
nostarch class. No Starch Press is a publishing
house that switched their tooling from InDesign to
LATEX, very much thanks to Overleaf’s wider adop-
tion. The TEXnical problems he faces there can be
unusual. For example, url splitting on hyphens is am-
biguous between hyphen (linebreak) or hyphen (url).
No Starch has a convention to split before hyphens.
Another example: captions should be the same width
as the corresponding figure. Boris insisted that he
can’t fix a bug with amsmath (Bad mathchar 32768),
but despite his claim that “the magic of category
codes is sometimes black magic”, a delegate, David
Carlisle, found the issue (including line reference)
by the end of the presentation, and the fix is in the
current release.

Overleaf’s Ben Davies followed with a presenta-
tion of their new Visual Editor. This development
comes from well-known issues: many people—col-

laborators or proofreaders or just “young people who
are intimidated by any code”—might not be familiar
with LATEX, so Overleaf wanted to offer a way for
them to contribute without using TEX syntax. This
was made possible by the switch from CodeMirror5
to CodeMirror6. The new Visual Editor is a WYSI-

WYG editor that hides code and adds previews of
maths and figures. Track changes and comments
work with both the Code Editor and Visual Editor.
Ben discussed many user experience decisions, such
as introducing a visual “undo” button that gives
people the confidence to make mistakes and experi-
ment. The crucial issue is to balance how much code
to hide, and refraining from too much WYSIWYG

conditioning which can feel limiting. So far, 2% of
Overleaf users are making use of the Visual Editor.

The visual theme was continued by the next
speaker, Didier Verna, who demonstrated his visuali-
sation software for interactive and real-time typeset-
ting. TEX engines are production systems that are
not meant for playing around, and so his tool focuses
on experimentation and demonstration instead. His
program ETAP3 showcases kerning, ligatures, base-
lines, etc., in typesetting algorithms. (It of course
includes the Knuth-Plass algorithm.) After a brief
detour on programming in multi-paradigm languages
that allow inheritance and polymorphism, he went
on to demonstrate the power of ETAP to produce
statistical reports on the behavior of the various algo-
rithms. He showed a number of benchmarking tests
for efficiencies of various algorithms. He hopes to add
more parameters in the future— microtype and a
tolerance threshold (sloppiness) are clear candidates.

Eberhard Lisse took on a review of Typst, a re-
cent addition to the typesetting ecosystem. Eberhard
started using LATEX early on and, like so many of
us, never wanted anything else. He gave an in-depth
view into the use of TEX in his medical practice, and
asked “Is TEX ready for prime time?” Even though
his staff has begrudgingly learned LATEX and he’s
gotten very far with customising his tool chain, his
answer is a sad “no”. “For casual use it’s much too
complicated,” he concluded. More reason, then, to
be excited about a new alternative: Typst. Typst is
both a typesetting engine, a collaborative editor, and
a platform built by two computer science students
from Berlin, who may have shared similar feelings
about the production-readiness of LATEX. In Eber-
hard’s view, Typst fills the gap between advanced
tools (TEX) and simpler tools (Word/Google Docs):
it is highly capable, blazingly fast, and uses a sim-
ple markup language. It is also less powerful than

3 github.com/didierverna/etap

Eileen Wagner

https://github.com/didierverna/etap


TUGboat, Volume 44 (2023), No. 2 159

TEX. He proceeded to point to missing features—
namely floats, indices, interactions with the environ-
ment, and labels—but remains hopeful that sensible
decisions will be made. Eberhard is also going into re-

tirement this fall, so we can expect more experiments

in Typst!

Next, a research group from Masaryk Univer-
sity consisting of Ondřej Sojka, Jakub Máca, and
Petr Sojka presented a roadmap for universal syllabic
segmentation. The tagline: give patterns a chance!
They are studying the similarity of languages when it
comes to hyphenation patterns, starting with Czech
and Slovak, and following up to nine languages (cz,
sk, ka, el, pl, ru, tr, tk, ua). Their results: syl-
labic segmentation across languages is possible using
Judy arrays; and their hypothesis: universal patterns
are feasible, too, with high impact on virtually all
typesetting engines.

The conversation then seamlessly transitioned
to the TUG Annual General Meeting (see separate
report in this issue). Delegates left the hotel in time
to eat out on this warm summer evening.

Saturday, July 15

Henning Hraban Ramm showcased the architectural
guides for Bonn that his publishing house4 made,
using first InDesign and then ConTEXt in produc-
tion. Some of his customizations in ConTEXt include
OpenStreetMap integrations, beautiful bleed and
trim boxes, and shadow captions for white text on
a monochrome background. When asked how long
it took to produce the book, he said that the basic
typesetting was very quick, but it took hours to set
it up; in InDesign it was the other way around.

The morning continued with beautiful examples
from Thomas Schmitz, who teaches ancient Greek
at the University of Bonn. He switched to ConTEXt
years ago with the ambitious goal of having all lecture
content and notes in the same source document. For
him this meant XML, with its advantage of easy code
reuse and outputs in different formats. Examples
of these formats are lecture slides, course schedules,
translations (philology), printout for students, bibli-
ography for conferences. This amounted to over 30k
lines over one term. Thomas demonstrated his setup
with an integrated Lua interpreter. His presentation
module is available on the ConTEXt Garden.5 Upon
the question of any preprocessing setups (linting and
checks), he responded that that won’t be possible
because of his editor (Emacs)—cheers in the room.

4 www.dreiviertelhaus.de
5 modules.contextgarden.net/cgi-bin/module.cgi/

ruid=5038752680/action=view/id=31

V́ıt Novotný came next with a Markdown 3 up-
date. He observed that LATEX is easy to write, but
hard to read! This presents a challenge, since most of
the time writers need to read what they are writing.
Markdown is not just a great option for those want-
ing a non-distracting syntax; it is also a great option
for TEXnicians who need to work with clients and
publishers who do not use TEX syntax. Vı́t went on
to discuss the Markdown syntax of choice, Common-
Mark by Jeff Atwood and John MacFarlane.6 Tables,
footnotes, and citations are not included though, and
for structured metadata, a YAML file is still required.
The exciting feature is the “hybrid” mode that allows
authors to switch back and forth between Markdown
and TEX syntax. Until now, Markdown-enabled TEX
files were not interoperable with other Markdown
clients. Markdown 3’s hybrid syntax does not break
interoperability. It also introduces some neat fea-
tures like tables, task lists, superscripts, and more.
It added TEX4ht for websites, OpTEX support, and
also updated ‘pandoc-to-markdown’; lua-tinyyaml
is now on CTAN. Perhaps more importantly, Mark-
down 3 is now en route to have better governance
and community management, adding rooms in Dis-
cord and Matrix to welcome developers and authors

alike. The stable release is coming soon. The session
ended with an admission of guilt: Vı́t created his
presentation with Google Slides.

Next, Rishi T from STM Document Engineering
announced a new editor, Primo. As a company that
works closely with publishers, they have built many
tools that ease the authoring-to-publishing workflow.
With Primo, they wanted to create an all-in-one solu-
tion for many known issues in the submission process.
These issues include: authors can’t understand jour-
nal’s requirements, authors cannot collaborate easily,
missing material during submission, the back and
forth querying, and general technical constraints in
the submission systems. Primo is a cloud-based au-
thoring, submission, proofing framework that hopes
to be self-explanatory and user-friendly. It will offer
a WYSIWYG and non-WYSIWYG mode as well as
collaboration, which the audience saw in screenshots.
It is XML-based and a DTD-compliant tool. There
was great disappointment in the room when the time-
line was announced: the platform will be released
between April 2024 and April 2025 in three phases.

After the coffee break, Ross Moore gave an over-
view of accessibility principles and practices via a
pre-prepared video. He gave a thorough tour of
TEXed documents in various PDF readers, evaluating

6 commonmark.org

A rally in Bonn: TUG 2023

https://www.dreiviertelhaus.de
https://modules.contextgarden.net/cgi-bin/module.cgi/ruid=5038752680/action=view/id=31
https://modules.contextgarden.net/cgi-bin/module.cgi/ruid=5038752680/action=view/id=31
https://commonmark.org


160 TUGboat, Volume 44 (2023), No. 2

them against the PDF/UA standard7 set by the W3C

and WCAG. The display of bookmarks vs. tables
of contents vs. hyperlinks is not always compatible
with navigation, for example, and a lot of informa-
tion is hidden in fields that are not read by screen
readers (hover-over). The best practice is to include
alt-descriptions for information blocks, and adding
navigation shortcuts in sensible places. Ross also ref-
erenced best practices in accessibility design in web
pages, which have more established standards and
tools for evaluation. A well-tagged document can
have its semantics carried over to web pages as well.

Following the general introduction to PDF acces-
sibility, Ulrike Fischer gave an update on the tagpdf
project. The goal is to add structure to PDFs to
improve accessibility and reuse of data. Adding
tags (alt-descriptions and other useful metadata) is
already possible in the current release, but the chal-
lenge for this project is to make tagging automatic
and easy to use. Some first problems (again echoing
Ross’s talk): free-of-charge PDF viewers don’t show
tags in the visual interface (“If people can’t see it in
their resulting PDF, they often don’t want it!”); this
also makes testing difficult. Moreover, many PDF

viewers don’t support PDF 2.0, which is important
for proper tagging. Ulrike described tagging standard
“Leslie Lamport documents” as tests— this is possible
now as of the summer 2023 release! Some things are
not yet supported, notably footnotes, sectioning in
memoir, etc. More work ahead!

Tagging is not the only core construction hap-
pening now. Joseph Wright gave an update on expl3,
very much motivated by the question “what does
TEX NOT do out of the box?” TEX is “blind” to core
document elements such as color and graphics— the
boxes to be glued, so to say. Joseph took a closer look
at these backend support files, such as drivers.dtx
which includes a lot of clutter accommodating differ-
ent developments of backends over the years. expl3
tries to create a single source for .def files that
would be compatible with core backends (pdfTEX,
etc.). This principle applies not only to colors and
graphics, but also hyperlinks, PDF constructs, tag-
ging of course, drawings, and box transformations.
As with most rewrites, the difficulty lies in finding
the right level of abstraction. Given the immense
undertaking, the audience wondered if it would be
easier to create a specification or a set of primitives.
This way, engine developers can carry the burden of
implementing it respectively.

More news from the LATEX Project: Frank Mit-
telbach was ready to present The LATEX Companion,

7 www.iso.org/standard/64599.html

third edition. The “monster” weighs 3.5 kg and took
five years to complete. A primary goal was to clas-
sify CTAN packages according to their functionality,
usability, and correctness—and how they relate to
other packages. After an initial review, Frank decided
to focus on 500 (about 10% of all packages). For those
who might compile a 1600-page book with over 100
fonts in the future, Frank shared his lessons learned:

• Test all examples included—better even to have
them in production.

• Take care of pagination after you copyedit and
finalise font sizes.

• Keep layout code as separate as possible, so you
can distinguish between things you changed for
the layout and things you changed “to make the
page look right”.

• Never underestimate the power of automated
checking.

Frank welcomes scrutiny and contributions of course.
Now off to lunch!

In another remote presentation, Jim Hefferon
made a case for using Asymptote,8 a descriptive
vector graphics language for technical drawings. It is
in part based on Metafont and MetaPost, but extends
it from 2D to 3D. Asymptote uses a single source
file for related graphics, meaning (unlike TikZ) all
graphics are outside of the document. Jim showcased
a number of Asymptote examples.

Linus Romer, in designing fonts, threw himself in
at the deep end of curvature combs. Most font editors
offer curvature-related tools, and curvature combs
are one of them. He described his implementation of
curvature combs in MetaPost, along with a number
of harmonization algorithms that helped smooth out
the paths. As expected, there is lots of math behind
curvy characters!

More font adventures: Rajeesh KV talked about
shape-shifting Indic scripts. In Malayalam, any con-
sonant followed by the vowel sign of u, ū, or r. are
represented by a cursive consonant-vowel ligature.
The glyph of each consonant has its own way of
ligating with these vowel signs. We may call this
“ligatures on steroids”. Rajeesh developed a reusable
component-based design for these Malayalam fonts
using Metafont/MetaPost to assemble the charac-
ters. This shifts the paradigm from visual tools to
code-based tools. His assembly line: MetaPost, SVG,
FontForge, scripts, and finally OTF/TTF/WOFF2. It
is even possible to specify width and angle of the
pen for the shape library!

Victor Sannier representing the French TUG

(Le Groupe francophone des Utilisateurs de TEX,

8 asymptote.sourceforge.io

Eileen Wagner

https://www.iso.org/standard/64599.html
https://asymptote.sourceforge.io


TUGboat, Volume 44 (2023), No. 2 161

GUT) showcased his Metafont for rustic capitals.
Rustic capitals as a type started in the 1st century,
and had been regularized in the 4th and 5th century.
He measured and analyzed many of them until even-
tually tracing them with a ‘draw_serif macro he
devised. He said that he would continue to design
more rustic characters and welcomes feedback.

Meanwhile, Bonn is getting warm and humid,
and the organizers have opened the doors and turned
on the fans. Delegates opened bottles of sparkling
water and cleverly mixed them with apple juice to
create the inimitable Apfelschorle.

Another font talk followed. Ulrik Vieth had
the unenviable task of reviewing all OpenType math
fonts—so you don’t have to. He both evaluated
their completeness and design choice. He started
with a history of OpenType math fonts which were
first ready for use around 2010. The list is now over
20 official fonts, and more than 30 if you count not
yet released or not properly licensed fonts. Some
fonts have around 500 symbols, some have 1200.
This largely depends on the availability of additional
series such as script, fraktur, or blackboard bold.

Building on the previous talk, Mikael Sundqvist
dug deeper into OpenType math. The root of many
issues here is that there is no good standard! While
Microsoft offers some instructions, it’s unclear what
should be included in a math font. Several OpenType
math fonts were created by converting and extending
older TEX fonts. Together with Hans Hagen, Mikael
works on math in ConTEXt. He observed many frus-
trating inconsistencies: italic corrections are trans-
formed to corner kerns, staircase kerns are incon-
sistent, accents from different fonts look completely
different. Depending on the engine, the glyphs are
also differently rendered. Extensibles and rules often
don’t work. Their efforts have corrected for many
of these issues in ConTEXt. Moreover, his observa-
tions often feed back to the font designer, many of
them responsive. He promised to publish an article
outlining best practices for math font design.

For the final talk of the day, Tom Hejda proposed
closer collaboration between TEX Live development
and Overleaf. Tom reiterated the Overleaf view that
TEX Live should be “all you need to use LATEX”.
Due to their uptime requirements, Overleaf can only
afford an annual deployment in Q3 every year; that
version of TEX Live is then locked for a year for their
users— roughly two million at this point. Their
schedule, along with the pressure to have a version
of TEX Live that’s compatible with the Overleaf
ecosystem (most importantly: the templates that
are offered), prompted Tom to start a discussion on
whether and how TEX Live developers and Overleaf

can work together. This would also mean TEX Live
could benefit from early deployments and extensive
testing. The group recommended that Overleaf con-
tact the core team as well as package maintainers
as soon as possible when deployments fail. (It turns
out that, just like Overleaf, the community is also
not thrilled about hard deadlines!) It is also possible
for Overleaf to test the early (beta) version of the
newest TEX Live release. It was noted that more
frequent deployments (continuous integration) would
directly benefit their users.

With that, the group moved on to a banquet
at Konrad ’s on top of the Marriott Hotel. We spent
much time on the terrace overlooking the Rhine,
enjoying the view of the Seven Hills and the old
parliament of West Germany. A three-course meal
followed. Some delegates chose to walk back to the
city center along the river, a calm and inspiring end
to Day 2.

Sunday, July 16

For those quick to recover from the banquet, Day 3
began with Ben Frank’s presentation on Docker con-
tainers,9 a community service offered by the Island
of TEX. The brilliant idea behind Docker: it is
self-contained, meaning each TEX Live image ships
with literally everything required to run it. Ben
went on to describe two use cases that benefit from
Docker. First, a small German maths journal that
needs to be able to run older versions of TEX for
historical issues. Second, student representatives
who compile their weekly meeting minutes with a
completely CI-based and ConTEXt-heavy setup. Fu-
ture directions for dockerized TEX could be including
more operating systems (such as Raspberry Pis) and
layer-friendliness (only pulling changes). He added a
public service announcement: do not use ‘latest’, it
is not image-friendly.

Joseph Wright took the audience on further ad-
ventures in Unicode-land. The code for the Unicode
case changing algorithm is now in the kernel. So
far, the project largely involved updating case map-
pings for Unicode engines, automatic locale switching
via \BCPdata, and full Unicode support for pdfTEX.
Joseph showed more recent work and challenges. One
key take-away: Greek, with all its cases and accents
and exceptions, is a great language to stress test your
Unicode engine! Further improvements are coming,
of course, such as true titlecasing and a closer look
at graphemes (human-perceived characters).

Oliver Kopp introduced his library of LATEX
templates10 motivated by providing a simple IEEE

9 islandoftex.gitlab.io/community/projects/docker
10 latextemplates.github.io

A rally in Bonn: TUG 2023

https://islandoftex.gitlab.io/community/projects/docker
https://latextemplates.github.io


162 TUGboat, Volume 44 (2023), No. 2

template that works out of the box. Many existing
templates do not include key packages correctly, such
as microtype or hyperref, and don’t include mini-
mal examples as guidance. His templates contain a
bit of templating language, and the tool includes a
CLI for basic design choices. The setup via “micro-
templates” (modules, so to say) can reduce the over-
head of maintaining LATEX templates. Importantly,
there are automated CI checks to ensure that the
templates are always compatible with the newest
stable release.

Paulo Cereda, Overleaf community coordina-
tor and Island of TEX core member, gave a run-
down of the latest developments on the Island (there
are many!). First off, albatross, a CLI that helps
you find a font based on particular glyphs, was re-
designed with border styles, font lookup, and graph-
emes. Users can use glyph, hexadecimal, or multiset
union to search. The Island’s community website
was also updated, with an index pulling from all
the READMEs of the projects. There are exciting
ideas for the future, such as providing binary code
for packages. The Islanders will also continue their
quest to improve user experience. Finally, the Island
is ready for a new visual identity. Help on all of the
above is explicitly wanted: “visas to the Island are
easy to attain!”

To close off TUG 2023, Frank Mittelbach shared
the highlights of his last 38 years with LATEX through
a personal picture story with a mere 90 slides. It
started with an invitation in 1989 to attend TUG

at Stanford, and appropriately ended with finishing
the new LATEX Companion in 2023, documenting
many friends, ideas, and past TUG convenings across
multiple continents.

Brushing aside the sentimentalities, Boris (now
outgoing president) shared that he was glad that the
group was able to bring back TUG in full glory. He
thanked the organizers for the great line-up and cul-
tural program—which would be continuing onwards
to an outing to the Seven Hills (Drachenfels and
Königswinter). The group lingered on the terrace
after lunch, bidding their farewells and exchanging
last comments. Until next year!

Acknowledgment

I’d like to thank the TUG bursary for funding to
support me in attending this conference.

⋄ Eileen Wagner

Berlin, Germany

hello (at) bumble dot blue

TUG 2023 Annual General Meeting notes

Notes recorded by Karl Berry and
Robin Laakso

Boris Veytsman, outgoing TUG president, opened
the meeting in Bonn, Germany, at approximately
17:45 CEST. He gave a short greeting from Arthur
Rosendahl, incoming TUG president, who unfortu-
nately could not be present.

Klaus Höppner, TUG secretary, gave a TUG

status update and financial report. He showed a
series of slides, most of which are included in this re-
port (slides are omitted here if they merely duplicate
information from web pages):

1. The TUG board of directors. (tug.org/board)

2. “Formalities”: Klaus reported on the results of
the 2023 TUG election. He welcomed the incom-
ing president, Arthur Rosendahl, and incom-
ing board members, Max Chernoff, Tom Hejda,
Jérémy Just, and Boris Veytsman; Boris stood
for election to the board after stepping down
as president). Klaus thanked outgoing board
member Paulo Cereda and Boris for his serving
six years as president. (tug.org/election)

3. “Members end of May 2022”: Klaus noted that
DANTE joint memberships were not continued
this year, due to organizational issues at DANTE.
Thus TUG membership may be affected.

4. “Profit & Loss 2022” showed the major income
and expense categories in 2022. Klaus noted
that there were three major donations in 2022
which are not expected to recur, so the total
contributions in 2023 will likely be substantially
less. (tug.org/tax-exempt)

5. “Assets and Liabilities” and “Committed Funds”
were next, both as of the end of 2022. Klaus
noted the funds with particularly significant bal-
ances: CTAN, LATEX3, PDF Accessibility.

6. “International Conferences”: Klaus reported on
past and upcoming conferences, particularly not-
ing the welcome return of BachoTEX a couple
months ago. (tug.org/meetings)

7. “TEX Live/TEX Collection”: Klaus reported that
the DVD has been manufactured in Germany,
with cooperation and support from many people.
The total run was about 3300 discs. The delivery
for TUG is en route. (tug.org/texcollection)

8. “Board Motions”
(tug.org/board/motions.html):

2022.4 TUG’23 in Bonn (unanimous).

2022.5 Approval of the 2023 budget (passed
12–0; no response from 1 board member).

doi.org/10.47397/tb/44-2/tb137tug23-agm

TUG 2023 Annual General Meeting notes



TUGboat, Volume 44 (2023), No. 2 163

2023.1 Support for Ukrainian students at
BachoTEX (unanimous).

2023.2 Additional support for Ukrainian
students at BachoTEX (unanimous).

There were no questions or discussion. The
meeting was adjourned at 18:10 CEST.

Annual General Meeting 2023 of the TeX Users Group

Klaus Höppner (secretary) for the board

July 14, 2023

Members end of May 2022

End of May we had 1,060 paid members, with:

946 renewals, 43 new (26 of them trial, 6 joint)

−28 compared to June 2021

90 institutional (+5), 62 joint members

Remark: no joint membership with DANTE this year!

383 with electronic-only option

349 with auto-renewal option

31 of last year’s 50 trial members renewed so far

final numbers of last years:

December 2022: 1,162
December 2021: 1,210
December 2020: 1,189
December 2019: 1,238
December 2018: 1,214
December 2017: 1,178

Profit & Loss 2022

Income Expenses

Membership dues 76,940 Cost of goods sold
Product sales 20,008 TUGboat 23,008
Contributions 37,055 Software 2,818
Annual Conference 4,325 Fonts 9,595
Other 1,117 Postage 1,822

Other 520
Office

Payroll 71,565
Overhead 12,647

Sum 139,445 Sum 121,975
Net ordinary income 17,470

Assets and Liabilities (status end of 2022)

Assets Liabilities

Checkings/Savings 198,499 Committed funds 53,524
Accounts Receivable 2,335 Admin services 1,443

Conference 2,000
Member income 11,395
Payroll 3,539

Sum 200,834 Sum 71,901
Equity 128,934

Committed Funds (status end of 2022)

Fund Amount

Bursary 4,560
CTAN 9,792
GUST e-foundry 536
LATEX3 14,115
LuaTEX 1,816
LyX 70
MacTEX 6,561
PDF Accessibility 11,071
TEX Development 5,003

owed: 1,500
available: 3,503

Sum 53,524

International Conferences

Past

ConTEXt meeting (Germany, Sept. 12–18, 2022)

DANTE (online, Nov. 19, 2022)

Journée GUTenberg (online, Dec. 12, 2022)

BachoTEX (Poland, Apr. 29–May 3, 2023)

GuIT meeting (Italy, May 20, 2023)

Upcoming

ConTEXt meeting (Czech Rep., Sept. 10–16, 2023)

TEX Live/TEX Collection

TEX Live 2023 released as planned

Team: Karl, Norbert, Siep Kroonenberg, Akira Kakuto et al.

TEX Collection DVDs produced by DANTE in Germany, in
cooperation with TUG and various user groups, containing:

TEX Live
MiKTEX
MacTEX (Richard Koch)
CTAN snapshot (Manfred Lotz)

Former proTEXt distribution for Windows is abandoned, replaced by a
special MiKTEX subset defined by Klaus (due to space restrictions).
Thanks to Christian Schenk for support!

TUG 2023 Annual General Meeting notes



164 TUGboat, Volume 44 (2023), No. 2

What every (LA)TEX newbie should know

Barbara Beeton

Abstract

LATEX has a reputation for producing excellent re-
sults, but at the cost of a steep learning curve. That’s
true, but by understanding a few basic principles,
and learning how to avoid some techniques that may
seem obvious but often lead one into the weeds, it’s
possible to avoid some of that pain. Our goal here
is to encourage good habits before bad habits have
had a chance to develop.

Introduction

The examples presented here are drawn from two
main sources.

• In the author’s years as part of the TEXnical
support team for a major math publisher, re-
sponsibilities included fielding questions from
authors and writing user documentation.

• The online TEX forum at StackExchange1 has
provided a surfeit of questions both basic and
advanced. A community effort has collected a
list of “Often referenced questions”, by topic, at
tex.meta.stackexchange.com/q/2419.

Exhortation: Read the documentation. (This will
be repeated.)

Vocabulary

There are several concepts that seem to be either
missing from a new user’s bag of tricks, or not clearly
understood. Let’s get them out of the way up front.

Template Many new (LA)TEX users think that the
document class is the template for a particular style
or publication. Not so, although the thought is going
in the right direction. A template is a source (.tex)
file that is an outline. It begins with \documentclass

and contains a minimum of basic structural com-
mands into which additional definitions and text can
be inserted as appropriate. Ideally, the template
itself can be compiled with no errors resulting, but
without producing any useful output.

Command line Most new users these days enter
(LA)TEX from an editor or other GUI, and launch a
non-interactive job that will blithely keep on process-
ing the file until it finishes (with or without errors)
or hangs in a loop. Launching the compilation from
the command line, on the other hand, allows one to
interact with the session and, in certain cases, make
corrections “on the fly”, or if that’s not possible, halt

1 tex.stackexchange.com

the job in case of an error before the collection of
reported errors becomes unhelpful. One type of “fix-
able” error is a misspelled command:

! Undefined control sequence.

l.37 \scetion

{Section}

?

Respond to this with the correct spelling;

i\section

hit “return”, and continue; don’t forget to correct the
file when you come to a good stopping point.

A misspelled environment name can’t be cor-
rected this way; if that happens, cancel the job with
an x, fix the file, and start over. Continuing a run
after an unfixable error will just result in more er-
ror messages, most of which are meaningless and
confusing, so it’s best to avoid them.

Log file Every time a TEX job runs, it will create
a log file. Learn where to find this file! In addition
to errors and warnings, it will report all files that
were read in, including version numbers for document
class files and packages, pages processed, and, at the
end, resources used. Only a few relevant items will
be mentioned here, but in a paper based on an earlier
talk [1], instructions are given for how to undertake
serious debugging.

Conventions

In order to avoid overfull lines, error and warning
messages shown here may be broken to fit the narrow
columns of the TUGboat style. Many error messages
output by LATEX will consist of several lines, the first
being the message, and the next showing the number
of the line on which the error is identified along with
the content of that line, up through the error text. A
following line, indented so that it, with the numbered
line, completes the line as it appears in the input.

Although we will deal here mostly with details,
please remember that the basic concept of LATEX is
to separate content from structure.

Basic structure:
Commands, modes, and scope

Here we deal with some fundamentals of LATEX.

Commands Instructions are given to (LA)TEX by
means of commands, or “control sequences”, which by
default begin with a backslash (\). There are two va-
rieties: those which consist of the backslash followed
by one non-letter character (“control symbol”), and
those of one or more letters (“control words”) in which
only letters (upper- or lowercase A–Z) are permitted
(no digits or special characters). A control word may

doi.org/10.47397/tb/44-2/tb137beeton-basic

Barbara Beeton

https://tex.meta.stackexchange.com/q/2419
https://tex.stackexchange.com
https://doi.org/10.47397/tb/44-2/tb137beeton-basic


TUGboat, Volume 44 (2023), No. 2 165

have one or more arguments (\title{...}) or stand
by itself (\alpha). A “standalone” control word will
be terminated by a space or any other non-letter.
But a space after a control symbol will appear as
a space in the output. Several control symbols are
predefined to produce their own character in the
output: \#, \%, \$, \&. For example, \$ produces
‘$’.

A user can define new commands, or assign
new meanings to existing commands. LATEX pro-
vides \newcommand to create a brand-new definition.
\newcommand checks to make sure that the command
name hasn’t been used before, and complains if it has.
(The basic TEX \def does not.) If it’s necessary to
redefine a command that already exists, the recom-
mended way is to use \renewcommand— but be sure
you know what you’re doing. For example, redefining
\par is chancy, as LATEX uses this “under the covers”
for many different formatting adjustments, and it’s
very easy to mess things up.

Single-letter commands are also bad candidates
for (re)definition by users, as many of them are pre-
defined as accents or forms of letters not usual in En-
glish text; \i might very well occur with (or without)
an accent in a references list. For (a bad) example,
consider the author Haïm Brezis:
\renewcommand{\i}{\ensuremath{\sqrt{-1}}}

Brezis, Ha\"{\i}m =⇒ Brezis, Haïm
Single-digit commands (\0, \1, etc.) are not

predefined in core LATEX, so are available for ad hoc
use.

Environments An environment is a block of mate-
rial between
\begin{⟨env-name⟩} ... \end{⟨env-name⟩}.

The environment name must match at beginning and
end; if it doesn’t, this error is reported in the log file
and on the terminal:

! LaTeX Error: \begin{xxx} on input line nn

ended by \end{yyy}

Most environments can be nested, but the proper
sequence must be maintained.

Other commands are available to provide
new definitions— \NewDocumentCommand,
\NewEnvironment, \NewDocumentEnvironment and
similar ones for redefinitions. For details on these,
consult a current reference.

Modes Generally speaking, the current mode identi-
fies where you are on the (output) page, but here we
will take a point of view based on the input/source
file.

There are three modes: vertical, horizontal and
math.

Starting after \documentclass or after a blank
line or an explicit \par, LATEX is in vertical mode.
Certain operations are best launched in vertical
mode; more about this later.

Starting to input ordinary text is one way to
enter horizontal mode. Other transitions from ver-
tical to horizontal mode are \indent, \noindent

and \leavevmode. Within horizontal mode, multi-
ple consecutive spaces are treated as a single space;
consecutive is essential here. An end-of-line (EOL)
is treated as a space, even though it’s not explicitly
visible in the source file; a GUI that wraps lines may
or may not (usually not) insert an EOL, and differ-
ent operating systems define an EOL differently, but
such differences are taken care of by the TEX engine.
Spaces at the beginning of a line are ignored. More
about spaces later on.

The third mode, math, can be embedded in-line
in text or set as display material in vertical mode.
Inline math is wrapped in $ signs or surrounded
by \(...\). An unnumbered one-line display can
be indicated by \[...\]. Multi-line math displays
are best entered using the environments provided by
the amsmath and mathtools packages. (Refer to the
user documentation. mathtools loads amsmath, so
it’s not necessary to load both.) A math display is
usually a continuation of the preceding paragraph,
so don’t leave a blank line between a display and the
preceding text; to do so can result in an unwanted
page break.

Within math mode, blank lines are not allowed;
this was a decision made by Knuth, to catch unin-
tentional input lapses, since math never continues
across a paragraph break.

Scope Along with modes, there is the concept of
scope, making it possible to localize definitions and
operations.

Math mode is one instance of scope; certain
characters and operations are valid only within math,
and others are invalid there. Within text, math
usually begins and ends with $, and these must
be matched. Display math breaks the flow of text;
closing a display returns to text mode unless followed
by a blank line or \par. More about math later.

Another way of delimiting scope is to wrap the
material in braces: {...}. Within this scope, the
meaning of a command may be changed for tempo-
rary effect; the definition in effect before the opening
brace will be restored as soon as the closing brace
is digested. Instead of a brace pair, the commands
\begingroup. . . \endgroup have the same effect.

Another way to have a scoped environment is
to pack the material in a “box”. This may be a

What every (LA)TEX newbie should know



166 TUGboat, Volume 44 (2023), No. 2

minipage, \mbox or \parbox. Other boxes are de-
fined in packages like tcolorbox.

Some environments (not all) are defined to be a
scope. One such is the theorem environment, inside
which text is italic; when the theorem ends, the text
style automatically reverts to the document default.

Spacing in text

A goal of high-quality typesetting is even spacing in
text. This is really possible only with ragged-right
setting, where spaces are “natural width”. But even
margins are usually preferred, so TEX is designed to
optimize spacing in that context.

In U.S. documents, spaces that end sentences
are wider than interword spaces. This is not true for
documents in other languages, and can be turned off
with \frenchspacing. But in academic documents,
frequent abbreviations can make it difficult to tell
where sentences end. To avoid a too-wide space after
an abbreviation, follow it by “\␣” (backslash-space):
abc vs. xyz (abc vs. xyz) vs.
abc vs.\ xyz (abc vs. xyz)

If the line shouldn’t break after the abbreviation,
follow the period by ~: seen on p.~23. (seen on
p. 23.)

A similar, but reverse, situation can occur when
an uppercase letter is followed by a period. This is
assumed to be the initial of a name; it usually is, and
an ordinary interword space is set. But sometimes
the uppercase letter is at the end of an acronym,
and that ends a sentence. In such a case, add \@

before the period, and it will restore the wider end-
of-sentence space.

All this boils down to a simple rule: Except
at the end of a sentence (and to a lesser extent
after other punctuation symbols or within math),
all spaces within the same line should be the same
width. If they’re not, something is fishy.

Spurious spaces Multiple spaces can infiltrate a
source file in several ways, but the overwhelming
majority are the result of trying too hard to define
commands in such a way that they are visually pleas-
ing (and easily readable). For example:

\newcommand{\abc}{

\emph{abc def}

}

With this, the input “word \abc\ word” results in
“word abc def word” with extra spaces inserted by
our \abc command. The offending spaces can be
evicted by inserting % where it will “hide” an EOL:

\newcommand{\abc}{%

\emph{abc def}%

}

to produce the desirable “word abc def word”. The
% character starts a comment, i.e., ignores the rest
of the input line, including the EOL.

Another source of extra spaces in the output
can be caused by the presence of multiple consecu-
tive elements that aren’t part of the main text, like
footnotes or index entries:

An important topic\index{abc}

\index{def}

\index{xyz}

is indexed several ways.

An important topic is indexed several ways.

Here, the EOL effect has again occurred (after “topic”),
and these spaces are no longer contiguous. Again
the % comes to the rescue:

An important topic\index{abc}%

\index{def}%

\index{xyz}

is indexed several ways.

An important topic is indexed several ways.

Do remember to leave one space.

Sometimes using a % is a bad idea Remember
that a space terminates a control word and it’s then
discarded; that’s one place where it’s not necessary
to input a %. But there are places where adding a %

can really cause trouble.
After defining any numeric value, TEX will keep

looking for anything else that can be interpreted as
numeric, so if a line ends with \xyz=123, no % should
be added. Or, if setting a rubber length (glue), say
\parskip=2pc, TEX will keep looking for plus or
minus; a better “stopper” is an empty token, {}. (If
“plus” or “minus” is there and happens to be actual
text, a confusing error message will be produced, but
that is rare, and beyond the scope of this discussion.)

Really unexpected extra spaces Other possibili-
ties exist that aren’t so predictable. Here’s one that
was the subject of an online question. A text with
\usepackage{colorbox} (it can also happen with
tcolorbox) had a colorized letter surrounded by spaces
in the middle of a word. Oo p s! A small frame was
applied around the colored element by the package:

\usepackage{colorbox}

\newcommand{\pink}[1]{%

\colorbox{red!20}{#1}}

Oo\pink{p}s!

Oo p s!

Explicitly omitting the buffer inside the frame was
the solution provided by the package documentation:

Barbara Beeton



TUGboat, Volume 44 (2023), No. 2 167

\renewcommand{\pink}[1]{{%

\fboxsep=0pt

\colorbox{red!20}{#1\strut}}}

Oo\pink{p}s!

Oops!

I added the \strut so that the color would be obvi-
ous above and below the highlighted element, rather
than covering only the “p”. While this isn’t really
a newbie problem, it’s wise to be aware that such
possibilities exist, and be ready in such cases to seek
expert assistance.

Paragraph endings and vertical mode

The end of a paragraph is a transition from horizontal
to vertical mode. A blank line or \par will accom-
plish this transition. It’s important to be aware of
what mode you’re in, since some operations are best
performed in vertical mode; the most important is
the insertion of floats (figures, tables, algorithms).

Another important consideration is that some
features of text are not “frozen” until a paragraph is
ended. One important feature is the vertical spacing
of baselines, which depends on the font size. Too
many newbies try to end a paragraph with a double
backslash, resulting in horrors like the following.

\Huge Texts with inconsistent descenders

can result in surprises when the font

size changes without a proper paragraph

ending.\\

Texts with inconsistent
descenders can result in
surprises when the font
size changes without a
proper paragraph end-
ing.
Some environments (but not all) are defined with a
paragraph break at the end. A problem such as the
one shown here won’t result in an error or warning
message, so adding a proper paragraph break is the
proper correction.

The vertical space between paragraphs is deter-
mined by the value of \parskip; this is set in the doc-
ument class, but can be reset as needed. But often,
it’s convenient to add occasional extra space between
paragraphs explicitly; this is done with \vspace or
\vskip while in vertical mode (that is, after the
blank line or \par that ends a paragraph).

The double backslash What a paragraph does
not end with is the control symbol \\. \\ does
end a line. It is the designated command to end
lines in tables, poetry, multi-line math environments,
and some other situations. But it does not end
a paragraph and can trigger a number of error or
warning messages.

If \\ is alone on a line in vertical mode, this
error is reported:

! LaTeX Error:

There’s no line here to end.

Further, if the \\ is preceded by a (typed) space,
in addition to the warning, there may be an extra,
unwanted, blank line in the output.

If a line ending with \\ is very short:

Underfull \hbox (badness 10000)

in paragraph at lines ...

This may be okay, but check.
If \\ is followed by bracketed text, as in [stuff

to be typeset], the result will be the mysterious
! Missing number, treated as zero.

For \\, a following (optional) [...] is defined to
indicate a vertical distance to be skipped; insert
\relax before the opening bracket.

If extra vertical space is wanted after a line bro-
ken with \\, it can be added by inserting an optional
rubber length (usually just a dimension), wrapped
in brackets: \\[⟨value⟩]. If such a bracketed ex-
pression is really meant to be typeset, it must be
preceded by \relax.

\newline is often a reasonable alternative to
break a line.

Font changes

Font changes are a time-honored method of commu-
nicating shades of meaning or pointing out distinct
or particularly important concepts. Many such in-
stances are built into document classes and packages;
for example, theorems are set in an italic font, sec-
tion headings in bold, and some journals set figure
captions in sans serif to distinguish them from the
main text.

LATEX provides two distinct methods for mak-
ing font changes. Commands of one class take an
argument and limit the persistence of the change to
the content of that argument; these have the form
of \textbf{...} for bold, \textit{...} for italic,
etc. The other class sets the font style so that it will
not change until another explicit change is made, or
it is limited by the scope of an environment; some ex-
amples are {\itshape...}, {\bfseries...}, and
{\sffamily...}. These commands are best looked
up in a good user guide.

What every (LA)TEX newbie should know



168 TUGboat, Volume 44 (2023), No. 2

Several font-changing commands do different
things depending on the context. \emph{...} will
switch to italic if the current text is upright, or to
upright if the current text is italic. Within math,
\text{...} will set a text string in the same style
as the surrounding text; thus, within a theorem,
\text{...} will be set in italic. If this string should
always be upright, like function words, \textup{...}
should be used instead.

Basic TEX defined two-letter names for most font
styles. All of these are of the persistent type. They
should be avoided with LATEX, as some of the LATEX
forms provide improvements, such as a smoother
transition between italic and upright type.

Math

Math is always a scoped environment. If started, it
must be ended explicitly and unambiguously. Within
text, math begins and ends with $. LATEX also pro-
vides \(...\) for in-text math, but most users stick
with the $. Many different display environments are
defined by the packages amsmath and mathtools, and
it is worthwhile to learn them by reading the user
guides.

Within math, all input spaces are meaningless
to (LA)TEX; they can be entered in the source file as
useful to make it readable to a human. Blank lines,
however, are considered errors. In both in-text math
and displays, the error message will be

! Missing $ inserted.

This will also result if in-text math is not ended
before the paragraph ends, or if a math-only symbol
or command is found outside of math mode.

If a blank line occurs in a multi-line display
environment from amsmath, the first error message
will be

! Paragraph ended before ⟨env-name⟩
was complete.

<to be read again>

This will be followed by many more error messages,
all caused by the first. These will be confusing and
misleading. Always fix the problem identified by the
first error and ignore the rest; they will disappear
once the first error is fixed; here, by removing the
blank line.

If the appearance of a blank line is wanted for
readability, instead use a line with just a %.

As with all environments, the \end name must
exactly match the name specified at \begin. A
“shorthand” for a single-line, unnumbered display is
\[...\]. The environments designed for multi-line
displays should not be used for a single-line display.

Although LATEX provided eqnarray as a display
environment, don’t use it. If the display is num-
bered and the equation is long, the equation can be
overprinted by the equation number.

Tables, figures, and other floats

The allowed number of floats, their positions on a
page, and the spacing around and between them
is defined by the document class. So if something
doesn’t work as you expect (hope for?), any potential
helper will insist on learning what document class is
being used.

Input for a float must appear in the source file
while there is still enough space on the output page
to fit it in. In particular, on two-column pages, a
figure* or table* must occur in the source before

anything else is set on the page. LATEX’s core float
handling does not allow full-width floats to be placed
anywhere but at the top of a page; some packages
extend this capability, but those won’t be discussed
here.

Here are the defaults for the basic article class.

• Total number of floats allowed on a page with
text: 3.

• Number of floats allowed at top of page: 2. Per-
centage of page allowed for top-of-page floats:
70%.

• Number of floats allowed at bottom of page: 1.
Percentage of page allowed for bottom-of-page
floats: 30%.

• Minimum height of page required for text: 20%.

• Minimum height of float requiring a page by
itself: 50%.

The reference height is \textheight. That is, the
height of page headers and footers is excluded.

If an insertion is small, must be placed pre-
cisely and fits in that location, don’t use a float.
\includegraphics or one of several available table
structures should be used directly, often wrapped
in \begin{center} ... \end{center} (Within a
float, use \centering instead.)

The wrapfig package supports cut-in inserts at
the sides of a page or column. Refer to the documen-
tation for details.

By tradition, captions are applied at the top
of tables and the bottom of figures. If an insertion
is not a float, the usual \caption can’t be used.
Instead, \usepackage{caption} and the command
\captionof.

The document class and preamble

When embarking on a new document, start by choos-
ing the document class. If the goal is publication in a

Barbara Beeton



TUGboat, Volume 44 (2023), No. 2 169

particular journal, check the publisher’s instructions
to see what is required. Many popular journal classes
are available from CTAN.2

If the project is a thesis or dissertation, find
out the special requirements, and if your institution
provides a tailored class, obtain a copy. Try to
determine whether it is actively maintained, and
if there is local support. Read the documentation.

It is the responsibility of the document class to
define the essential structure of the intended docu-
ment. If the document you are preparing differs in
essential ways from what is supported by the docu-
ment class, the time to get help is now.

There will be features not natively supported by
the document class; for example, the choice of how
to prepare a bibliography may be left to the author.
This is why packages have been created.

Organizing your document Most packages are
loaded in the preamble. There is one exception:
\RequirePackage. This is usually specified before
\documentclass, and is the place where certain spe-
cial options should be loaded.

Some authors create a preamble that is suitable
for one document, then use the same preamble for
their next document, adding more packages as they
go. And some unwitting newbies “adopt” such second-
hand “templates” without understanding how they
were created. Don’t do it!

Start with a suitable document class and add
features (packages, options, and definitions) as they
become necessary. Organize the loading of packages
into logical groups (all fonts together, for example),
and be careful not to load a package more than once;
if options are needed, any loaded with a non-first
\usepackage will be ignored. Some packages auto-
matically load other packages; for example, mathtools

loads amsmath and amssymb loads amsfonts. And,
very important, pay attention to the order of package
loading: hyperref must be loaded (almost) last; the
few packages that must come after hyperref are all
well documented.

Read the documentation.

Processing the job

Once the file is created, it’s time to produce output.
There are several engines to choose from: pdfLATEX,
X ELATEX, and LuaLATEX. These can be run inter-
actively from the command line, or initiated from

2 ctan.org/search

an editor. Assuming there are no errors, how many
times a document must be processed to produce the
final output depends on what features it contains.

In particular, if any cross-references or \cites
are present, this information is written out to an
.aux file; information for a table of contents is writ-
ten to a toc file, and other tables are also possible.
The bibliography must be processed by a separate
program (and its log checked for errors) with the
reformatted bib data written out to yet another file.
Then LATEX must be run (at least) twice more — once
to read in the .aux and other secondary files and in-
clude the bibliography and resolved cross-references,
and the second time to resolve the correct page num-
bers (which will change when the TOC and similar
bits are added at the beginning).

All this assumes that there are no errors. Errors
will be recorded in the log file. Learn where the log
file is located, and make a habit of referring to it.
Warnings, such as those for missing characters, will
also be recorded there, but may not be shown online:

Missing character: There is no ⟨char⟩
in font ⟨font⟩!

In the log, some errors may appear with closely
grouped line numbers. If so, and the first is one
that interrupts the orderly processing of a scoped
environment, following errors may be spurious. So
fix the first error and try processing before trying to
understand the others; often, they may just go away.

Good luck. With practice comes understanding.
Oh. . . Remember to read the documentation.

Acknowledgment

Thanks to samcarter, Mikael Sundquist, and (as
always) Karl Berry for suggestions and for finding
and exterminating my typos. I can find them in
other people’s writing, but often not in my own.

References

[1] Barbara Beeton. Debugging LATEX files—
Illegitimi non carborundum, TUGboat 38:2,
159–164 (2017).
tug.org/TUGboat/tb38-2/tb119beet.pdf

⋄ Barbara Beeton

TUGboat

Providence, RI, USA

bnb (at) tug dot org

What every (LA)TEX newbie should know

https://ctan.org/search
https://tug.org/TUGboat/tb38-2/tb119beet.pdf


170 TUGboat, Volume 44 (2023), No. 2

Architectural guides for Bonn—book

production with ConTEXt

Henning Hraban Ramm

“Architekturführer der Werkstatt

Baukultur Bonn”

At the University of Bonn, there is a group of scholars
who care about the modernist buildings that were
built after the second world war, when Bonn was Ger-
many’s capital. They do research, offer guided tours
and also publish a series of little architectural guides.
My publisher colleagues were already involved with
them when they studied German literature in Bonn,
so we took over this series when we founded Dreivier-
telhaus publishers in 2017. As it happened, I took
over the design even earlier, since their designer had
no time after becoming a mother.

The design is rather simple, so I decided to do it
in ConTEXt (instead of InDesign). But the structure
of every booklet is unique, since they have a wide
variety in the contents: Some volumes are about only
one building, others about an ensemble or a housing
estate or a themed collection such as “buildings of the
university”; some are by a single author, others collect
contributions by several authors. That means I must
adapt the table of contents and the structure of titles
in every other volume. (Figure 1 is an example.)

Design and layout

Since we use many photos from archives, most pages
are black-and-white, as well as the front covers. But
the booklets are printed in color, because we also
show current pictures, and sometimes color is im-
portant, for example with stained glass windows in
churches or other artwork.

For the cover, we try to use one image front-to-
back, but it’s just not possible for every volume to
find a landscape photo where the important part of
a building is on the right-hand side. Since my setup
expects one image, I glue different photos for front
and back together in such cases. (Figure 2.)

Interior images are often full page, sometimes
even over a double page spread.

Images that cover the full width or height of a
page need to be a few millimeters bigger to avoid
problems in paper trimming; this is called bleed. This
affects not only full page images, but everything that
touches paper edges. We also have images that stay
within the type area.

Most images have captions. On full page images,
the caption is moved into the image and gets a back-
ground shadow to increase readability. (Figure 3.)

Figure 1: symbolic #0 guide

Figure 2: cover images (back and front)

doi.org/10.47397/tb/44-2/tb137ramm-books

Henning Hraban Ramm

https://doi.org/10.47397/tb/44-2/tb137ramm-books


TUGboat, Volume 44 (2023), No. 2 171

Figure 3: example spreads with half-page and
full-page images

Maps

There’s another tricky subject in these architectural
guides, namely city maps.

For my architectural guide on the Kyrgyz capi-
tal Bishkek, I got experience with processing Open-
StreetMap data for custom maps.

I’m using Maperitive,1 because it allows for
batch processing. Maperitive is written in .NET,
and I run it on my Mac with Mono. It’s horribly
slow, the programming interface is severely under-
documented, and the latest version is from 2018, but
it’s still the best choice and I somehow manage to
get what I want.

What I want is also a custom style with very
subdued colors, nearly black and white, and not
many location markers for shops etc. Maperitive
uses style sheets that are somewhat similar to CSS,
so you have selectors and style instructions.

The output is SVG, and I use Inkscape to convert
it to PDF for inclusion. ConTEXt LMTX doesn’t need
this any more and can process SVG on its own via
a MetaPost conversion. But when I made the latest

1 https://maperitive.net

Figure 4: city map, with advertising for related guides

architectural guide in 2019, this was not yet possible.
Also, I want to postprocess the images, e.g. deleting
unnecessary labels.

You may have read in TUGboat 42:3 that Con-
TEXt can process OpenStreetMap data on its own,
also via a MetaPost conversion. This is true, but
unfortunately not more than a proof of concept. It
can’t handle labels, like street names, so it’s quite
useless for a city map. The colors are ugly, too — that
would be easy to change, and I promised to provide a
theme, but the rendering is just not flexible enough:
All paths can only be drawn as single lines, while if
you look at other OpenStreetMap renderers, streets
usually have a fill and an outline, and for railway
tracks you need a thick white line with a dashed
black line on it. My programming skills don’t suffice
to fix that.

So I stick to my proven workflow for the time
being. (Figure 4.)

Setup

I wrote the setup for these architectural guides mostly
in 2015, and since then, plenty has happened— not
only has ConTEXt moved to LuaMetaTEX, but also
I’ve learned a lot and can do a bit better, so I found
my old code a bit embarrassing and refactored it,
just in time for the upcoming guides that we hope
to publish in 2023/24.

I will leave out all the setups with regard to
language, fonts and colors.

Simple page layout First we define the page size.
That’s easy:

\setuppapersize[A6]

The page layout is quite simple, we have no page
header and usually don’t need footnotes.

If you set up a layout in ConTEXt, you should
always define the parameters backspace and width

first, then topspace and height. The latter includes

Architectural guides for Bonn —book production with ConTEXt

https://maperitive.net


172 TUGboat, Volume 44 (2023), No. 2

header and footer. You can leave the other areas like
margins and edges alone if you don’t need them.

Header and footer setting reflect that we don’t
need page headers and the footer only for page num-
bers. We need double pages to get the page numbers
in the outer footer, otherwise we couldn’t distinguish
left and right pages.

\setuplayout[

backspace=12.5mm, width=80mm,

topspace=12.5mm, height=125mm, % text+footer

header=0mm,footer=10mm,

]

\setuppagenumbering[

alternative=doublesided,

]

Bleed and trim Most of our images cover the full
page width, and that means they must bleed. 3 mm
is a traditional value; in this small format, 1 mm
probably would be enough. If our printshop tells me
to change it, I want to change it in only one place.

\definemeasure[Bleed][3mm]

\definemeasure[Trim][7.5mm]

\setuplayout[

marking=on, % cut marks

location=middle,

bleedoffset=\measure{Bleed},

trimoffset=-\measure{Trim},

]

With regard to printing, we activate cut marks and
center the page on the sheet. The trim offset is the
difference between sheet and page size as a negative
value. The bleed offset is from the page outward as
a positive value. It’s the same on all sides.

If you would check the outcome so far, you
couldn’t find these boxes in the PDF. The activation
is strangely coupled to some PDF viewer settings:

\setupinteractionscreen[

option={doublesided,bookmark},

% necessary for Trim/BleedBox:

width=max,height=max,

]

This should work now. But what’s the sheet
size? We only defined the paper size! Let’s fix this:

\setuppapersize[A6][A6,oversized]

The oversized option adds 7.5 mm around the
A6 page. We could also define that size explicitly or
use the envelope size C6 instead. (Figure 5.)

Figure 5: title page with crop marks, trim box (inner)
and bleed box (outer)

Preview and print mode While we need bleed,
trim and cut marks in the PDF for the printshop,
they might confuse the authors in the preview version.
They’re also not needed for an ebook.

So let’s mode-ify the settings. It turns out we
only need one mode, ‘print’; if activated, it fixes
the page size, bleed and trim; it can also turn off
interaction (links, etc.).

Another topic where it makes sense to distin-
guish between preview and print mode is image res-
olution. It makes no sense to send draft PDFs with
high resolution images, and some pictures could use
some downsampling even in print mode.

% preview (correction copies)

\startnotmode[print]

\setuppapersize[A6]

\def\Resolution{96}

\setupinteraction[state=start]

\setupexternalfigures[

conversion=lowres.jpg,

]

% no bleed/trim settings

\stopnotmode

% print version

Henning Hraban Ramm



TUGboat, Volume 44 (2023), No. 2 173

\startmode[print]

\setuppapersize[A6][A6,oversized]

\def\Resolution{200}

\setupinteraction[state=stop]

\setupexternalfigures[

conversion=hires.jpg,

]

% setuplayout with bleed/trim as above

\stopmode

\setupexternalfigures[

directory={img},

resolution={\Resolution},

]

\loadluafile[grph-downsample]

This resolution stuff is not (or not yet) a feature
of ConTEXt, but handled by some Lua functions that
call GraphicsMagick during the TEX run to reduce
the image size.

Color conversion to greyscale is already included
in ConTEXt and works the same way, but here we
don’t need a greyscale mode.

Image dimensions For our image calculations be-
sides resolution, we need a few basic dimensions.

\definemeasure[maxWidth]

[\paperwidth + \measured{Bleed}]

\definemeasure[maxHeight]

[\paperheight + 2\measured{Bleed}]

\definemeasure[doubleWidth]

[2\measured{maxWidth}]

% offsets of images from the type area

\definemeasure[topOffset]

[\topspace+\headerheight+\measured{Bleed}]

\definemeasure[bottomOffset]

[\bottomheight+\footerheight+\measured{Bleed}]

Where you would use \newdimen and \dimexpr

in ε-TEX, you should use \definemeasure in Con-
TEXt. My companion article “Calculating covers” in
this issue (pp. 176–179) explains dimension calcula-
tions.

Layers for image placement If you want to place
elements in specific locations, the ConTEXt way is to
use layers.

For images, it makes sense to use full page layers,
but we need to distinguish right and left pages.

\definelayer[bgpicleft][

x=-\measure{Bleed},y=-\measure{Bleed},

width=\measure{maxWidth},

height=\measure{maxHeight},

] % incl. bleed

\definelayer[bgpicright][

x=0mm,y=-\measure{Bleed},

width=\measure{maxWidth},

height=\measure{maxHeight},

] % incl. bleed

\setupbackgrounds[leftpage]

[background=bgpicleft]

\setupbackgrounds[rightpage]

[background=bgpicright]

After definition, we must assign the layers as
backgrounds. It’s possible to use several layers for
one area: background takes a list, left to right is top
to bottom.

Cover layers For the cover, we need additional
layers, and we can already set up the black bar as a
text background. (Figure 6.)

\definelayer[titlebar][

x=83mm,y=-\measure{Bleed},

width=25mm,

height=\measure{maxHeight},

]

\setupframed[frame=off,offset=overlay]

\setlayerframed[titlebar][

background=color,

backgroundcolor=titlebarcolor,

width=25mm,

height=\measure{maxHeight},

]{\strut}

Image placement

Sorry, I won’t show you the implementation of my
macros — it’s long, convoluted, and ugly.

Full page images The placement command for a
full page image looks like this:

Figure 6: #13 HICOG settlements

Architectural guides for Bonn —book production with ConTEXt



174 TUGboat, Volume 44 (2023), No. 2

\startpostponing[15]

\pagefig

[fig:10544-08]% reference

[rh]% placement code

{Kurpark, 1950er Jahre}% caption

{DA01_10544-08}% image file

\stoppostponing

“Postponing” moves content to a specific page,
the page number can be absolute or relative (+1).
Due to expansion and buffering issues it’s not possible
to include this in a macro.

The \pagefig macro is my own; it takes a ref-
erence, a placement code, a caption and the filename
of an image. But what does it do?

• decide if we’re on a right or left page
• start an empty “makeup” (special layout page)
• place the picture on the layer for the left/right

page
• clip the picture to fit (placement code defines if

height or width are leading)
• place the caption in the footer (usually white

on a dark shadow)
• place debugging information (e.g. filename) in

the trim area

The code for a double page image looks nearly
the same:

\startpostponing[+0]

\doublepagefig

[fig:11390-29]

[lh]

{Blick von Osten}

{DA01_11390-29}

\stoppostponing

This instance was placed between chapters and
uses “immediate” postponing (+0).

The macro works similarly to the previous one,
except we place the left half of the picture on the
layer for the left page and the right half on the right
page, each in its own makeup. (A multi-page makeup
would confuse the page numbering.) The placement
code defines the location of the caption.

Half-page images The call for an image that does
not cover a whole page looks like this:

\topfig

[fig:9251]

[rw]

{Großer Saal}

{IMG_9251}

I love a consistent interface. But the macro
works differently:

• decide if we’re on a right or left page
• calculate the actual image dimensions with a

Lua function

• decide where to clip (top/bottom) according to
placement code

• calculate how much to clip so that the picture
fits the line grid

• place it as a float, but move it into the trim area

Why the calculations? I’m using grid setting,
even if this is rather questionable with these picture-
heavy booklets. But it implies that all images should
“sit” on a grid line, i.e. a baseline of body text. Con-
TEXt couldn’t do that on its own. (Only recently,
Hans Hagen extended the options for float placement;
it might be easier now.) Also, the top border of an
image should align with the x-height of a text line,
but that doesn’t matter in this case.

The image has a fixed width, namely the page
width plus bleed. With proportional scaling, we know
its maximum height. We subtract the space above
the type area (4 values) plus bleed. The remainder
modulo the line height is what we need to cut.

It would have also been possible to just move
the image, without clipping it.

The simplified float placement looks like this:

\startplacefigure[

location={top,high},

reference={#1},

title={#3},

]

\offset[

topoffset=-\topOffset,

leftoffset=\measure{leftOffset},

]{%

\clip[

x=0mm,y=\topCut,

width=\measure{maxWidth},

height=\measure{calculatedImgHeight},

]{%

\externalfigure[#4][width=\measure{maxWidth}]

}%

}%

\stopplacefigure

Shadow captions

The shadow behind captions in full-page images is
a MetaPost graphic: A number of stacked rounded
rectangles of slightly increasing size, set to a high
transparency in “multiply” mode, so that the main
shape becomes dark and the borders get blurry.

This graphic is set as an overlay and used as a
background to the (invisible) caption frame.

\startuniqueMPgraphic{mpshadow}

mw := BodyFontSize/3;

ox := -0.5 ; % offset x

oy := -0.5 ; % offset y

bx := 1.5mw ; % bleed x (height of the shadow)

by := 1.5mw ; % bleed y (width of the shadow)

Henning Hraban Ramm



TUGboat, Volume 44 (2023), No. 2 175

This is my caption.

If the caption gets really long

and breaks into several lines,

you see the problem of this approach.

Of course you could break the lines

manually and use separate backgrounds…

Figure 7: multiline caption with a subtle shadow

rx := 3mw ; % max. corner radius x

ry := 2mw ; % max. corner radius y

steps := 10 ; % number of shadow layers,

% 10 is a good value

hue := 0.015 ; % 0.02 is a good value

ycorr := 1mw ; % difference between overlay

% height and shadow height

for step = 1 upto steps:

part := (step-1)/steps;

xstep := bx * part ; % current part of bleed

ystep := by * part ;

crx := (rx + rx*part)/2; % current radius

cry := (ry + ry*part)/2;

% points of the rounded rectangle

xa := -xstep + ox;

xb := -xstep + ox + crx;

xc := xstep + ox - crx + \overlaywidth;

xd := xstep + ox + \overlaywidth;

ya := -ystep + ycorr + oy;

yb := -ystep + ycorr + oy + cry;

yc := ystep - ycorr + oy - cry

+ \overlayheight;

yd := ystep - ycorr + oy + \overlayheight;

fill (xb, ya)---(xc, ya)...(xd, yb)---

(xd, yc)...(xc, yd)---(xb, yd)...

(xa, yc)---(xa, yb)...cycle

withcolor transparent(1, hue, black) ;

endfor;

setbounds currentpicture to OverlayBox ;

\stopuniqueMPgraphic

\defineoverlay[shadow][\useMPgraphic{mpshadow}]

% ...

\inframed[frame=off,

background=shadow,

foregroundcolor=white,

]{This is my caption.}

This was first made for a shadow behind images,
and it works well for text when there’s only one line
or if you can make all lines the same width. The

example is one of the few where that wasn’t possible,
but I was never satisfied with this solution.

The outline approach Just recently I found out
how to make a shadow that adapts to the font shape.
This uses a LuaMetaFun extension for font outlines.
Again, we stack elements with a low opacity, this
time with an increasing outline “rulethickness”.

The shadow color is somewhat irregular due
to overlapping outlines between letters or letter ele-
ments. Maybe it’s possible to combine the paths.

\definecolor[tshade][t=.05,a=1,k=1]

\starttexdefinition ShadowText #1

\startMPcode

steps := 10 ; % number of shadow layers

rulesize := BodyFontSize/steps/3;

for step = 1 upto steps:

draw lmt_outline [

text = "\vbox{\strut #1}",

kind = "fillup",

fillcolor = "tshade",

rulethickness = (step*rulesize),

];

endfor;

% finally, opaque white text on top

draw lmt_outline [

text = "\vbox{\strut #1}",

kind = "fillup",

fillcolor = "white",

rulethickness = 0,

];

\stopMPcode

\stoptexdefinition

% ...

\ShadowText{Now, doesn’t this ...}

If you use this with big text, it makes sense to
add randomized 3 to the lmt_outline call to make
it look a bit more natural.

The LuaMetaFun lmt functions were introduced
in 2021 and are quite fun to play with. E.g. to fill an
lmt_outline path with an lmt_poisson pattern:

⋄ Henning Hraban Ramm
Limburg, Germany
hraban (at) fiee dot net

Architectural guides for Bonn —book production with ConTEXt



176 TUGboat, Volume 44 (2023), No. 2

Calculating covers with ConTEXt

Henning Hraban Ramm

Abstract

Every TEX user can typeset a book, but the cover
might be a different story. We will learn a bit about
dimensions and calculations as we calculate a cover.

Take cover!

I used to create the covers for my ConTEXt books in
a graphics application. I still think that’s the best
way to plan a cover, because I can try new ideas or
make changes, and see the results straight away.

But there are disadvantages. It can take a lot
of steps to make a small change. You need to hand
calculate the spine width, and remember to change
it if the number of pages changes. If you change
the title or author on the front cover, you need to
remember to change it on the spine too. It can
get messy if you want several graphics, each slightly
different.

I want to show you how I use ConTEXt to cal-
culate covers, without those disadvantages.

Basic setup

Let’s start simple: we define a paper size and a whole-
page layer, on which we will place our elements:

\definepapersize[Cover][width=350mm,height=240mm]

\setuppapersize[Cover]

\definelayer[cover][

x=0mm,y=0mm,

width=\paperwidth,

height=\paperheight,

]

\setupbackgrounds[page]

[background=cover,state=start]

\starttext

\setlayer[cover][

x=200mm,

y=20mm,

]{\ss\bfd My Title}

\strut

\stoptext

The \strut at the end is necessary, otherwise the
page has no content and ConTEXt won’t even display
the content of the layer.

Dimensions

Where did we get those dimensions? I used the size of
the DANTE books. Their page is 165 by 240 mm, i. e.

First published in German in DANTE’s Die TEXnische

Komödie 1/2023, pp. 16–25; translation by the author.
English version originally edited by Peter Hopcroft.

their cover width is two times 165 mm plus a 20 mm
spine. Maybe our printshop told us these dimensions,
but we would need to ask again if something changes.
Let’s see if TEX can do the calculations.

\definepapersize[Cover][

width={2 * 165mm + 20mm},

height=240mm,]

That would have been nice, but ConTEXt complained
about an “Illegal unit of measure”. It’s not as easy
as it might be.

For ConTEXt to calculate with dimensions, we
must use ‘dimension expressions’. As a rule, they
must start with a dimension:

\definepapersize[Cover][

width=\dimexpr 165mm * 2 + 20mm\relax,

height=240mm,]

Do we need to use such cumbersome code for
every element on the cover? No! We can predefine
the most important values, most simply as macros:

\def\PageWidth{165mm}

\def\SpineWidth{20mm}

\definepapersize[Cover][

width=\dimexpr \PageWidth*2 + \SpineWidth\relax,

height=240mm,]

That works, but it’s cleaner and more reliable
if we define our own dimensions. In ε-TEX it looked
like this:

\newdimen\PageWidth

\PageWidth=165mm

But because we use ConTEXt, it should look like
ConTEXt:

\definemeasure[PageWidth][165mm]

You can retrieve such a value in two ways: with
\measure as a string for assignments in \setup com-
mands, or with \measured as a dimension for calcu-
lations.

In the second argument of \definemeasure, we
can execute calculations without writing an explicit
\dimexpr, but internally, since \definemeasure uses
\dimexpr, it has the same limitations:

\definemeasure[CoverWidth]

[2\measured{PageWidth} + 20mm]

Oh, this expression doesn’t start with a dimension!?
Well, simple factors like this are possible, sometimes
even with decimal numbers. For example, these
are valid: ‘2\lineheight’, ‘1.5\lineheight’, and
‘\lineheight * 2’, but ‘\lineheight * 1.5’ is not.
In such cases you can cheat with fractions: ‘*1.5’
throws an error, while ‘*3/2’ works.

Now the complete code is:

\definemeasure[PageWidth][165mm]

\definemeasure[PageHeight][240mm]

doi.org/10.47397/tb/44-2/tb137ramm-covers

Henning Hraban Ramm

https://doi.org/10.47397/tb/44-2/tb137ramm-covers


TUGboat, Volume 44 (2023), No. 2 177

\definemeasure[SpineWidth][20mm]

\definemeasure[CoverWidth]

[2\measured{PageWidth} + \measured{SpineWidth}]

\definepapersize[Cover][

width=\measure{CoverWidth},

height=\measure{PageHeight}]

\setuppapersize[Cover]

\definelayer[Cover][

x=0mm,y=0mm,

width=\paperwidth,

height=\paperheight,]

\setupbackgrounds[page]

[background=cover,state=start]

\starttext

\setlayer[Cover][

x=\dimexpr\measured{PageWidth}

+ \measured{SpineWidth}

+ 15mm\relax,

y=20mm,

]{\ss\bfd My Title}

\strut

\stoptext

Page count

If the number of pages changes, we only need to
change one number. But it is better to calculate it
automatically:

\useexternalfigure[content][book.pdf]

\getfiguredimensions[content]

\expanded{\definemeasure[SpineWidth]

[2mm + (0.09mm * 3/2 * \noffigurepages/2)]}

\useexternalfigure gives our content PDF the sym-
bolic name content. \getfiguredimensions de-
tects the properties of the current image, including
the number of pages in the PDF, which is stored
as \noffigurepages. We have to use \expanded

to execute \definemeasure immediately. Other-
wise the current image would have changed, and
\noffigurepages would be wrong.

Paper thickness

How did we get that formula? We need the number
of sheets. And my vocational teachers used to remind
us: “Paper has two sides!” Our book will be printed
on 90 gsm1 paper. Standard 90 gsm paper is 0.09
mm thick. Our paper has some light filler material,
and is thicker: 1.5 times 0.09 mm thick. The 1.5
(written above as 3/2) is called bulk. Of course, we
could define paper thickness as a ConTEXt dimension,
but we don’t need it elsewhere.

The 2 mm above is a fold allowance, about 1 mm
for each fold between a cover and the spine. Strictly

1 grams per square meter, also known as ‘grammage’

speaking, the fold allowance calculation should take
into account the thickness of the cover cardboard.

Now our cover automatically adapts to the num-
ber of pages in the book. Not too bad.

Layers

We want to place the title on the front cover, as
well as the subtitle and author. We want these on
the spine as well. On the back cover, we want some
blurb and an ISBN barcode. Must we repeat the
same laborious calculations time and again? No!

We will define separate layers for front cover,
back cover, and spine. Then we can give the offsets
of elements relative to their parent layer:

% ...

\definelayer[BC][ % back cover

hoffset=0mm,

y=0mm,

width=\measure{PageWidth},

height=\measure{PageHeight},

]

\definemeasure[FrontStart]

[\measured{PageWidth} + \measured{SpineWidth}]

\definelayer[FC][ % front cover

hoffset=\measure{FrontStart},

y=0mm,

width=\measure{PageWidth},

height=\measure{PageHeight},

]

\definelayer[Spine][

hoffset=\measure{PageWidth},

y=0mm,

width=\measure{SpineWidth},

height=\measure{PageHeight},

]

\setupbackgrounds[page]

[background={Cover,BC,FC,Spine},

state=start]

% ...

\setlayer[FC][

x=15mm,

y=20mm,

]{\ss\bfd My Title}

\setlayerframed[Spine][

y=12mm,

offset=overlay,

frame=off,

align=flushleft,

width=\measure{SpineWidth},

height=0.66\measured{PageHeight},

]{%

\rotate[

rotation=90,

height=\measure{SpineWidth},

width=0.66\measured{PageHeight},

align={lohi,flushright},

]{Author: Title}%

}

Calculating covers with ConTEXt



178 TUGboat, Volume 44 (2023), No. 2

For the spine text I used \setlayerframed so
we have all the options of \framed to hand. While
planning a cover, I like to turn on the frames to
check the positions of the elements. We can make
this setting a command-line argument:

\setupframed[offset=overlay] % no border distance

\startnotmode[debug]

\setupframed[frame=off]

\stopnotmode

To turn the frame on, call ConTEXt with the
option --mode=debug. The above code also sets
offset=overlay for every frame, so we don’t have
to do this for every frame individually.

Buffers

Next, let’s take care of the blurb. We can place it
with \setlayerframed[BC]. But I find it confusing
to have long text strings loitering within ConTEXt
calculations. Therefore, we define the text as a buffer
in advance:

\startbuffer[Blurb]

\quotation{I never read a better book!}

\wordright{(M. Reich-Radecki)}

\blank[2*line]

Something about the brilliant content...

\stopbuffer

\startsetups[blurb]

% font/alignment/indent settings

\stopsetups

% ...

\setlayerframed[BC][

x=.15\measured{PageWidth},

y=20mm,

width=.7\measured{PageWidth},

height=.8\measured{PageHeight},

setups=blurb,

]{\getbuffer[Blurb]}

Variables

Let’s define some book data as variables, all in one
place:

\setvariables[book][

contentPdf={vol01},% name of the content file

author={Donald E. Knuth},

title={The \TeX book},

subtitle={about command-based typesetting},

series={Computers & Typesetting},

volume={A},

isbn={978-3-12345-007-Z},

coverimage={lion},

]

% ...

\useexternalfigure[content]

[\getvariable{book}{contentPdf}]

\getfiguredimensions[content]

% ...

\setlayer[FC][

x=15mm,y=20mm,

setups=maintitle

]{\getvariable{book}{title}}

When we change any of the above book data, it
automatically changes on all the layers where it ap-
pears. Wonderful. I have seen books with a different
title or author on the front cover and on the spine.

As you may observe, we can use expressions like
\getvariable{book}{title} to retrieve values. Of
course, we also could have used macros.

Environment

Since we need the data for the book’s content (e. g.
fly title, imprint) as well, we should save it to an
external environment file that we can load in both
the cover and the content documents:

\startenvironment settings

\project bookbook

\setvariables[book][

%...

]

\stopenvironment

Bleed

Next step: we’ll add a background image. Since it
should cover the whole page, we must set it up to
‘bleed’. That means that the image extends a few
millimetres past where the book will be trimmed.
Otherwise there can be white gaps at the edges if
the printed book isn’t cut exactly to the trim line.
(That’s usually because paper changes size as humid-
ity changes during printing, rather than the fault of
the printshop or bookbinder.)

\definemeasure[Bleed][3mm]

\definemeasure[MaxHeight]

[\measured{PageHeight} + 2\measured{Bleed}]

\setlayerframed[FC][

%x=-\measured{Bleed},

y=-\measured{Bleed},

]{\externalfigure[\getvariable{book}{coverimage}]

[height=\measure{MaxHeight}]}

Of course, we can also put a background image
for the complete cover (back, spine, and front) on
the “Cover” layer. If the number of pages changes,
the width of the image will change slightly. Usually
this doesn’t matter.

ConTEXt documents often use MetaPost graph-
ics as background images. For those, you can use
the variables OverlayWidth and OverlayHeight.

While the image now has bleed, we can’t see it
when we look at the PDF on-screen, because we see
the trimmed paper size. We can use the oversized

Henning Hraban Ramm



TUGboat, Volume 44 (2023), No. 2 179

option to expand the paper size by 7.5 mm on all
sides:

\setuppapersize[Cover][Cover,oversized]

But because we also need the dimension for our
calculations, we will expand the paper size explicitly:

\definemeasure[Trim][7.5mm]

\definemeasure[CoverWidth]

[2\measured{PageWidth} + \measured{SpineWidth}]

\definemeasure[CoverWidthPlus]

[2\measured{PageWidth} + 2\measured{Trim}

+ \measured{SpineWidth}]

\definemeasure[CoverHeightPlus]

[\measured{PageHeight} + 2\measured{Trim}]

\definepapersize[Cover][

width=\measure{CoverWidth},

height=\measure{PageHeight}]

\definepapersize[CoverPlus][

width=\measure{CoverWidthPlus},

height=\measure{CoverHeightPlus}]

\setuppapersize[Cover][CoverPlus]

We don’t need to change the layers— their ele-
ments don’t get trimmed at their borders.

Now we also want to see crop marks, and while
we’re at it, we should properly set up the invisible
‘boxes’ in the PDF that outline the trimmed area
(TrimBox) and bleed area (BleedBox). You can only
see them in Acrobat (Preferences > Page Display >
Show art, trim & bleed boxes), otherwise you can
check the values with pdfinfo -box.

\setuplayout[

marking=on,% crop marks

location=middle,% center page on the sheet

cropoffset=0mm,

bleedoffset=\measure{Bleed},

trimoffset=-\measure{Trim},

]

\setupinteractionscreen[width=max,height=max]

• A positive value of cropoffset shrinks the visi-
ble area and also affects both of the other values.

• A negative value of trimoffset defines the off-
set from TrimBox to CropBox.

• A positive value of bleedoffset defines the
bleed as the offset from BleedBox to TrimBox.

• Only \setupinteractionscreen activates the
settings.

Setting TrimBox and BleedBox in this way does
not affect the positions of the layers or their contents.

More hints about dimension calculations

Dimension expressions (\dimexpr) can be nested. It
sometimes makes sense to call \dimexpr...\relax
within a \dimexpr.

Internally, TEX calculates with integer ‘scaled
points’ (sp) of 1/65536 pt. The maximum value for
dimensions is 16384 pt (about 5.75 m).

If we output dimension values using \measure,
they get typeset in pt (TEX points). We can convert
units like this:

\define[2]\Conv{\scratchdimen #1 \the\nodimen #2

\scratchdimen}

% first parameter: dimension,

% second parameter: unit. For example:

\Conv{1pt}{mm}

Final remarks

The code that I use in my publishing house also
handles optional flaps.

This article is about softcovers. For hardcovers
you need a bigger cover and more bleed (about 15
mm), because the cover paper gets glued around the
cover cardboard. The spine also needs more folding
allowance (about 4–5 mm) for the hinges. You can
change the calculations above.

⋄ Henning Hraban Ramm

hraban (at) fiee dot net

Calculating covers with ConTEXt



180 TUGboat, Volume 44 (2023), No. 2

New dimensions: Edith and Tove

Willi Egger, Hans Hagen, Edith Sundqvist,
Mikael P. Sundqvist

Male dominance

When you start using TEX you can’t get around
the fact that it uses dimensions. You have to set
up a paper size, configure a line width, tell it what
font size to use, etc. As with many techniques that
evolved in different countries the way to express a
dimension can be done differently. In Europe we
like to talk in centimeters (cm) or millimeters (mm)
and in the United States it’s all about inches (in).
Typographers all over the world speak in terms of
points (pt), didots (dd), ciceros (cc) and picas (pc)
while those messing around with digital typography
prefer “big” (PostScript) points (bp). TEXies some-
times like scaled points (sp) as 1 sp is the smallest
internal representation of a unit. When someone
talks “points” you can’t be sure if it is big points
or TEX points because the pt unit is often used for
both.

There are also font-related units, like the popular
em width (em) and ex height (ex) and there is even
a pixel unit (px) that can be set to some resolution
but that one is rarely used. There is also a math
unit (mu) that scales with the math font in use.

All units are internally scaled points and one real
point is 65536 scaled points. That means that when
a unit is entered it gets mapped onto this internal
scaled point quantity.1

For a while we had the new didot and new ci-
cero but in LuaMetaTEX these were dropped because
no one used them. On the contrary, the recently
introduced (Don) Knuth unit (dk) is quite conve-
nient and we use it as a convenient offset for a so-
called TEX page environment, which we use a lot
in testing math functionality (Hans Hagen, A new
unit for LMTX: The dk; tug.org/TUGboat/tb42-3/
tb132hagen-dk.pdf).

From this summary we can observe that there
are three units that are names: Didot, Cicero and
Knuth. But do you realize that these are all males?
That can’t be right and should be fixed. If you look
at user styles (or questions on support platforms) you
will also notice that in spite of standardization, the
inch (in) has not been replaced by its more correct

Originally presented at BachoTEX 2023, and to be published
in the corresponding GUST Biuletyn.

1 If you go back to the early days, there are even cases
where you want to talk in terms of true units. Those are not
affected by original TEX’s magnification factor (\mag) but in
LuaMetaTEX we dropped that factor and therefore also these
true units became obsolete.

metric counterparts. Okay, that might be due to the
fact that there is no meter as unit but using smaller
dimensions (mm and cm) makes more sense, also for
internal accuracy reasons. That said, it is about time
that we eradicate the inch or at least come up with
something more metric.

So there you have it: we need some female units
that correctly stay within the metric domain! In
order to convince users to drop the inch the first
new unit somewhat relates to it: one Edith (es) is
the median of the widths of thumbs of BachoTEX
2023 attendees. One can argue that this is somewhat
arbitrary and indeed it is. In order to get a decent
value we use a discrete measurement device that
groups thumbs into 15, 20, 25 and 30 mm intervals.
A 10mm interval is unlikely to get many hits unless
the TEX ecosystem suddenly became very easy to
use and toddlers get interested in it as a game.

Rule of thumb

If we talk in terms of one Edith, we should keep in
mind that at any point we can decide to re-calibrate
that unit. If we end up below 25mm we probably
have quite some young and/or old users in the sam-
ple set. So, in order to have a constant value, the
community has to make sure that TEX (and prefer-
ably ConTEXt) usage is nicely distributed. Now, of
course at BachoTEX we are quite tolerant, because
also Plain and LATEX users are sampled. Also, given
that this sample of the TEX community is skewed to
older users, one can wonder how that influences the
initial value. It is up to the ConTEXt group to decide
when and where to re-calibrate at a later moment.
After all, we have to keep the narrative that Con-
TEXt is unstable and evolves alive, and occasionally
updating a unit fits into that narrative. If you think
that this kind of research is somewhat flaky, keep in
mind that probably all research related to typogra-
phy is kind of subjective and somewhat unreal. And
BachoTEX being tagged as ‘conference’ adds a lot of
credibility.

The Edith ( ) makes a nice unit
for margins, but it is a bit large for offsets, so we
also need a female counterpart for the Knuth ( ).
This is why, just like a centimeter ( ) has a
smaller companion in millimeter ( ), the Edith has a
companion Tove ( ). In terms of points one Tove is
7.11317pt, while a Knuth is 6.43985pt. It is surely
just a coincidence that the value of one Tove in points
is about the age of Tove when she became aware that
her dad was a ConTEXt fan. In terms of points one
Edith is 71.13177pt which, ignoring the unit, comes
close to the average age of those who have attended
BachoTEX more than 10 times.

doi.org/10.47397/tb/44-2/tb137egger-edith

Willi Egger, Hans Hagen, Edith Sundqvist, Mikael P. Sundqvist

https://tug.org/TUGboat/tb42-3/tb132hagen-dk.pdf
https://tug.org/TUGboat/tb42-3/tb132hagen-dk.pdf
https://doi.org/10.47397/tb/44-2/tb137egger-edith


TUGboat, Volume 44 (2023), No. 2 181

The implementation of these units in LuaMeta-
TEX is not that hard, simply because scanning for
these dimensions happens in few places: when scan-
ning dimensions, and in a Lua helper that converts
a string to scaled points. At the ConTEXt meeting
where we implemented the Knuth, there was some
trial and error involved in order to get the right nu-
merator and denominator. One dk is 422042 scaled
points which brings us to a numerator 49838 and
denominator 7739. Except for scaled points, the
fraction gets multiplied by 65536 and the amount.
Most units have numerators and denominators with
weird values, although 7227 jumps out.

unit visualized name num den

bp big point 7227 7200
cc cicero 14856 1157
cm centimeter 7227 254
dd didot 1238 1157
dk knuth 49838 7739
es edith 9176 129
in inch 7227 100
mm millimeter 7227 2540
pc pica 12 1
pt point 1 1
sp scaled pointa 1 1
ts tove 4588 645

a This one is not multiplied by 65536, and has been greatly
enlarged to be visible here.

When you consider these numbers it is good
to realize that internally the engine uses a 32 bit
number, split into two halves. There is a maximum,
16383.99998pt, so that (intermediate) calculations
don’t overflow. The last digit of what TEX reports
when it computes a dimension as points is to be
taken with a grain of salt. Here is how the Edith
and Tove compare to their metric counterparts:

2.5cm 4661699 71.13188pt
2.5mm 466169 7.11317pt
1es 4661692 71.13177pt
1ts 466169 7.11317pt

In case you wonder if checking for yet another
unit has drawbacks in terms of performance, we can
guarantee LMTX users that they won’t notice a per-
formance hit. Even with these additional units the
engine quite likely beats its predecessors in scanning
units. And the impact on the code base is less than
20 short lines of trivial code so that goes unnoticed
as well.

Calibration

In order to conduct the calibration we need a reliable
measurement device and here we got lucky. The
ConTEXt community has some unique craftsmanship

15 mm

20 mm

25 mm

30 mm

Figure 1: Results from thumb measurements at
BachoTEX, with the median thumb marked in blue
(grayscaled for print).

amongst its members and Willi Egger made us a
robust sampling device that can compete with those
used by the ones that the International Organization
for Standards uses: the Edithorial.

In addition to that, the ConTEXt Math Society,
indeed the same one that brings you all these nice
new math capabilities in LuaMetaTEX, provided the
necessary statistical and mathematical underpinning
to make the Edith and Tove believable units. So
here are some more details.

We have found out that the Tove unit, 2.5 mil-
limeters, corresponds to 7.1131744384765625 points.
Let us find a decent rational approximation of this,
with a small denominator. We do this by calculating
the continued fraction, and we try a few steps to get
something that is good enough.

We start by noting that the integer part is 7.
We then use a calculator (in our case Wolfram Alpha)
to compute

1

7.1131744384765625− 7
=

1

0.1131744384765625
≈ 8.835917486854523392207091816098.

This means that we get as a first possible choice

7 +
1

8
=

57

8
= 7.125 .

We continue, and next note that
1

8.835917486854523392207091816098− 8
≈ 1.196290322580645161290322580645.

Thus, our next candidate is

7 +
1

8 + 1

1

=
64

9
= 7.1.

Here, the bar over the 1 indicates that 1 is repeating.
In the next step we calculate

1

1.196290322580645161290322580645− 1
≈ 5.094494658997534921939194741167.

The next candidate becomes

7 +
1

8 + 1

1+ 1
5

=
377

53
= 7.1132075471698.

New dimensions: Edith and Tove



182 TUGboat, Volume 44 (2023), No. 2

We continue, to get

1

5.094494658997534921939194741167− 5
≈ 10.582608695652173913043478260870.

The next approximant becomes

7 +
1

8 + 1

1+ 1

5+ 1
10

=
3834

539

= 7.113172541743970315398886827458256029684601.

For the next step we have
1

10.582608695652173913043478260870− 10
≈ 1.716417910447761194029850746269

so the next approximant becomes

7 +
1

8 + 1

1+ 1

5+ 1

10+ 1
1

=
4211

592
= 7.1131756.

Since this one has such a nice short repeating
set of decimals, we fell for it, and quit here. The
next approximants would be

12256

1723
,
20301

2854
,
28346

3985
,
48647

6839
,
466169

65536
,

where the last one exactly equals what we started
with, 7.1131744384765625. Before we continue, we
mention that [7; 8, 1, 5, 10, 1, 1, 2, 1, 1, 9] is a more
compact way to write the continued fraction above.

One could perhaps first think that multiplying
the rational number by 10 would yield a very similar
continued fraction, but that is not the case. In fact,
the continued fraction for 71.131744384765625 is
given by [71; 7, 1, 1, 2, 3, 1, 3, 1, 3, 1, 3, 2]. This put us
in a bit of an awkward situation. Do we want a nice
approximation for the true value, or do we prefer to
have es to be exactly 10 times as large as ts? If
we go for the latter, we could take 42110/592. We
calculated the approximants though, and got

489

7
,
569

8
,
1067

15
,
2703

38
,
9176

129
,
11879

167
,
44813

630
,

56692

692
,
214889

3021
,
271581

3818
,
1029532

14475
,
2330845

32768
.

When we saw this, it was irresistible to define
es as

9176

129
= 71.131782945736434108527

and then to define ts as

9176

1290
=

4588

645
= 7.1131782945736434108527 .

Edith-Enhet (Edith-Unit)

Edithorial Standardisation Committee

Version: 1.0

Date: 22-03-2023

Adaptations:

W. Egger Scale 3:2

1

Edith-Enhet (Edith-Unit)

15 mm 20 mm 25 mm 30mm

105 mm

55 mm
50 mm

5 mm

20 mm17.5 mm

Figure 2: A TEX-community-worthy edithorial for
measuring the Edith.

The edithorial device

The design of the edithorial also involved some re-
search. Of course there was some discussion about
the right way to sample thumbs and those who have
attended BachoTEX and ConTEXt meetings will not
be surprised that Willi is responsible for this. He
presented us with a drawing (figure 2) that we im-
mediately agreed upon.

Willi then sat down and made a prototype (fig-
ure 3) in order to see if sampling would work out.
Knowing that the device would be stored under harsh
conditions in the university city of Lund in Sweden, it
had to be sturdy Polish oak and after being brought
to precision it underwent first an iron acetate treat-
ment and after that a furniture oil (tung oil) treat-
ment as can be seen in figure 4. Even with TEX
being digital we cannot get around physical devices
for measuring digits. And with TEX operating in
nanometers we have to fit in.

Some double checking

There is one question we have to answer before we
dare to use the Edith (es) and Tove (ts) as offsets
next to a Knuth (dk) and that is: in what box does
Don’s thumb fit? After all, we need to assign some
more weight to his thumb. On the Internet you can
find images of Don Knuth sitting behind an organ

Willi Egger, Hans Hagen, Edith Sundqvist, Mikael P. Sundqvist



TUGboat, Volume 44 (2023), No. 2 183

Figure 3: The prototype of the edithorial.

Figure 4: The reference edithorial with protective
cover.

but for reasons of copyright we cannot show these,
but one thing we can be sure of is that his thumb is
not wider than a key of that instrument, because ac-
cording to the Wikipedia page Musical_keyboard:2

Over the last three hundred years, the octave
span distance found on historical keyboard
instruments (organs, virginals, clavichords,
harpsichords, and pianos) has ranged from
as little as 125 mm (4.9 in) to as much as
170 mm (6.7 in). Modern piano keyboards
ordinarily have an octave span of 164–165 mm
(6.5–6.5 in), resulting in the width of black
keys averaging 13.7 mm (0.54 in) and white

2 Notice how metric measures win over inches here!

Figure 5: The 2019 lecture: Pi and The Art of

Computer Programming.

Figure 6: The 2014 lecture: (3/2)-ary Trees

keys about 23.5 mm (0.93 in) at the base,
disregarding space between keys.

This definitely keeps Don’s thumb out of the
30mm bucket. When we zoom into these images it
seems also unlikely that the thumb will go to the
20mm bucket, but in the end the only one who can
answer this is Don Knuth himself. And because he’s
behind an email firewall we don’t dare to ask him.
So more research was needed and after a brainstorm
session we decided to rely on a public visual that
any TEX user should be familiar with: the yearly
Christmas lectures (figures 5, 6).

And because we know which books the thumb
is on, we can calculate the bucket by comparing the
dimensions: on one case we use the paper size as
a reference, on the other case we use the interline
spacing of the book as reference!

In Figure 7 we show a close-up of the thumb and
the page. We have divided the image into a 100×100
grid, but the aspect ratio of the image is 3 : 2, so
we need to compensate for that. We estimate that
the interline space of the text is 8 grid lines high,
while the diagonal line measuring the width of the
thumb is 12 grid lines wide and 42 grid lines high.
This means that the thumb-interline space quotient
is given by

√

(12 · 3/2)2 + 422

8
≈ 5.71.

Next, we need to know what interline space is
used. We should probably know this by heart, but
as we do not, we instead downloaded one of the pre-
fascicles of TAOCP volume 4. We cut out a square
with sides of 5 cm, and added again a 100×100 grid.

New dimensions: Edith and Tove



184 TUGboat, Volume 44 (2023), No. 2

Figure 7: Close-up of Don Knuth’s thumb.

²���¥@��¥ ��������Ô�Ö����;Ö��
	1×�� ä

Á£Øe»UÛ Ùh ����ÜÚV��� x�b���Û ��½8���Ø?���ß���h���x���h��f�k �� ��� ½k��h�����©��� ���h  �"!�;Ù_� �h� ��Í���   � � � � Û � �OÜ�� ��Í���   � � � Û �¾��́��¾$#

w/f�pqh�f>��jsi�p���t�r�d�h�jsr�j��&g
vUr�kUi�j®É�zUfUd3g
i��>r��Umsi�p�r�oLe@msp i�j�g
vUr�jsvUe@m�g
r3j�g��;eJjsjsiO�Ut�r
kUi�j®É�zUfUd3g
i��>r�fUe@mspqh�t,o[e@mspàg
v_h�g�h�o[zUfUd3g
i�e@f·d�h�f$v_h3�>r@� ¯ z�g��ur�d�h�f$e@oLg
r3f$kUe��;r�gsg
r3m��
��r�d�h�zUjsrl�urlp�i�{@v>g���r�h��Ut�r�g
e·d3e��>r3m�h�t�tg
v�rlfUr3d�r3jsjnh�m��5��e@i�f>g
j���i�g
v5e@fUt��]h2oLr3� e@o
g
vUr�p�h�~�iOpqh�t;jszU��d3z���r3j��Â_eJm¢r3~�h�pl�Ut�r>�>g
v�r��Umsi�plr�i�p���t�i�d�h�f>g��́©Iù;¬>¶�i�j£z�fUfUr3d�r3jsjnh�m��
i�f�´(ýc¬@¶n��¨�fUk�iOf2r�~��Umsr�jsjsi�e@f��́�¨�̄¶��ur�kUe@f	x g�fUr3r�k���eJg
v�´(yððù½y©Wù{y¬�¶¢h�f�k]�́§�ù½y©Wù{y¬�¶�¾
r3i�g
vUr3m¢eJf�rDi�j¢jszU½�d�i�r3f>g���i�f�g
vUrD�Umsr�jsr3fUd�r�eJo,g
vUr�e�g
v�r3m£g
r3msplj��% fUo[e@m�g
zUf_h�g
r3t����u�ur·��iOt�t�jsr3r|i�f)±�r3d3g
i�e@f(²�� ä g
v_h�gqg
vUr·g�h�js�êe@o � fUk�i�fU{�h]��r3j�g
kUi�j®É�zUfUd3g
i��>rf�eJmsp�h�t@o[eJmspéi�j]��Á©ªd�e@p��Ut�r3g
r@�3g
v�z�jN«>z�i�g
rk�i�½�d3zUt�g,i�fD{@r3f�r3mnh�tª� ¯ z�g,p�h�f��
zUjsr�oLzUt�jsvUe@m�g
d�z�g
j�v_h3�@rq��r�r3f]kUr��>r�t�e@��r3k]o[eJm�jszU½�d3iOr3f>g
t��5jspqh�t�t&��mseJ��t�r3plj��Qh�f�k5g
vUr3�
h�msr��ur3tOt;r�~��Ut[h�iOfUr3k�i�f�g
vUr���e�e@�;è�á�Û�ö8äLÿ�ìVÞ:Û�Ý�äcáYÛ�ämÛ�×�ØDÖw×�Ø�ä:öeâdä:å���ë�Ý(Û�ÞZ×GÝ^á�ç/�wÝ^ö8Þ!ì+Ý(Û�ã
�>�}ô��{ô��FÊ·d�³�t�zUjs�@r��ê´���r��ZÄ�e@ms�;¹	Ê·d ¬ mnh3�V�>ë�iOt�tª�&¥ ä Ý@Þ>¶���Â_eJm�tLh�g
r3m�kUr��>r�t�e@�Up�r�f>g
j��
jsr3r�ÁQr�g
m�ÂNi'&jsr3m�h�fUkdô�h�f2ë�t[h���i(&d��Jh��ª��ä:Ü-��ì�Û�Ý�á�çfÚ:á�ÿfè�áQå(äcöªÜ=ÚLÛ�Ý³Þ�ã�Æ¤Æ5´ª¦Jè@è>§>¶��Ë¥ ä ��Þ�¥@�

¡ vUr�msr@x j�h�f}iOp���e@m�g�h�f>gDjs��r3d�iLh�tQd�h�jsr�o[eJm���vUiOdnv|g
vUr�jsv�eJm�g
r�j�g �u��û i�j��FvUe��ur��>r3m��
r�h�jsi�t��|d�v_h�mnh�d�g
r3msiOþ3r3kF�l¨ ¯ e�e@t�r�h�f5oLz�fUd�g
i�e@f5iOj�jnh�i�k]g
e���r ù gdc�g±`bgdc�r e@m ø2gdtkox`xoqpdr i�o
i�g
j��>h�tOzUr�kUe�r3j�fUeJg�dnv�h�f�{Jr�o[mse@p ¥�g
e�èl��vUr�f}h�f>�·e@o&i�g
j��@h�msiLh��UtOr3j�dnv_h�fU{@r�j�oLmse@p è
g
e�¥@��w/f·e�g
v�r3m¢�ue@mskUj���¦·i�j�p�e@fUeJg
e@fUr�i�oh�fUk·eJf�t���i�oU¦,´�§Ë¶Ìë ¦,´�©�¶���vUr3f�r��>r3m0§ ! ©��
��vUr�msr�g
vUr��Ui�g£j�g
msiOfU{j§1ó§]Ê{ü
ü_üZ§¤Ï�i�j£msr�{>h�mskUr�k�h�j¢d3e@f>g�h�i�fUr�k�i�f�e@mur�«�z_h�t�g
e�g
vUr��Ui�g
j�g
msi�fU{m©m ©pÊ{ü_ü
üZ©¨Ï2i�oh�fUk·e@fUt���iOow§ þ ë © þ o[e@m�h�t�t
)_��¨�f�r�«�zUi��@h�t�r3f�g¢d3e@fUk�i�g
i�e@f�´®jsr3r
r�~�r�msd3i�jsr�¦�¥�¶i�j�g
v_h�g�g
vUr�oLz�fUd�g
i�e@f1¦�r3i�g
v�r3m�iOj�d3e@fUj�g�h�f>gue@m�d�h�fq��r�r3~��Umsr3jsjsr�kqr�f>g
i�msr�t��
i�f�g
r�msp�j¢eJo�ù�h�f�kËïu����i�g
v�eJzUg¢d3e@pl�Ut�r3plr3f>g�h�g
i�e@f	�
*,+ ¡<Ó%ØÒ¡$-/.a§ Öw×�Øfãª×�ä:ö
ÛeØnã
Ûjÿ-Ý�ã10cì+á�Þ:Û�Ý(é+Ø;á�ä:öªÜfÚ:ßiå(äcöªÜ ä:åWÚ¯Üfä:á�äLÛ�ä:á�Ø�20äLäcß�Ø�Ú:á
åZì+á�Þ:Û�Ý�äcá1Ý^ãiÝ(Û�ãêÿLÝ^ã10cì!á�Þ:Û�Ý(é+ØÌ��öªÝ^Ü1Ø0å�ä:öªÜ�þ
3 ikgfgÍe54 Õ Ãÿ��¤��"�zUi�fUr>�620ä:ß�ØcÛ�7Ü á¯ÿGØIß³Ú~�QäLÞ�Ý�Ø_ÿQÚ#ÿ1ÙYÚLÛeØnÜ87Ú-Û�Ý�Þ_Ú*Ù¸Ø�9LÝ�Þ_Ú:á�ÚaÁpÂ�´�¥ ä Þ@§>¶��
Ý�µ¥��²�èU� î0íFr�gê¦N´�§]Ê
¨_ü
ü_ü_¨Z§¤Ï_¶���r�pleJf�e�g
e@fUr>��h�fUk�tOr�g � Êwù7Í�Í1Í
ù � ÿ ��r�e@fUrDe@o,i�g
j£�Umsi�plri�pl�Ut�i�d�h�f�g
j��,Ã]r�d�h�f�fUeJg¢v_h3�>r@��jnh3�>� � Ê3zy§
	s����r�d�h�zUjsr�iOf�g
v_h�g¢d�h�jsr�g
v�r�jsv�eJm�g
r�mug
r�msp
� Ëqù�Í1Í�Í!ù � ÿ �ue@zUt�k5h�t�jse���r�h�f|i�pl�Ut�i�d�h�f>g��_�>�$p�e@fUeJg
e@fUi�d�i�g/�>� ¡ vUr3msr�oLe@msr�fUe��Umsi�plri�pl�Ut�i�d�h�f�g£v_h�j�h�d3e@p���t�r3plr3f>g
r�k�t�i�g
r3mnh�tª�

��e��âi�o��ur�jsr�g � Ê;:ßÍ1Í�Í�: � ÿ :Î¥�h�fUk�h�t�t_eJg
vUr3m��@h�msiLh��Ut�r�j&g
e�èU�>g
vUr��@h�t�zUr�eJoz¦
��i�t�tQ��r�¥J�F�Uz�g�h�t�te@oi¦Fx jDeJg
vUr3m��Umsi�plr�i�pl�Ut�i�d�h�f>g
j���iOt�tN�@h�fUi�jsv	� ¡ v�zUj � ÊUù�Í�Í1Í!ù � ÿp�z�j�g���r�i�f�r��>r3m���jsvUe@m�g
r�j�g �u��û �Q��r�d�h�zUjsr�r3�@r�m���i�p��UtOi�d�h�f>g�e@o�h$jsvUe@m�g
r3j�g �u��û i�j
d3tOr�h�mst����Umsi�p�r>�
<�Ó%Ø�ÓgÚ�ÚS�¤Ø�=>.a§ à ÿLÝ^ã10cì!á�Þ:Û�Ý(é+Ø�á�ä:öªÜ=Úcß3å(ä:öªÜ Ý^ã�Û�×�ØfÿLÝ^ã10cì!á�Þ:Û�Ý(é+Ø-��öªÝ�Ü=Ø�å(äcöªÜ ä:åSÚ
Üfä:á�äLÛ�ä:á�Ø?20äLä:ß�Ø�Ú:á¸åZì+á�Þ+Û�Ý³ä:á¸Ý^å0Úcá�ÿÒä:áQßgâÒÝ^åJÝ?Ûi×�Ú:ãaá�ädÞ_ä:Ün��ß�ØnÜ1Øná�ÛeØ_ÿdß�Ý(ÛeØnö8Ú:ß^ãjÚcá�ÿ
á�ä:á�ØSä:åwÝ(Û�ã3Ý^Ün��ß^Ý³Þ
Ú:á�Û�ã3Ý^ãêÞ_ä:á�Û�Ú:Ý^á�Ø_ÿ;Ý^áËÚ:á�äLÛ�×�Ø�ö
þ
@��p£¥���5Ak�¤Ùk��Ú��¦£B=(§ ¨ ¯ e�eJtOr�h�f�o[zUfUd3g
i�e@f�i�j�jnh�i�k�g
e���r tha±`xoqtDC.a>ú3òÚr i�o;i�g�i�j�fUeJg�i�kUr3f�g
i�d�h�t�t��
þ3r�mseNÌÐg
v_h�gFiOj���iOo�i�g	v_h�jQh�g,t�r�h�j�gFe@fUr&i�pl�Ut�i�d�h�f�g�� ¡ vUr�p�e@j�gFo1h�ple@zUjFzUfUjse@t��>r3k��Umse@�UtOr3p
i�f]h�t�teJo�d�e@p��Uz�g
r�m�jsd3iOr3fUd�r�i�j�g
e � fUk�h�f}r�½�d3i�r�f>gD�¢h��|g
e�kUr�d3i�k�r���vUr�g
v�r3m�h�{@i��>r3f
¯ e�eJtOr�h�fDoLzUf�d�g
i�e@fDiOj	jnh�g
i�j � h��Ut�r&e@m	z�fUjnh�g
i�j � h��Ut�r>�FÊ$eJmsr��Umsr3d�i�jsr3t����3�uruh�js�;¹	w/j	g
vUr3msr�h�f
h�t�{@e@msi�g
vUp g
v_h�gNiOfU�Uz�g
jh ¯ e�e@t�r�h�f�oLe@msp�zUtLh¢e@oUtOr3fU{Jg
v?EÐh�f�k�g
r3j�g
jNi�gNo[e@mNjnh�g
i�j � h��Ui�t�i�g/�>�
h�t��¢h3��j¢{Ji���iOfU{�g
vUr�d3e@msmsr3d3g�h�fUj��ur3m�h�oOg
r�m¢��r3mso[e@msp�i�f�{lh�g�p�e@j�gFEHG ³ Ê ¶ j�g
r3��j�å

Ã(vUr3fl�>e@zqvUr�h�m£h��;eJzUg�g
vUi�j���mseJ��t�r3p o[eJm�g
vUr � msj�g�g
i�p�r>�@�@e@zqpli�{@v>g���r�g
r�p���g
r�k
g
e�h�js�qh�«�zUr3j�g
i�e@fqe@oË�>eJz�m�e���f�i�fqmsr3g
zUmsf	¹�ÍçÃ(v_h�g�å�¨�msr��>e@zqjsr�msi�e@zUj�g
v_h�gud3e@pl�Uz�g
r3m
jsd3iOr3f>g
i�j�g
j¢j�g
i�t�tËv_h3�>r3fFx g � {@zUmsr3k�e@z�g�vUe�� g
e�kUe�jszUd�v$h�jsi�pl�Ut�r�g
vUiOfU{�å�Ï

We measured the height of two lines and got in
return 17 grid lines. This means that the interline
space is given by

5×
17

2 · 100
centimeter = 0.425 centimeter .

As a result we estimate that Don Knuth’s thumb has
the size

5.71× 0.425 centimeter ≈ 2.43 centimeter .

If we’re right about all this then the Edith will
not be influenced by the grand wizard’s thumb, so the
well-calibrated (derived) Tove cannot be discarded
for offsets as being less accurate (and stable) as the
Knuth.

A modern relative unit

Since TEX showed up, a lot has changed when it
comes to computers: the computers considered pow-
erful in the early days now fit in your pocket. One
disadvantage of these portable devices is that they
have a variety of display sizes. A document can easily
be generated again, adapting the layout to all these
devices is a bit of a pain.

This is why we introduce a new dynamic unit,
the eu or the European Unit, but one that can be

changed by setting an internal register, \eufactor.
Because that defaults to 10, one eu starts out as one
es. A nice coincidence is that one can also read it
as Edith’s Unit.

\eufactor 1eu

2
10
15

\eufactor 2eu

2
10
15

We can set the factor in Tove steps between 1
and 50 so that we retain a reasonable accuracy. So,
this relative unit stresses the sisterhood of these two
new units because 1eu is 10ts and 1es. This unit
might also come in handy when writing manuals so
you can bet that we will use it.

These units are modern in another way too. The
popular game MineCraft has its own unit, a block, as
(for instance) discussed on minecraft.fandom.com/

wiki/Tutorials/Units_of_measure. For those us-
ing inches, one inch is 0.0254 blocks, so one block
makes 39.3700787in. For those using metric sys-
tem one cm equals 0.01 blocks or 0.16 pixels and
therefore one block makes 40cm. These 40cm are 16
Ediths which means that the Edith is also a good
introduction in the hexadecimal numbering system.
Unfortunately LEGO bricks are defined in inches so
there the inchers still have the edge. But Edith and
Tove have an advantage in MineCraft, which is con-
firmed by observation. Just like some of TEX’s units
are actually defined using the inch paradigm, we
could add units like mb for MineCraft Block being 16
Ediths. After all, implementing extra units is trivial
in LuaMetaTEX. Let us know what you think.

How about MetaPost?

We not only have to deal with TEX but also with
MetaPost, so from now on Metafun will also provide
these units, which we can then use to properly draw
thumbs as in figure 8.

While checking other units in Metafun we were
reminded that they are there given as floats and not
as fractions. We were amused to see

mm := 2.83464 ;

cm := 28.34645 ;

which means that a mm is not exactly one tenth of a
cm, and also that the rounding has been done by the
even/odd rounding off rule. We decided to define

es := 71.13174 ;

ts := 7.11317 ;

Willi Egger, Hans Hagen, Edith Sundqvist, Mikael P. Sundqvist

https://minecraft.fandom.com/wiki/Tutorials/Units_of_measure
https://minecraft.fandom.com/wiki/Tutorials/Units_of_measure


TUGboat, Volume 44 (2023), No. 2 185

Figure 8: One can sign documents with these

calibrated thumbs.

Wrapping up

In this article we discussed a few additional units
that have been added to LuaMetaTEX. We’ve care-
fully chosen some names that not only compensate
the male dominance in unit names, but also have
a modern and fresh ring. The units are of course
metric. The Edith (es) replaces the deprecated inch
(in) and the Tove (ts) can be used for offsets as
alternative to the Knuth (dk) that of course we will
keep using alongside. The units are calibrated using
an edithorial of which there exists a unique reference
measurement piece. The standard has been estab-
lished at the 2023 BachoTEX meeting and might be
recalibrated at a future ConTEXt meeting when a
new generation of users thinks that is needed.

Appendix: Overflow

When you enter a dimension in TEX and it is larger
than 16383.99998pt or 1073741823 scaled points, an
error message is shown and when you ask for help,
that contains the sentence “I can’t work with sizes
bigger than about 19 feet”. There is no ft unit in
TEX, so the user has to do some conversion, maybe
taking ones own foot into account.

Just like we had to adapt the error message
issued when an unknown unit is used, we decided
make the overflow message a bit more detailed. For
that, we introduced the Theodore, where that unit
is to the Edith what the foot is to the inch, and with
one Theodore being five Edith. We now report this:

I can’t work with sizes bigger than about
19 feet (45 Theodores as of 2023), 575
centimeters, 2300 Toves, 230 Ediths or
16383 points.

So how did we come to this one? At the Ba-
choTEX meeting the 18-month-old, always good-
humored, Theodore was running around in the confer-
ence room and his little feet were carefully measured
by his father Arthur Rosendahl (the self-appointed
High Commissioner of Hyphenation and upcoming
TUG president). Because the 19 feet are also an
approximation, we rounded the Theodore to five
Ediths. In addition we mention a few more maxima,
so that the user gets a better impression how large
TEX can go.

Mojca Miklavec, who gets her feet dirty by man-
aging the binary build farm on the context garden,
proposed a th unit but as there is no ft we didn’t
come to a conclusion yet. Although that unit would
make a good default for text width, just like an es

makes perfect left margin, and a ts a nice offset
around framed content . . .

⋄ Willi Egger

BOEDE

⋄ Hans Hagen

Pragma ADE

⋄ Edith Sundqvist

Palettskolan

Division of Miró

⋄ Mikael P. Sundqvist

Department of Mathematics

Lund University

New dimensions: Edith and Tove



doi.org/10.47397/tb/44-2/tb137schmitz-xmlcontext

186 TUGboat, Volume 44 (2023), No. 2

Thomas A. Schmitz

Producing di昀昀erent forms of output
from XML via ConTEXt

Thomas A. Schmitz

This paper will describe the work昀氀ow that I have
been using for about 昀椀fteen years now at Bonn Uni-
versity. I am a professor of ancient Greek and give a
lecture course of about 90 minutes (i.e., 2 × 45 min-
utes) every week during the term. Over the course
of these 昀椀fteen years, I have changed and adapted
my work昀氀ow and the tools I use: after experimenting
with LATEX, I used ConTEXt 昀椀rst to produce my lec-
ture notes, then to produce the slides as well. After
a while, it became clear that it would be bene昀椀cial
to produce all material from one and only one source
昀椀le. It turned out that XML was the best input for-
mat for this: it is easier to reuse for other purposes,
and it allows output in di昀昀erent formats because of
the way it is processed in ConTEXt.

Since a picture says more than a thousand
words, the easiest way of demonstrating what “dif-
ferent forms of output” means is showing a few ex-
amples.

7

Bakchylidespapyrus
aus dem British Museum,
geschrieben ca. 100 n. Chr.

Figure 1: Slide with picture

The most important format is of course the slides
that I show in my lectures. They should help stu-
dents understand and master the subject; they con-
tain di昀昀erent forms of material, such as pictures (昀椀g-
ure 1 shows a slide with a picture of a papyrus frag-
ment).

Gliederung des Semesters (2)

18

23.05. Agamemnon 2 Schuld in der Tragödie

06.06. Choephoren Elektra bei den Tragikern

13.06. Eumeniden Tragödie und Politik

20.06. Der gefesselte Prometheus Fragmente und Satyrspiele

27.06. Sophokles Euripides

04.07. Die Rezeption des Aischylos in der Antike

11.07. Die Rezeption des Aischylos seit der frühen Neuzeit

Figure 2: Slide with table

The slide in 昀椀gure 2 contains a table, another fre-
quent format; but most of my slides contain texts
and translations, like the one shown in 昀椀gure 3; I
teach a philological discipline, after all.

Aischylos, Perser 541–545

10

αἱ δ’ ἁβρόγοοι Περσίδες ἀνδρῶν
ποθέουσαι ἰδεῖν ἀρτιζυγίαν,
λέκτρων εὐνὰς ἁβροχίτωνας,
χλιδανῆς ἥβης τέρψιν, ἀφεῖσαι,
πενθοῦσι γόοις ἀκορεστοτάτοις.

In üppiger Klage die persischen Fraun,
Verlangend, den jüngst geschlossenen Bund
Mit ihren Männern zu sehen, und
Der reichen Decken des Lagerpfühls
Verlustig und schwelgender Jugendlust,
wehklagen mit unersättlichem Schrein.

Figure 3: Slide with text

These slides have been produced with the ConTEXt
module simpleslides that Aditya Mahajan and
myself wrote many years ago. It o昀昀ers a number of
visually appealing styles for such presentations, and
of course, it is free and open software and can be
downloaded from the ConTEXt garden.

I had always made these slides available to stu-
dents, originally by uploading them to my depart-
mental website. Then, some years ago, students
asked me to provide them in a format that would be
easier for them to print and reuse.



TUGboat, Volume 44 (2023), No. 2 187

Producing di昀昀erent forms of output from XML via ConTEXt

Pr
of

. D
r.

Th
om

as
A

. S
ch

m
itz

, A
isc

hy
lo

s,
SS

20
23

git:
1c2ef6dbe

of
2023-06-06

13:48:31
+0200

‖
ctx

2023.06.22
14:13

‖
macOS

13.4.1
on

Mac14,3
arm64

Aischylos, Sieben gegen Theben 653–661

O gottverblendet, von Götterhass schwer heimgesucht,
O allbeweintes, mein – des Oidipus – Geschlecht!
Weh mir, des Vaters Flüche werden nun erfüllt!
Doch Weinen nicht noch Jammern ziemt sich jetzt, dass nicht
Erzeugt uns werde lästigerer Klagen Not.
Bei ihm, Polyneikes – „Streitlust“ steckt im Namen ihm –
Wird bald man wissen, so ein Wappen hin ihn bringt,
Ob heim ihn führt der geldgeformten Inschrift Wort,
Das auf dem Schild prahlt, Zeichen seines irren Geists. [Übs. O. Werner]

Aischylos, Sieben gegen Theben 778–790
Doch als der Unglückliche sich seiner
grässlichen Ehe bewusst wurde,
betrübt in seinem rasenden Herzen
über den Schmerz,
was er für Doppelübel vollbracht hatte
mit vatermordender Hand, entfernte er
sich vom besseren Verstand,
auf seine Kinder sandte er
zornig wegen der P昀氀ege, wehe,
Flüche mit bitterer Zunge,
und dass sie mit eisenschwingender
Hand einmal teilen sollten
ihren Besitz.

Die Entsendung der thebanischen Verteidiger
Vers Perfekt Aorist Präsens Futur

408 „werde
entgegenstellen“

448 „ist gestellt“

473 „ist
gesandt“

505 „wurde gewählt“

508 „führte
zusammen“

553 „ist (bereit)“

621 „werden
entgegenstellen“

672 „werde
entgegentreten“

Aischylos, Sieben gegen Theben 676–682

Liebster der Männer, Sohn des Oidipus!
Werde nicht in wildem Trachten jenem gleich,
Der solche ärgste Sprache führt! –
Genug, dass Kadmos’ Männer mit dem Volk von Argos
Ins Handgemenge kommen! – Blut kennt Reinigung.
Tod aber zweier Männer gleichen Bluts,
Derart im Wechselmord herbeigeführt,
Für die Be昀氀eckung gibt es kein Veralten! [Übs. W. Schadewaldt]

Figure 4: Printout for students

The format shown in 昀椀gure 4 is a design that the
students themselves suggested: on an A4 sheet, the
left side has a very simpli昀椀ed and scaled down view
of the slides, minus all the decorations, backgrounds,
and fancy e昀昀ects, but still keeping all the important
elements such as images, tables, and text; the right
column is blank so students can take notes next to
the slides and thus be sure what their notes refer to.

©
20

23
Th

om
as

A.
Sc

hm
itz

[21] The Cambridge Companion to Greek Tragedy, hrsg. von Patricia E. Easterling, Cambridge (Engl.) 1997.
[22] A Companion to Greek Tragedy, hrsg. von Justina Gregory, Oxford 2005.
[23] Dale, Ann Marjory: Collected Papers, Cambridge (Engl.) 1969.
[24] Dale, Ann Marjory: „Seen and Unseen on the Greek Stage: a Study in Scenic Conventions“, Wiener Studien 69 (1956)

96–106 (Nachdruck in Dale [23], 119–29).
[25] Dionysus Since 69. Greek Tragedy at the Dawn of the Third Millenium, hrsg. von Edith Hall, Fiona Macintosh und Amanda

Wrigley, Oxford 2005.
[26] Fritz, Kurt von: Antike undmoderne Tragödie. Neun Abhandlungen, Berlin 1962.
[27] Goldhill, Simon: Reading Greek Tragedy, Cambridge (Engl.) 1986.
[28] Gould, John: „Dramatic Character and ‘Human intelligibility’ in GreekTragedy“,Proceedingsof theCambridgePhilological

Society 24 (1978) 43–67 (Nachdruck in Gould [29] 78–111).
[29] Gould, John:Myth, Ritual, Memory, and Exchange. Essays in Greek Literature and Culture, Oxford 2001.
[30] Greek Tragedy and the Historian, hrsg. von Christopher Pelling, Oxford 1997.
[31] Das griechische Drama, hrsg. von Gustav Adolf Seeck, Darmstadt 1979.
[32] Gri昀케n, Jasper: „The Social Function of Attic Tragedy“, Classical Quarterly 48 (1998) 39–61.
[33] Henrichs, Albert: „‚Why Should I Dance?‘: Choral SelfReferentiality in Greek Tragedy“, Arion 3 (1994/95) 56–111.
[34] Henrichs, Albert: „Loss of Self, Su昀昀ering, Violence: the Modern View of Dionysus from Nietzsche to Girard“, Harvard

Studies in Classical Philology 88 (1984) 205–40.
[35] Latacz, Joachim: Einführung in die griechische Tragödie (UTB 1745), Göttingen 1993.
[36] Lesky, Albin: Die tragische Dichtung der Hellenen (Studienhefte zur Altertumswissenschaft 2), Göttingen ³1972.
[37] Mastronarde, Donald J.: „Actors on High: The Skene Roof, the Crane, and the Gods in Attic Drama“, Classical Antiquity 9

(1990) 247–94.
[38] Meier, Christian: Die politische Kunst der griechischen Tragödie, München 1988.
[39] Melchinger, Siegfried: Das Theater der Tragödie. Aischylos, Sophokles, Euripides auf der Bühne ihrer Zeit, München 1974

(Nachdruck 1990).
[40] Nothing toDowithDionysos?AthenianDrama in Its SocialContext, hrsg. von John J.Winkler undFroma I. Zeitlin, Princeton

1990.
[41] Oxford Readings in Greek Tragedy, hrsg. von Erich Segal, Oxford 1983.
[42] PickardCambridge, ArthurW.: TheDramatic Festivals of Athens, Oxford ²1968 (revisedwith a new Supplement (1988) by

John Gould and D. M. Lewis).
[43] PickardCambridge, ArthurW.: The Theatre of Dionysos in Athens, Oxford 1946.
[44] Pohlenz, Max: Die griechische Tragödie, Göttingen ²1954.
[45] Rehm, Rush: Greek Tragic Theatre, London 1992.
[46] Rehm, Rush: Radical Theatre: Greek Tragedy and theModernWorld, London 2003.
[47] Scullion, Scott: „‘Nothing To Do with Dionysus’: Tragedy Misconceived as Ritual“, Classical Quarterly 52 (2002) 102–37.
[48] Seaford, Richard: „The Social Function of AtticTragedy: a Response to Jasper Gri昀케n“,ClassicalQuarterly 50 (2000) 30–44.
[49] Seeck, Gustav Adolf: Die griechische Tragödie, Stuttgart 2000.
[50] The Soul of Tragedy. Essays on Athenian Drama, hrsg. von Victoria Pedrick und Steven M. Oberhelman, Chicago 2005.
[51] SourvinouInwood, Christiane: Tragedy and Athenian Religion, Lanham, MD 2003.
[52] Storey, Ian C. und Allan, Arlene: A Guide to Ancient Greek Drama, Malden, MA 2004.
[53] Taplin, Oliver: Greek Tragedy in Action, London ²1985 (Nachdruck 2000).
[54] Tragedy and the Tragic. Greek Theatre and Beyond, hrsg. von Michael S. Silk, Oxford 1996.
[55] Tragedy, Comedy and the Polis. Papers from the Greek Drama Conference Nottingham, 18–20 July 1990, hrsg. von Alan H.

Sommerstein, Stephen Halliwell, Je昀昀rey Henderson et al. (Le Rane 11), Bari 1993.
[56] Tragödie. Idee und Transformation, hrsg. von Hellmut Flashar (Colloquium Rauricum 5), Stuttgart 1997.
[57] Vernant, JeanPierre und VidalNaquet, Pierre:Mythe et tragédie en Grèce ancienne, 2 Bde, Paris 1989–95.
[58] Wiles, David: Tragedy in Athens. Performance Space and Theatrical Meaning, Cambridge (Engl.) 1999.
[59] Zimmermann, Bernhard: Die griechische Tragödie, München 1986.

C. Sekundärliteratur zu Aischylos

[60] A Companion to Aeschylus, hrsg. von Jacques A. Bromberg und Peter Burian, Chichester 2023.
[61] Finkelberg, Margalit: „The Geography of the PrometheusVinctus“, RheinischesMuseum für Philologie 141 (1998) 119–41.
[62] Föllinger, Sabine: Aischylos. Meister der griechischen Tragödie, München 2009.
[63] Oxford Readings in Aeschylus, hrsg. von Michael Lloyd, Oxford 2006.
[64] Podlecki, Anthony J.: The Political Background of Aeschylean Tragedy, Ann Arbor 1966.

Figure 5: Bibliography

Finally, I produce handouts from my source 昀椀le. For
regular lecture courses, these contain just the bib-
liography; for invited lectures or conference talks,
they may also contain passages from original texts,
translations, or excerpts from scholarly literature.
As you can see in 昀椀gure 5, I am very fond of num-
bered bibliographical styles because they make it so
much easier and more e昀케cient to refer to single items
on the list.

What we have seen so far is, if you like, the
client-facing side of my business, but of course the

material I produce for myself, i.e., the notes for my
lectures, is as important as these documents.

git: 1c2ef6dbe of 2023-06-06 13:48:31 +0200 ‖ ctx 2023.06.22 14:13 ‖ macOS 13.4.1 on Mac14,3 arm64

Persern
ὀτοτοτοῖ

Figure 6: Manuscript as “index cards”

Figure 6 shows a no-nonsense, very basic format
for my manuscript: the locations where I have to
change slides are simply indicated by red numbers
(grayscaled for print); the slides themselves are not
rendered. This is wonderfully readable on small de-
vices such as phones or tablets, and it has the bene-
昀椀t that the amount of text on these “index cards” is
pretty standardized, so I know exactly how many of
these pages it takes to 昀椀ll a 45-minute presentation;
this helps me preparing my lectures.

git: 1c2ef6dbe of 2023-06-06 13:48:31 +0200 ‖ ctx 2023.06.22 14:13 ‖ macOS 13.4.1 on Mac14,3 arm64

Die Entsendung der thebanischen Verteidiger

19

Vers Perfekt Aorist Präsens Futur

408 „werde
entgegenstellen“

448 „ist
gestellt“

473 „ist
gesandt“

505 „wurde
gewählt“

508 „führte
zusammen“

553 „ist (bereit)“

621 „werden
entgegenstellen“

672 „werde
entgegentreten“

Figure 7: Manuscript with view of slides

In general, however, I prefer to see the slides on my
tablet when I give the lecture, in exactly the form
that the students see them on the big screen behind
me so I have text and translation or other elements
before me when I talk about them; hence I produce
the format shown in 昀椀gure 7 that has the slide on top
of the page and then the text of the lecture below.



188 TUGboat, Volume 44 (2023), No. 2

Thomas A. Schmitz

All these di昀昀erent formats and outputs are pro-
duced from one common source 昀椀le written in XML,
lecture.xml. This 昀椀le is compiled with ConTEXt.
I will provide just a few basic pieces of information
about the way ConTEXt processes XML; for readers
who want to learn about this topic in depth, there is
the document Dealing with XML in ConTEXt MkIV
in the ConTEXt distribution that contains all the de-
tails. Like most things in ConTEXt, processing XML
is done via setups, which are usually collected in a
special “environment” 昀椀le.
\startxmlsetups xml:presentation_setups

\xmlsetsetup {#1} {*} {-}
\xmlsetsetup {#1} {lecture|

presentation} {xml:*}
\stopxmlsetups
\xmlregistersetup {xml:presentation_setups}

The code above shows the beginning of such an
environment 昀椀le. Setups are collected in start/stop
pairs; in this case, they are the setups for the en-
tire document. Line 2 is important: it tells ConTEXt
to drop everything and not typeset any XML ele-
ment unless it is explicitly mentioned in the follow-
ing list and has its proper setup; if this line is not
present, ConTEXt will use some heuristics to retrieve
and typeset at least the text from all elements. And
then follows this list of elements, hierarchical from
the root element down to all the other subelements.
\startxmlsetups xml:presentation

\xmlflush {#1}
\par

\stopxmlsetups

\startxmlsetups xml:presentation
\color [red] {\xmlflush {#1}}
\page

\stopxmlsetups

\startxmlsetups xml:presentation
\startsection [title=\xmlatt {#1} {title}]

\xmlflush {#1}
\stopsection

\stopxmlsetups
After collecting the elements that we want

processed, we create setups for every single one of
them; they all live in the xml: namespace. Just to
provide an idea of what these setups look like, we
see above some examples of how an element with the
name presentation could be processed. The 昀椀rst
setup is the most basic one: the command \xmlflush
on l.2 takes the content of the current element (in
our case the element presentation; the #1 stands
for the content of the current XML node) and puts
its content into the TEX stream, where text will be
typeset, subelements will be processed according to

the rules de昀椀ned in their own setups, etc. After every
element, ConTEXt will insert a paragraph break. Of
course, you can apply all the usual ConTEXt com-
mands to the content of the element, as the second
example shows: here, we 昀氀ush the content inside a
command that will apply the color red to all text,
and we insert a page break at the end of the element.
The third setup assumes that the element presen-
tation has an attribute title, which can be re-
trieved and typeset with the command \xmlatt and
the name of the attribute; here, we use this attribute
as the title of a ConTEXt section in our document,
then 昀氀ush its content inside this start/stop pair.
\startxmlsetups xml:framed

\xmlfunction {#1} {framed}
\stopxmlsetups

It is also possible to process the content of our
XML in Lua, as the code above shows. In this case,
we hand the content of the element framed over to
a Lua function xml.functions.framed, which we
de昀椀ne like this:
function xml.functions.framed (t)

if tex.modes ["print"] then
scale_factor = 0.5

else
scale_factor = 1

end

context.framed (
{ width = scale_factor *

tex.dimen ["textwidth"] },
function () lxml.flush (t) end )

end

Within this Lua function, we have access both
to the power of the Lua programming language and
to all ConTEXt commands, and this makes some
tasks somewhat easier. The example here is quite
basic to provide an idea of what can be done: 昀椀rst,
we de昀椀ne a numerical value scale_factor that de-
pends on the ConTEXt mode: if processing takes
place in mode print (this is the mode that pro-
duces the handout where slides are typeset with a
reduced width), this value is set to 0.5, in all other
modes it is set to 1. We then use this value in cal-
culating the width of our frame: we multiply it with
the dimension textwidth. The result will be that
this frame will be spread across the entire page in
other modes and across half of the page in mode
print. Within this frame, we then 昀氀ush the content
of our element. The last line of our code shows a
di昀케culty: some ConTEXt commands need to be 昀椀n-
ished before typesetting can begin; this is done with
the somewhat clunky function ... end structure
in this line. If you want to learn more about these



TUGboat, Volume 44 (2023), No. 2 189

Producing di昀昀erent forms of output from XML via ConTEXt

details, you can have a look at the manual ConTEXt
Lua documents, which is also part of the ConTEXt
distribution.

slides print manuscriptcardshandout

style.tex style.lua

lecture.xml

Figure 8: Schema of the work昀氀ow

This, then, is a short summary of the way in
which ConTEXt processes XML. Knowing these gen-
eral rules, we now understand the work昀氀ow that I
have created for my lecture; you 昀椀nd a schematic
representation in 昀椀gure 8: in order to compile the
xml 昀椀le lecture.xml, we need a ConTEXt style
昀椀le style.tex, which is connected with a Lua 昀椀le
style.lua, where Lua commands are de昀椀ned; both
昀椀les control the typesetting process. I will describe
some of the salient features that allow me to derive
di昀昀erent forms of output from the same XML 昀椀le.
<lecture language="en" style="BigNumber">

<presentation date="23_05_16">
<title>The <emph>Persae</emph></title>
<content>

<p>Text ... </p>
<slide> ... </slide>

</content>
</presentation>
<presentation date="23_05_23">

<title>The <emph>Supplices</emph></title>
<content>

<p>More Text ... </p>
<slide> ... </slide>

</content>
</presentation>
<presentation date="23_05_30">

<title>The <emph>Agamemnon</emph></title>
<content>

<p>And still more Text ... </p>
<slide> ... </slide>

</content>
</presentation>

</lecture>

We begin by taking a brief look at the main
structure of my lecture.xml 昀椀le, which is summa-
rized in the code sample above. The text for the
entire lecture course of one semester is contained in
this XML 昀椀le, which will grow to around 30,000 lines

over the course of the teaching term. The structure
is quite simple: the root element lecture consists of
a number of individual presentations; each one of
them has a an attribute date and subelements ti-
tle and content; this content consists of the text
(i.e., my lecture notes) and the slides that will be
shown on the screen.

When we compile this document, it is obvi-
ously e昀케cient to have all individual presentations in
one document: this way, it is easy to create cross-
references, a bibliography with consistent number-
ing, and to move content around. However, when we
want to compile the slides for an individual lecture,
we do not want all the slides for all presentations
included in the resulting PDF 昀椀le (which would be-
come huge in size because of included images, etc.),
but just the ones for the current lecture. This is
why every individual lecture has a date tag. We
will use this attribute to 昀椀lter individual lectures by
making use of a feature of ConTEXt that is called
“modes”. Modes provide a means for conditional
typesetting; they allow us to include or exclude parts
of our source into the typesetting process.
\doifmode {presentation} {
\doifmode {\xmlatt {#1} {date}} {

\setupTitle [title = {\xmltext {#1} {title}}]
\xmltext {#1} {content} \page

}
}

The code above shows how this works. We 昀椀rst
de昀椀ne a block that will only be processed when Con-
TEXt is in mode presentation; this is what the 昀椀rst
\doifmode line does. Inside this block, we nest a
second mode, which is set from the date attribute
of our presentation element: ConTEXt will exe-
cute the following code only when its mode is equal
to this date attribute. It will skip over all other
presentation elements and only typeset the one
that corresponds to its mode (i.e., its date) if and
only if it is in presentation mode; if it is in any
other mode (typesetting the manuscript or the bibli-
ography), it will process all presentation elements.

We pass these modes to ConTEXt when we call
it from the command line. So in our case, the call
would be context --environment=lecture-style
--mode=presentation,23_05_23, and ConTEXt will
process only the presentation element with the
date attribute of 23_05_23.
\startxmlsetups xml:slide

\startmode [presentation]
\xmlfunction {#1} {presentation_slide}

\stopmode
\startmode [cards]

\incrementcounter [slide_number]



190 TUGboat, Volume 44 (2023), No. 2

Thomas A. Schmitz

\midaligned {\color [red]
{[{\rawcounter [slide_number]}]}}

\stopmode
\startmode [combined]

\xmlfunction {#1} {combined_slide}
\stopxmlsetups

\stopxmlsetups

Here is another examples where the modes
mechanism allows conditional typesetting and 昀椀lter-
ing of content. For the element slide, we de昀椀ne
three di昀昀erent setups, dependent on the mode we are
using. When we are in mode presentation, Con-
TEXt will pass the entire content of this element on
to the Lua function presentation_slide, where we
take care of the di昀昀erent subelements, such as in-
cluding pictures, typesetting tables and text, etc.

However, when we are in mode cards and want
to produce our index cards, something else hap-
pens: ConTEXt will simply increase a special counter
slide_number for slides by 1 and typeset the result
on its own line; we have already seen the result in
昀椀gure 6. This way, every place where we need to ad-
vance our slides is clearly marked in our manuscript;
we will not run the risk of forgetting that a new slide
was supposed to come up.

When we are in combined mode, the element
content is passed to a Lua function combined_slide
that is de昀椀ned in our style.lua 昀椀le. We have seen
the general outlines of how such Lua functions work;
here we 昀椀nd another example of things that may be
easier to handle in Lua than in TEX.
local i = 1
local ctx = context

function xml.functions.combined_slide (t)
i = i + 1
local current = xml.attribute

(t, "../../", "tag", "")
local textwidth = tex.dimen.textwidth
ctx.page ()
ctx.framed ( { width=number.todimen(textwidth)

frame="off", align="middle",
height="10cm" }

function ()
ctx.externalfigure({ "presentations/"

.. current .. ".pdf"},
{ page=i, width="13cm" } )
end )

ctx.blank { "line" }
end

ConTEXt converts every XML element into a
Lua table, and we pass this table t as an ob-
ject to the Lua function combined_slide. We re-
trieve the date of the current presentation in the
variable current. Since we know that the ele-

ment presentation is “grandparent” of the ele-
ment slide, we have to move two levels up to 昀椀nd
this attribute; this is what the expression xml.at-
tribute (t, "../../", "tag", "") does. This
information will be used when we construct the
object of the ConTEXt command \externalfig-
ure: the slides for every single presentation are
stored as PDF 昀椀les in a subdirectory presenta-
tions/, and they are named with the value of their
date attribute, so a presentation shown on July 15
would be named 23_07_15.pdf. When we concate-
nate the strings and variables "presentations/"
.. current .. ".pdf" in Lua, we make sure that
ConTEXt will use this 昀椀le as an external 昀椀gure. Fi-
nally, we increase the counter i each time this macro
is called; this counter is used to retrieve the single
pages of our PDF 昀椀le, so they will be shown one by
one, in ascending order. Before the picture of the
slide, ConTEXt inserts a page break. Again, we have
seen the result of this code above in 昀椀gure 7: a small
image of every slide will be on top of the page or
pages containing the notes to the slide.

This, then, is the general mechanism to produce
di昀昀erent forms of output from a single XML 昀椀le: we
use ConTEXt modes to apply di昀昀erent setups to dif-
ferent XML elements; depending on which mode we
compile with, the slides from a certain presentation
or the text for the notes or the bibliography will be
typeset; instead of typesetting the slides, we may in-
crease a counter or include them as images. I hope
that the general principle is clear now. I want to
conclude this brief overview with two special cases
that have been useful over years.

As I have shown, XML is a versatile and self-
testing input format: if the XML code is valid, it
should compile in ConTEXt; you do not have to
worry about closing groups and nesting brackets.
Nevertheless, it necessitates some work: for every de-
tail you want to typeset in your manuscript or on
your slides, you have to come up with XML code
to represent it and with a setup to translate it into
something ConTEXt can process.

This is worthwhile for code that you use over
and over again, but it makes it more di昀케cult to write
small adjustments. And certain tasks are much eas-
ier to code in TEX rather than in XML. One example
is MetaPost graphics. In theory, it would be possible
to write XML code that would then be translated to
MetaPost code, typeset by ConTEXt and displayed
on your slides. But this would be exceedingly painful
and demand lots of work. It would be preferable
to have some way of simply writing MetaPost code
(or even arbitrary TEX code) and have it executed
when ConTEXt processes our XML 昀椀le. ConTEXt has



TUGboat, Volume 44 (2023), No. 2 191

Producing di昀昀erent forms of output from XML via ConTEXt

a macro \processTEXbuffer that does just this: it
executes included TEX code and typesets the result.
We use this mechanism by de昀椀ning an XML element
processbuffer and writing a setup for it; the code
below shows how to do this.
\startxmlsetups xml:processbuffer

\processTEXbuffer [\xmlflush {#1}]
\stopxmlsetups

\doiffileelse {presentation_buffers.tex}
{\input presentation_buffers}
{\relax}

Moreover, I have found it more e昀케cient to col-
lect all the di昀昀erent TEX bu昀昀ers for my lectures in
one TEX 昀椀le presentation_buffers.tex. Within
this 昀椀le, I have the TEX code for my various bu昀昀ers,
e.g., the MetaPost code that produces 昀椀gure 8 (I in-
clude a short extract only).
\startbuffer [workflow]
\startmode [presentation,combined]
\setupMPvariables [workflow] [a=0.5in, b=0.2in]
\stopmode
\startmode [print]
\setupMPvariables [workflow] [a=0.25in, b=0.1in]
\stopmode

\startuniqueMPgraphic{workflow}
numeric a, b ; a = \MPvar {a} ; b = \MPvar {b} ;
path p[] , q[] ;

p[1] := fullsquare xyscaled (a,b) ;
fill p[1] withcolor \MPcolor {lightgray} ;
label (textext ("slides"), center p[1]) ;
\stopuniqueMPgraphic

\uniqueMPgraphic {workflow}
\stopbuffer

This way, our XML 昀椀le can simply call the
bu昀昀ers in this 昀椀le inside the element processbuffer:
<slide>

<slidecontent>
<processbuffer>workflow</processbuffer>

</slidecontent>
</slide>

Finally, typing these long ConTEXt calls with
the proper --environment and the proper --mode
on the command line was pretty cumbersome, so I
delegated this part to a Make昀椀le, where I specify
the date of the presentation I want to typeset in a
variable day; a short extract of this Make昀椀le would
look like this:
combined: lecture.xml

context --environment=style \
--mode=presentation,$(day) lecture.xml

cp lecture.pdf ./presentations/$(day).pdf
#
context --environment=style \

--mode=combined,$(day) lecture.xml
When I call this Make昀椀le with the call make

day=23_05_17 combined, ConTEXt will 昀椀rst com-
pile in mode presentation, then copy the current
presentation into the proper directory under the cor-
rect name, then run once again in mode combined
and include the single slides into the lecture notes.
This is fairly simple, but it saves a lot of typing over
the course of a semester.

I hope this paper has raised some interest and
shown the advantages of producing all our output
for a lecture from one single XML 昀椀le.⋄ Thomas A. Schmitz

Institut für Klassische und
Romanische Philologie

Universität Bonn
Rabinstraße 8
53111 Bonn
Germany
thomas dot schmitz (at) uni-bonn

dot de



192 TUGboat, Volume 44 (2023), No. 2

LATEX News
Issue 37, June 2023 (LATEX release 2023-06-01)

Contents

New functionality offered as part of the

“LATEX Tagged PDF” project 1

New or improved commands 1

Extending hooks to take arguments . . . . . . . 1

Generic cmd hooks with arguments . . . . 2

Providing copy and show functions for
environments . . . . . . . . . . . . . . . . 2

\IfFileAtLeastTF . . . . . . . . . . . . . . . . 2

\DeclareLowercaseMapping,
\DeclareTitlecaseMapping and
\DeclareUppercaseMapping . . . . . . . 2

\BCPdata . . . . . . . . . . . . . . . . . . . . . 3

Improve \samepage . . . . . . . . . . . . . . . 3

Groups in \MakeUppercase . . . . . . . . . . . 3

Extension of the \label command . . . . . . . 3

Code improvements 3

Performance in checking file existence . . . . . 3

doc: Handle \␣ correctly in the index . . . . . 3

doc: Support the upquote package . . . . . . . 3

Default definition for \do . . . . . . . . . . . . 3

New key for filecontents . . . . . . . . . . . 3

A further hook for shipping out pages . . . . . 4

Displaying release information in the .log . . . 4

Bug fixes 4

Incompatibility between doc and unicode-math 4

A fix for \hspace . . . . . . . . . . . . . . . . . 4

Ensure that \cs is defined in ltxdoc . . . . . . . 4

Improve spacing at top of minipages . . . . . 4

A fix for \NewCommandCopy and \ShowCommand 4

Corrections for switching math version . . . . . 4

Allow par as a filename . . . . . . . . . . . . . 4

Correct setting of \endlinechar in +v

arguments . . . . . . . . . . . . . . . . . . 4

Correct handling of hooks with only ‘next’ code 4

Ignoring space after $$ . . . . . . . . . . . . . . 4

Documentation improvements 5

Updates to the guides . . . . . . . . . . . . . . 5

Displaying the exact release dates for LATEX . . 5

Fresh from the press: “The LATEX Companion,
third edition” is now in print . . . . . . . 5

Changes to packages in the tools category 5

multicol: Better support for CJK languages . . 5

multicol: Fix handling of nested environments . 5

New functionality offered as part of the “LATEX

Tagged PDF” project

We have now enabled new automatic tagging function-
ality for additional LATEX elements, among them most
display environments, standard sectioning commands,
content, figure and table listings, floats and graphics and
bibliographies. This can be activated through

\DocumentMetadata{testphase=phase-III}

At this point in time tagging support is only available for
a restricted set of documents, i.e., those that use one of
the basic document classes (article, report, and book)
and only use commands and environments described in
Lamport’s LATEX manual.

Using other document classes or adding additional
packages in the preamble may work (or may partially
work) but at this stage it is not very likely, at least not
for packages or classes that excessively alter internals of
LATEX.

Also note that there are still several environments and
commands described in the LATEX manual that do not
have tagging support yet, notably tabulars, tabbing, the
various math environment and a few others. They will get
this support as part of phase-III, but some of them will
be delayed until after the June release.

A prototype for math tagging (including support for
the amsmath environments) is already available, but it is
mainly intended for experimentation and feedback and the
resulting tagging is by no means the way we envision it
to be eventually. If you would like to try it out use the
following line:

\DocumentMetadata{testphase={phase-III,math}}

Note that the math tagging code at this point in time will
clash with packages that redefine the $ character (which
then may lead to strange errors) and that packages that
use math mode for non-mathematical constructs may
result in surprising output as far as tagging is concerned.
Feedback on which packages fail with the code in one or
another way would be appreciated.

The latex-lab bundle contains various (still untagged)
documentation files about the new code that can be
accessed with texdoc -l latex-lab.

Feedback is welcome! Please use https://github.com/

latex3/latex2e/discussions/1010.

New or improved commands

Extending hooks to take arguments

Hooks have always been containers for code whose outcome
was entirely dependent on the contents of the hook alone.
If any type of contextual information had to be passed
to the hook, it had to be done by setting some variable
before the hook so that the code in the hook could use

doi.org/10.47397/tb/44-2/tb137ltnews37

LATEX News #37



TUGboat, Volume 44 (2023), No. 2 193

that. But this is somewhat hard to keep track of, clumsy
to implement, and it required the programmer to have
some kind of “hook before the hook” to do that setup.

To make things a bit easier, lthooks was enhanced
to support hooks with arguments. Hooks can now be
declared and used with arguments, then the code added
to these hooks can reference the hook’s arguments using
#1, #2, etc., so now hooks can behave more like macros
than like token lists (using expl3 terminology). Regular
argument-less hooks continue to work exactly like they did
before: this extension is completely compatible with older
documents and packages.

To declare a hook with arguments, use

\NewHookWithArguments {hook} {num-args}

then, similarly, to use the code in the hook, supposing a
hook declared with 2 arguments, write

\UseHookWithArguments {hook} {2} {arg1 } {arg2 }

Or, if you want to add some code to a hook that takes
arguments, write

\AddToHookWithArguments {hook} [label] {code}

exactly like you would for regular hooks, except that the
⟨code⟩ can use the arguments by referencing #1, #2, etc. In
this case, if you want to add an actual parameter token (#)
to the ⟨code⟩, you have to double it, as usual.

Additionally, if you want to add “regular” code to a
hook with arguments, you can still use \AddToHook — in
that case # tokens are not doubled. This means that a
package author can decide to add arguments to an existing
hook without worrying about compatibility: \AddToHook

will do the right thing and will not mistakenly reference
the newly added arguments.

The commands \NewReversedHookWithArguments,
\NewMirroredHookPairWithArguments,
\AddToHookNextWithArguments,
\UseOneTimeHookWithArguments, and the expl3 counter-
parts of the commands discussed in this section were also
added. The complete documentation can be found in the
lthooks documentation [2].

Generic cmd hooks with arguments: Along with the
possibility of passing arguments to a regular hook as
discussed above, generic cmd hooks can now access the
arguments of the command they are patched into, using
the interface described in the previous section.

For example, if you were to add some code to the \title

command using hooks, you could access the actual title
given in the argument. Thus, to write the title of the
document in the terminal you could use:

\AddToHookWithArguments{cmd/title/before}

{\typeout{Document title: #1}}

As with regular hooks, code added to a cmd hook using
\AddToHook will not be able to access the command’s
arguments. This means that, as with regular hooks, this
change is completely backwards compatible, so previous
usages of cmd hooks will work exactly as they did before.

Providing copy and show functions for environments

To copy a command definition we introduced
\NewCommandCopy in 2022. This even allows you to
copy commands that consist of several internal compo-
nents, such as robust commands or those with a complex
signature. To do the same with environments, e.g., to
define the environment myitemize to be equivalent to
itemize, you can now write

\NewEnvironmentCopy{myitemize}{itemize}

There are also \Renew... and \Declare..., which may
be useful depending on the circumstances.

In addition, we offer a \ShowEnvironment com-
mand, which displays the \begin and \end code
of the environment passed as an argument. E.g.,
\ShowEnvironment{center} results in the following
output:

> \begin{center}=environment:

> ->\trivlist \centering \item \relax .

<recently read> }

l. ...\ShowEnvironment{center}

> \end{center}:

> ->\endtrivlist .

<recently read> }

l. ...\ShowEnvironment{center}

(github issue 963)

\IfFileAtLeastTF

The 2020-10-01 LATEX release introduced the CamelCase
tests \IfClassAtLeastTF and \IfPackageAtLeastTF

for checking class and package dates. We have now
added \IfFileAtLeastTF to allow the same to happen
for generic files which contain a \ProvidesFile line.

(github issue 1015)

\DeclareLowercaseMapping,

\DeclareTitlecaseMapping and

\DeclareUppercaseMapping

The move from a case-changing approach using \lccode

and \uccode data to one where information is stored by
a kernel-managed structure left a gap in the ability of the
user to tune the case changing outcomes. This has now
been addressed by the addition of three commands

• \DeclareLowercaseMapping

• \DeclareTitlecaseMapping

• \DeclareUppercaseMapping

which can be used to customise the outcome for codepoints.
This can be applied generally or to a specific locale (see
also the next section). A small number of pre-defined
customisations have been set up in the kernel where the
outcomes for pdfTEX should be different for those from
Unicode engines. For example

\DeclareUppercaseMapping{"01F0}{\v{J}}

allows J̌ to be produced in 8-bit engines: without this
customisation, an error would occur as there is no pre-
composed J̌ in Unicode. More detail is given in usrguide.

(github issue 1033)

LATEX News #37



194 TUGboat, Volume 44 (2023), No. 2

\BCPdata

Improvements in the Unicode handling for case changing
have highlighted that the kernel has not to-date been
locale-aware. The packages babel and polyglossia provide
comprehensive locale support, but did not have an agreed
unified interface to pass that information back to other
code. Following discussion with the maintainers of those
two bundles, the kernel now defines \BCPdata as a stub (so
it is always defined), and babel and polyglossia will redefine
it to provide the locale data. An agreed set of keywords
mean that \BCPdata can be queried in a structured way
by both the kernel and any other “consumer” packages.

(github issue 1035)

Improve \samepage

The \samepage declaration sets various parameters
to 10000 to prevent undesired page breaks. The
\predisplaypenalty parameter has already by default
a value of 10000, and to save space in the past it was
therefore not explicitly set. However, there are a few
classes that change the parameter and as result the user
might experience a page break in front of a display formula
within the scope of \samepage when using such classes.
This has now been corrected and \predisplaypenalty is
also explicitly set to 10000. (github issue 1022)

Groups in \MakeUppercase

Prior to 2022, \MakeUppercase and \MakeLowercase used
a brace group around their argument so providing a scope
for any declarations within the argument. This grouping
has been restored (also for \MakeTitlecase), although the
underlying L3 text case commands do not use grouping.

(github issue 1021)

Extension of the \label command

Previously, in standard LATEX, the \label command wrote
a \newlabel declaration into the .aux file and stored
two values in the second argument of this \newlabel

command: \@currentlabel, which normally contains the
state of the current counter and \thepage for the current
page number.

The packages hyperref and nameref then patched the
\label command to store five values instead. In addition
to the above they saved \@currentlabelname, which
normally contains the current title text and can be
retrieved with \nameref, and \@currentHref, which is the
name of the destination needed to create an active link.
The fifth argument was only used if external references
were loaded with the xr-hyper package.

Starting with this release, the number of values
stored in \newlabel has been unified. \label now writes a
\newlabel command that always contains five values in the
second argument (each in a brace group): \@currentlabel,
\thepage, \@currentlabelname, \@currentHref, and
\@kernel@reserved@label@data (which is reserved for
the kernel).

Additionally, a hook with the name label has been
added. It takes one argument: the label string. Code
added to the hook can refer to this argument with #1.
The hook is executed directly before the \label command
writes to the .aux file but after the \@bsphack command

has done its spacing magic, and it is located inside a group;
thus, its code only affects the write operation.

Code improvements

Performance in checking file existence

The addition of hooks, etc., to file operations had a side
effect of making multiple checks that the file existed.
In larger documents using many files, these file system
operations caused non-trivial performance impact. We
now cache the existence of files, such that these repeated
filesystem calls are avoided.

doc: Handle \␣ correctly in the index

Due to some problems in the code it wasn’t possible to pre-
vent \␣ from showing up in the index—\DoNotIndex{\ },
etc. had no effect. This has now been corrected.

(github issue 943)

doc: Support the upquote package

The default quote and backquote characters in typewriter
fonts are typographical quotes, e.g., the input

\verb/‘prog ’my input’‘/

is rendered as ‘prog ’my input’‘ and not as
`prog 'my input'` as preferred by many program-
mers.

This can be adjusted, for example, with the upquote

package, which results in the second output. However, for
historical reasons doc had its own definition of \verb and
verbatim and as a consequence the two packages did not
cooperate. This has now been fixed and loading upquote

together with doc has the desired effect. (github issue 953)

Default definition for \do

The command \do with its nice public name is in reality
an internal command inherited from plain TEX for list
processing. However, it only got a definition when
\begin{document} was executed, with a result that a user
definition in the preamble was unconditionally overwritten
at this point. To properly alert the user that this command
is not freely available we now make a definition in the
format, so that \newcommand and friends produce a proper
error message instead of allowing a definition that doesn’t
last. (github issue 975)

New key for filecontents

The filecontents environment warns on the terminal
if a file gets overwritten even if that is intentional, e.g.,
when you write a temporary file over and over again.
To make the warning less noisy in this case we added a
new nowarn key that redirects the overwriting warning
to the transcript file. We think that some record of the
action is still required to help with debugging, thus it is
not completely silenced. The warning that nothing gets
written, because the file already exists (and the force key
was not used), is not altered and still shows up on the
terminal. (github issue 958)

LATEX News #37



TUGboat, Volume 44 (2023), No. 2 195

A further hook for shipping out pages

Since October 2020 the shipout process offers a number of
hooks to adjust what is happening before, during, and after
the \shipout. For example, with the shipout/before

hook, packages can reset code they have altered (e.g.,
\catcodes during verbatim-like processing) and with
shipout/background and shipout/foreground material
can be added to the pages. Details are given in [1].

However, still missing was a hook that allows a package
writer to manipulate the completed page (with foreground
and background attached) just before the actual shipout
happens. For this we now provide the additional hook
shipout. One use case (sometimes needed in print
production) is to mirror the whole page via \reflectbox

including all the extra data that may have been added into
the fore- or background. (github issue 920)

Displaying release information in the .log

LATEX displays its release information at the very beginning
of the LATEX run on the terminal, and also writes it to the
transcript file if that is already opened at this point. While
this is normally true, it is not the case if the LATEX run
was started passing additional TEX code on the command
line, e.g.,

pdflatex '\PassOptionsToClass{11pt}{article}

\input{myarticle}'

In this case the release information is displayed when
\PassOptionsToClass is processed but the transcript file
is only opened when the output file name is known, i.e.,
after \input has been seen, and as a result the release
information is only shown on the terminal.

To account for this scenario, we now repeat the release
information also at the very end of the transcript file
where we can be sure that it is open and ready to receive
material. (github issue 944)

Bug fixes

Incompatibility between doc and unicode-math

The unicode-math package alters the catcode of | but does
not adjust its value for use in doc, with the result that “or”
modules, i.e., ⟨A|B⟩ are displayed in a strange way. This is
now fixed with some firstaid code that will eventually be
moved into unicode-math. (github issue 820)

A fix for \hspace

The change to \hspace, done in 2020 to make it calc-aware,
had the unfortunate side effect that starting a paragraph
with \hspace would result in the execution of \everypar

inside a group (i.e., any local changes would immediately
be revoked, breaking, for example, wrapfig in that special
situation). This got fixed with the 2022-11 PL1 hotfix, so
was already corrected in the previous release, but is only
now documented in the newsletter. (github issue 967)

Ensure that \cs is defined in ltxdoc

The class ltxdoc defined the command \cs to typeset a
command name with a backslash in front. This definition
was moved to the doc package itself. This meant that
it was suddenly missing when reverting to the old doc

package implementation via the class option doc2. This
has now been corrected. (github issue 981)

Improve spacing at top of minipages

A list and several other document elements add some
vertical space in front of them. However this should not
happen at the beginning of a box (such as a minipage)
and normally it doesn’t, because TEX automatically drops
such space at the start of a vertical list. However, if there
is some invisible material, such as a \color command, a
hyperref anchor, a \write or other such items, then the list
is no longer empty and TEX no longer drops the vertical
space.

With the new paragraph handling introduced in 2021
it is now finally possible to detect and avoid this problem
and apply appropriate counter measures so that from now
on the spacing will always be correct. (github issue 989)

A fix for \NewCommandCopy and \ShowCommand

When copying and showing definitions of (non-expandable)
document commands (a.k.a. commands defined by
\NewDocumentCommand and friends) containing empty or
only m-type arguments, these commands were wrongly
recognized as expandable ones. This is fixed in the present
LATEX release. (github issue 1009)

Corrections for switching math version

Some internal code improvements improve support for
switching math version when nested within an outer math
expression. This will improve \boldsymbol and \bm and
similar commands. (github issue 1028)

Allow par as a filename

\input{par} or \includegraphics{par} could give
spurious errors. This has been fixed by making an internal
command \long. (github issue 942)

Correct setting of \endlinechar in +v arguments

In the particular case of a document command with
a +v-type argument used inside \ExplSyntaxOn/Off,
newlines would be misinterpreted as spaces because
the value of \endlinechar was set too late. This has
been fixed, and now newlines are correctly translated to
“the character ^^M”. (github issue 876)

Correct handling of hooks with only ‘next’ code

When \AddToHookNext was used on a not-yet-declared
hook, that hook would be incorrectly identified as empty
by \ShowHook. Also, if that hook was later declared,
that ‘next’ code would not be executed. This has been
fixed by correctly initializing the hook structure when
\AddToHookNext is used. (github issue 1052)

Ignoring space after $$

Space is normally ignored after a closing $$, but internal
LATEX font handling code could interfere if \eqno was
used. \eqno and \leqno have been redefined to add
\ignorespaces after the math group. (github issue 1059)

LATEX News #37



196 TUGboat, Volume 44 (2023), No. 2

Documentation improvements

Updates to the guides

When LATEX 2ε was released, the team provided docu-
mentation for both document authors and package/class
developers in the two files usrguide and clsguide. Over
time, the team have augmented these documents as new
methods have been added to the kernel. However, they
retained their structure as assuming familiarity with
LATEX 2.09. This meant that for new users, there was
material which is no longer relevant, and less clarity than
desirable regarding the approaches that are recommended
today.

The two files have now been (partially) re-written,
with the versions available previously now frozen as
usrguide-historic and clsguide-historic. More
material has been carried forward in the class/package
guide than in the user guide, but both are worth a re-read
by experienced LATEX users.

Displaying the exact release dates for LATEX

In some situations it is necessary to find out the
exact release dates for older versions of the LATEX
format, for example, when you need to use differ-
ent code in a package depending on the availability
of a certain feature and you therefore want to use
\IfFormatAtLeastTF{⟨date⟩} or the rather horrible con-
struction \@ifl@t@r\fmtversion{⟨date⟩}, if you want to
cater for formats that are older than 2020.

Or you know that your package is definitely not going
to work with a format before a certain ⟨date⟩, in which
case you could use \NeedsTeXFormat{LaTeX2e}[⟨date⟩]
to ensure that users are alerted if their format is too old.

The big problem is knowing the exact ⟨date⟩ to put into
such commands; in the past, that was not that easy to
find. You could have looked in the file changes.txt, but
that is hidden somewhere in your installation and if you
try texdoc -l changes.txt you get more than thirty
results and the right file is by no means the first.

Yukai Chou (@muzimuzhi) kindly provided a patch for
this, so that we now have the exact dates for each LATEX
format listed in an easy to remember place: in ltnews.pdf

and that file conveniently also contains all major features
and changes to LATEX over the years—one of which is most
likely the reason you need the ⟨date⟩ in the first place.

The date is now given in parentheses in the newsletter
title, thus this newsletter tells you that on 2023-06-01 the
command \NewEnvironmentCopy, a new shipout hook,
etc. was made available. And looking into ltnews.pdf

you can now easily find out that the LATEX3 programming
layer was added on 2020-02-02 (because the date was so
nice) and not on the first of the month. (github issue 982)

Fresh from the press: “The LATEX Companion, third edition”

is now in print

The third edition of The LATEX Companion is now
available. This is the result of five years of careful work
and we hope that it will provide our readers with all the
information they need to successfully navigate the LATEX
ecosystem and efficiently produce beautiful documents.

Since the publication of the last edition (2004), a lot has
happened in the LATEX world and thus a complete rewrite

was necessary. All chapters have been thoroughly revised,
and in many cases significantly extended, to describe new
important functionality and features. More than 5,000
add-on packages have been analyzed in detail, out of which
roughly 10% have been chosen for inclusion in The LATEX

Companion. All important aspects of these packages are
described to provide the user once again with a satisfying
one-stop–shop experience for the decade to come.1

To cover what we thought worth describing today, the
book nearly doubled in size. The print edition is therefore
produced as a two-volume set and sold as a bundle. Both
volumes come as hardcover with ribbons to easily mark
pages in the book.

To give you an idea of what is covered in the third
edition you can find some excerpts at

https://www.latex-project.org/news/2023/

03/17/TLC3

The edition is also available as an eBook (Parts I and II
combined) consisting of PDF and ePub format, without
DRM. Finally, the publisher offers the combination of the
printed books and the digital versions at a very attractive
price not available anywhere else.

Changes to packages in the tools category

multicol: Better support for CJK languages

The default minimum depth of each column in a multicols

corresponds to the depth of a “p” in the current font.
This helps to get some uniformity if rules are used
between the columns and makes sense for Latin-based
languages. Until now it was hard-wired, but for CJK
(Chinese/Japanese/Korean) languages it is better to
use a zero depth, because there all characters have the
same height and depth. And even with Latin-based
languages one might want to use the depth of a \strut

or that of a parenthesis. So we now offer a way to adjust
this while maintaining backward compatibility: redefine
\multicolmindepthstring to hold whatever you want
to get measured for its depth (the width is not relevant).

(github issue 698)

multicol: Fix handling of nested environments

If multicols environments have been nested into
each other (the inner one boxed) it could fail if the boxed
environment appeared near a page break. The problem was
that the output routine was called while the \hsize was
still altered to fit the column width of the inner multicols

— thereby messing up the placement of columns of the
page. This has now been fixed. (github issue 1002)

References

[1] Frank Mittelbach, LATEX Project Team:
The ltshipout documentation.
Run texdoc ltshipout-doc to view.

[2] Frank Mittelbach, Phelype Oleinik,
LATEX Project Team: LATEX’s hook management.
Run texdoc lthooks-doc to view.

1Editor’s note: A review of The LATEX Companion,

Third Edition appears in this issue of TUGboat, pp. 322–324.

LATEX News #37



TUGboat, Volume 44 (2023), No. 2 197

Beamer news: 2023

samcarter, Joseph Wright

Abstract

The beamer class is used by many users all around
the world to create slides for their presentations.
This article will highlight some changes and new
features, added over the last few years, which might
be interesting to know for beamer users.

1 Introduction

The beamer class is the most widely used class to
produce slides for presentations in LATEX. It was
first created by Till Tantau in 2003 with a lot of—
for that time—revolutionary features. Since then
the class has steadily evolved and gained even more
features, while at the same time accumulating a very
large user base. Some of these users have been using
beamer for many years.

Thus, at the current point in beamer’s life cycle,
we maintainers focus our efforts on stability. We fix
bugs and generally keep things from crumbling in
the event of changes in the LATEX kernel or one of
the other packages that beamer depends on. Never-
theless, a couple of smaller changes have been made
over the last few years which aim to improve the
usability of the class for its users. In this article we
would like to highlight some of the changes which we
think are useful for beamer users to know about.

The section headings in the following will all

include a version number at the right hand side. This

is the version in which the respective change was

introduced to the beamer class.

2 Transparent shadows (v3.60/64/70)

The first change is mostly cosmetic: beamer now
has transparent shadows for blocks, headlines, etc.
Previously, the shadow effect was created by adding
a colour gradient from dark to the background colour
of the frame (normally white). On frames with a
background image, this resulted in strange looking
halos, as can be seen in the top panel of Figure 1.

The first step to fixing this was a pull request
by Andrey Paramonov for beamer v3.51. While this
worked great for most engines, it caused some prob-
lems for DVI-based compilation chains and thus was
ultimately reverted in the next beamer version. With
the help of Ulrike Fischer, transparent shadows were
finally resuscitated in v3.60 and, after an additional
10 versions of tracking down non-transparent shad-
ows of various elements, all shadows in beamer v3.70
should now finally be transparent.

Figure 1: Comparison of non-transparent (top image)
and transparent shadows (bottom image)

3 Aspect ratios (v3.65)

Surprisingly many different aspect ratios are used
around the world. In the past, beamer only offered
a limited set of available aspect ratios. Starting
with beamer v3.65, beamer can calculate new aspect
ratios on the fly. In addition to the existing options,
the user can pass a two to four digit number to the
aspectratio class option and beamer will calculate
the frame geometry accordingly.

For two and four digit numbers, the number is
split in the middle to obtain the width-to-height ratio
of the frame; for three digit numbers, a landscape
format is assumed and the number is split after the
second digit:

• 2 digits: aspectratio=23 as 2:3

• 3 digits: aspectratio=137 as 13:7
(always landscape orientation)

• 4 digits: aspectratio=4310 as 43:10

Internally, beamer uses a fixed frame height of
9.6 cm for all newly-calculated aspect ratios and cal-
culates the frame width accordingly. The idea behind
having a constant height and adjusting the width
is that many presentations use rather short lines
which typically don’t fill the whole width of the page.
Changing the width of the frame potentially allows

doi.org/10.47397/tb/44-2/tb137samcarter-beamernews23

Beamer news: 2023

https://doi.org/10.47397/tb/44-2/tb137samcarter-beamernews23


198 TUGboat, Volume 44 (2023), No. 2

the user to switch between aspect ratios without
disturbing the layout too much.

4 New onlytextwidth class option (v3.65)

The beamer columns environment is very convenient
to place content side-by-side on a frame. By default,
however, the result will most likely have different mar-
gins than the surrounding text. Internally, beamer
resets the left and right margins to zero within the
columns environment and then distributes all the
remaining space equally before, between, and after
the columns. Unless one carefully calculates the col-
umn widths to account for this effect, the resulting
margins will thus be different from the surrounding
text (see Figure 2).

Default columns behaviour:

With the onlytextwidth option:

Figure 2: Visualisation of the effect of the
onlytextwidth option on the columns environment.

One can change this locally by using one of the
options onlytextwidth or totalwidth=\textwidth
for the columns environment. Since beamer v3.65
it is possible to use the new onlytextwidth class
option to change this behaviour for the whole pre-
sentation.

5 The new s frame option (v3.65)

Traditionally, beamer offered the t, c and b frame
options to influence the vertical position of the frame
content.

Erich Schubert contributed the new stretchable
frame option s. In contrast to the existing options,
the s frame option does not add any vertical fill
at all to the frame. The user has to manually add
stretchable material to the frame. This is a bit of
extra work, but it allows spreading the content over
the whole frame, from top to bottom.

Here’s a minimal example of how the new frame
option can be used:

\begin{frame}[s]

Text at top

\vfill

Text at bottom

\end{frame}

6 Modular title page (v3.70)

Many users need to make small adjustments to the
title page of their presentation, for example to add

the name of their supervisor, the members of a thesis
committee, or changing the order in which some of
the information is displayed.

Such small changes often resulted in either re-
defining the whole title page template or tempted
the user to resort to dirty hacks.

In version 3.70 of beamer the default title page
template is no longer a big monolithic code block,
but now uses several smaller templates:

• title

• author

• institute

• date

• titlegraphic

These templates can be adjusted individually without
having to redefine the whole title page.

For example, adding the name of a supervisor
below the author name now amounts to simply:

\addtobeamertemplate{author}

{}{Supervisor: Name}

7 page number in head/foot template
(v3.50)

A frequently asked question about beamer is how to
change the format of the frame numbers in the foot
line. The solution used to be a redefinition of the
whole footline template.

In the same spirit as making the title page less
monolithic, a new page number in head/foot tem-
plate was introduced. Now users can change the
appearance of the frame numbers with

\setbeamertemplate{page number in head/foot}

[totalframenumber]

The predefined options for this template are

• default: the template is empty by default.

• framenumber: shows the current frame number.

• totalframenumber: shows the current frame
number, as well as the total number of frames.

• appendixframenumber: similar to the previ-
ous, but with separate numbering in the appen-
dix. This option was inspired by the package
appendixnumberbeamer by Jérôme Lelong.1

• pagenumber: shows the current page number.
The page number can differ from the frame num-
ber if overlays are used in the presentation.

• totalpagenumber: similar to the pagenumber

option, but also shows the total number of pages.

1 ctan.org/pkg/appendixnumberbeamer

samcarter, Joseph Wright

https://ctan.org/pkg/appendixnumberbeamer


TUGboat, Volume 44 (2023), No. 2 199

Title

Author

April 15, 2023

Frametitle

Content

Author Title

Figure 3: Slides (left) and the corresponding lined
note pages (right)

8 Lined note page template (v3.64)

Inspired by the handoutWithNotes package,2 beamer
now has a note page template to add lined note
pages to presentations. It can be used via:

\setbeamertemplate{note page}[lined]

The resulting note pages can be seen in Figure 3.
The user can also adjust the number of lines on

the note pages, e.g. with

\setbeamertemplate{note page}[lined][5]

they will get five lines on the note pages.

9 lastsection option for ToC (v3.63)

Beamer already had the firstsection option for
the table of contents. It allowed having unnumbered
sections at the start of the table of contents, which
can be useful e.g. for example for an unnumbered
introduction.

To allow for unnumbered sections at the end
of the table of contents, beamer now also has a
lastsection option. This option specifies the num-
ber of the last numbered section (counted from the
first numbered section).

2 ctan.org/pkg/handoutwithnotes

10 New user facing macros (v3.65/70)

Sometimes users might want to know the current
aspect ratio of their presentation; for instance, maybe
they want to use different background images for the
title page depending on the paper format. They
can now use the new \insertaspectratio macro
to access the current aspect ratio.

For users of the sidebar theme, two new pub-
lic macros are available, \beamersidebarwidth and
\beamerheadheight. They provide a way for users
to access the value of lengths which were previously
only available internally. The new macros are use-
ful if users would like to add logos, etc., to their
sidebar and scale them accordingly, or to correct for
the asymmetric margins on plain frames with the
sidebar theme.

11 Calculation of frame geometry (v3.70)

There was also a behind-the-scenes change to how
beamer calculates the frame geometry (e.g. the space
necessary for the head- and footlines). Previously,
the frame geometry was calculated only once, at
the start of the presentation. This made it diffi-
cult to change between different head- and footlines
throughout the presentation. If a user needed a taller
headline on their section pages, they had to be very
careful to compensate for the additional space or the
footline might have been lost.

Now beamer calculates the frame geometry at
the start of every frame. This makes the compila-
tion a tiny bit slower, but with much more powerful
computers now compared to when beamer was first
released in 2003, this change brings new opportuni-
ties for creating beamer themes.

12 Summary

The changes presented in this proceeding were cherry
picked examples which might be particularly useful
for users to know about. Beyond these, many more
changes have been made to beamer. A full list of
changes is available from the beamer change log3 or
from the CTAN announcements for each new ver-
sion.4

⋄ samcarter

⋄ Joseph Wright
Northampton, United Kingdom
joseph dot wright (at)

morningstar2.co.uk

3 github.com/josephwright/beamer/blob/main/

CHANGELOG.md
4 ctan.org/ctan-ann/pkg/beamer

Beamer news: 2023

https://ctan.org/pkg/handoutwithnotes
https://github.com/josephwright/beamer/blob/main/CHANGELOG.md
https://github.com/josephwright/beamer/blob/main/CHANGELOG.md
https://ctan.org/ctan-ann/pkg/beamer


200 TUGboat, Volume 44 (2023), No. 2

Updating the nostarch class

Boris Veytsman

Abstract

No Starch Press’s house style has interesting typo-
graphic features. Their implementation posed some
TEXnical challenges described in this paper.

1 Introduction

No Starch Press was founded in 1994 by a charismatic
publisher, Bill Pollock, who proudly displays on the
company’s web page a personal story of being hired—
and fired—by the major players in the business until
he established his own (see nostarch.com/about).
No Starch Press positions its products as the finest in

geek entertainment and boasts such titles as Python
Crash Course, Python for Kids, How Linux Works,

and Hacking: The Art of Exploitation, with topics
spanning security, hacking, LEGO, and series like
The Manga Guide, covering Biochemistry, Calculus,
Cryptography, etc., up to the Universe.

It is not surprising that this publisher has strong
opinions about the design of their books. Indeed,
No Starch Press books have a distinct house style,
sometimes rather unusual for technical literature. It
was an interesting challenge to implement them in
LATEX. I started this task in 2008 with the first release
of the nostarch class. Since then the publisher’s
team made many ad hoc changes to the original
class, suitable for the tasks at hand. Some of these
changes assumed manual adjustments of the input,
which was error-prone and time consuming. The
advent of Overleaf increased the number of authors
that used LATEX for submission, which made these
manual adjustments unviable. Thus I was contacted
by the publisher with the request to update the class
and add new features. In this paper I describe several
typographical challenges presented by the class and
the ways I approached them.

2 URL breaking

Since the advent of the Internet, URLs have been a
nemesis of compositors. A long string of text with
no obvious hyphenation points presents an obvious
problem for paragraph setting.

The package url [1] solves this problem by al-
lowing breaking of URLs. It is a highly custom-
izable package, used internally by the ubiquitous
hyperref [4], and is the de facto standard of URL

typesetting in the LATEX world.
Still, even with this package certain problems

remain. For example, how do we split a URL con-
taining a hyphen? If we split https://hyphenated-

url.org before url.org (as happened here!), the
reader may be confused as to whether the hyphen
belongs to the URL or just signifies the break. That
is why the url package does not allow breaking after
hyphens by default: you need to explicitly enable
it with the hyphens option. No Starch Press offers
a rather elegant solution: it allows breaks before

hyphens only, so the reader is not confused by the
trailing hyphens.

The full house rules are more complex. Breaks
are allowed as follows.

1. After the symbols: # > ] ) } :

2. Before the symbols: . _ = & - ! ? | , ; @ ’ " +

< [ ( {

3. Breaks are not allowed before /, so expressions
like https:// are never split.

To implement these rules, we first note that the
url package typesets URLs as math expressions. The
symbols after which breaks are allowed are declared
as mathop or mathbin atoms, and the standard TEX
rules for inline math expressions line breaking apply.
However, this approach needs a modification if we
want to break an expression before a symbol. Fortu-
nately, the package provides a \UrlSpecials macro,
which allows one to associate any behavior with any
symbol. Thus we can allow breaks before the dot
using the following code:

\g@addto@macro{\UrlSpecials}{%

\do\.{\penalty\UrlBreakPenalty

\mathchar46\relax}}

Note that \mathchar46 is a dot symbol. Similarly,
we can disallow any break before the slash with:

\g@addto@macro{\UrlSpecials}{%

\do\/{\unpenalty\penalty\@M

\mathchar47\penalty\UrlBreakPenalty}}

There is an additional problem if the author uses
the amsmath [2] package. An attempt to redefine the
opening bracket leads to the Bad mathchar (32768)

error message. At TUG’23 David Carlisle explained
that the problem is in the macro \resetMathstrut@

added by amsmath to the \everymath hook and re-
defining the character code of the opening bracket.
Fortunately, the url package has its own hook, \Url@
MathSetup, called after \everymath. Thus we can
nullify this macro for URLs only:

\g@addto@macro{\Url@MathSetup}{%

\let\resetMathstrut@\relax}

3 Chapter opening

The chapters in No Starch Press books have quite
an impressive opening: the first paragraph is typeset
in a larger font, and there is a space for the “circular
art”, as shown in Figure 1. Happily, LATEX has

doi.org/10.47397/tb/44-2/tb137veytsman-nostarch

Boris Veytsman

https://nostarch.com/about
https://doi.org/10.47397/tb/44-2/tb137veytsman-nostarch


TUGboat, Volume 44 (2023), No. 2 201

3
CURABITUR V ITAE LECTUS S IT

AMET TURPIS PRET IUM
CONDIMENTUM

Maecenas accumsan dapibus sapien. Duis
pretium iaculis arcu. Curabitur ut lacus.

Aliquam vulputate. Suspendisse ut purus
sed sem tempor rhoncus. Ut quam dui, frin-

gilla at, dictum eget, ultricies quis, quam. Etiam sem
est, pharetra non, vulputate in, pretium at, ipsum. Nunc
semper sagittis orci. Sed scelerisque suscipit diam. Ut
volutpat, dolor at ullamcorper tristique, eros purus
mollis quam, sit amet ornare ante nunc et enim.

Phasellus fringilla, metus id feugiat consectetuer, lacus wisi ultrices tel-
lus, quis lobortis nibh lorem quis tortor. Donec egestas ornare nulla. Mauris
mi tellus, porta faucibus, dictum vel, nonummy in, est. Aliquam erat volut-
pat. In tellus magna, porttitor lacinia, molestie vitae, pellentesque eu, justo.
Class aptent taciti sociosqu ad litora torquent per conubia nostra, per in-
ceptos hymenaeos. Sed orci nibh, scelerisque sit amet, suscipit sed, placerat
vel, diam. Vestibulum nonummy vulputate orci. Donec et velit ac arcu in-
terdum semper. Morbi pede orci, cursus ac, elementum non, vehicula ut,

Figure 1: A chapter opening in No Starch Press style

a mechanism for setting this, the \@afterheading

hook in the sectioning macro. The nostarch class
adds to this hook, among other things, the following
code, which uses the switch \if@firstpara:

\everypar{%

\if@firstpara

\rule{\z@}{49\p@}%

\ifx\@chapterart\@empty

\else

\makebox[0pt][r]{%

\raisebox{-0.5in}[0pt][0pt]{%

\@chapterart\hspace{0.21in}}}%

\parshape=5

0.963in 3.622in 0.913in 3.672in

0.813in 3.772in 0.563in 4.022in

0in \textwidth

\fi

\fontsize{14pt}{16.5pt}\selectfont\parskip=3pt

\else

\parskip=0pt \normalsize\selectfont

\fi

\@firstparafalse}

Admittedly, this is rather old-fashioned code, using
\everypar. A better solution would be to use the
paragraph hooks relatively recently added to the
LATEX kernel.

4 Captions

The most difficult task so far has been automatic
formatting of captions. No Starch Press house style
does not center figures and tables: they are left justi-
fied with figure captions after the figures, and table

Figure 2-1: Vitruvian man. Note that the caption is typeset
in a box with the width automatically calculated from the
image.

Maecenas enim. Proin quis neque nec tortor sollicitudin volutpat. Sed
at ante. Sed vitae mauris non ante egestas hendrerit. Cum sociis natoque
penatibus et magnis dis parturient montes, nascetur ridiculus mus. In ve-
nenatis facilisis magna. Phasellus purus. Cras quis mauris. Aliquam eget
magna. Donec rutrum sagittis mi. Morbi elementum, est sit amet sollici-
tudin feugiat, orci magna semper risus, eu congue nulla metus vel elit. Nunc
tempor ornare mi. Integer justo odio, suscipit tincidunt, fermentum eu, tin-
cidunt et, libero. Vestibulum vestibulum, urna et suscipit imperdiet, nulla
ante fermentum erat, at laoreet lorem lectus sed metus. Fusce ante sem, po-
suere in, vehicula a, posuere sed, ante. Phasellus magna. Maecenas sit amet
diam. Nunc at nibh sit amet augue tristique gravida.

• Donec lobortis nibh.

• Duis mattis.

• Sed cursus lectus quis odio.

• Phasellus arcu.

• Praesent imperdiet dui in sapien.

• Vestibulum tellus pede, auctor a, pellentesque sit amet, vulputate sed,
purus.

• Nunc pulvinar, dui at eleifend adipiscing, tellus nulla placerat massa,
sed condimentum nulla tellus sed ligula. Nulla vitae odio sit amet leo
imperdiet blandit. In vel massa. Maecenas varius dui at turpis. Sed odio.

8 Chapter 2

Figure 2: A figure in No Starch Press style

captions before the figures. However, a full width
caption with a narrow left justified figure body looks
rather ugly. Therefore the house style has another
requirement: the width of the caption should be no
longer than the width of the body, as demonstrated
in Figures 2 and 3. Fortunately, the caption pack-
age [5], used by the nostarch class internally, allows
typesetting a caption in a parbox of the given width.
We just need to calculate this width automatically.

It is relatively easy to do with figures. In most
cases figures have just one graphical box. We mea-
sure this box and use it to typeset the width of the
caption. Note that in TEX the examination of the
last box is a destroying operation: we need to re-
turn the box to the list if we want to preserve it.
We add to the \endfigure the following command,
\nostarch@measurecaptionwidth, defined as:

\newcommand\nostarch@measurecaptionwidth{%

\ifnostarch@overridecaptionwidth\else

\par

\setbox\@tempboxa\lastbox

\setbox\@tempboxa=\hbox{\unhbox\@tempboxa}%

\global\setlength{%

\nostarch@captionwidth}{\wd\@tempboxa}%

\box\@tempboxa\par

\fi

\global\nostarch@overridecaptionwidthfalse

}

The flag \ifnostarch@overridecaptionwidth is
discussed below.

The situation with tables is a little bit more
complex. When we typeset the caption of a table,
we do not know the width of the table, since the
body is not yet typeset. Therefore we use the usual
LATEX trick: at the end of a table we save the width
of the body to the .aux file. At the beginning of the
table we check if it has been defined in the previous

Updating the nostarch class



202 TUGboat, Volume 44 (2023), No. 2

Table 2-1: Sed blandit, tortor a auctor imperdiet, wisi nibh
ornare leo, ac dictum nibh enim eu orci

Phasellus At Dui Donec Commodo
Augue At Nunc Nunc In sapien Et magna mollis
Sagittis Morbi eu elit Phasellus lacus
Donec a quam Etiam pulvinar sapien Sed nibh magna

san ut, pharetra vel, elementum sed, quam. Maecenas condimentum
orci at enim. Maecenas ut nunc. Vivamus pede. Integer vel purus vel mi
mollis vestibulum. Sed laoreet ultricies nibh. Suspendisse non nisl quis
ligula fermentum facilisis.

Donec tempus neque vitae est. Aenean egestas odio sed risus ullamcorper
ullamcorper. Sed in nulla a tortor tincidunt egestas. Nam sapien tortor, ele-
mentum sit amet, aliquam in, porttitor faucibus, enim. Nullam congue susci-
pit nibh. Quisque convallis. Praesent arcu nibh, vehicula eget, accumsan eu,
tincidunt a, nibh. Suspendisse vulputate, tortor quis adipiscing viverra, lacus
nibh dignissim tellus, eu suscipit risus ante fringilla diam. Quisque a libero
vel pede imperdiet aliquet. Pellentesque nunc nibh, eleifend a, consequat
consequat, hendrerit nec, diam. Sed urna. Maecenas laoreet eleifend neque.
Vivamus purus odio, eleifend non, iaculis a, ultrices sit amet, urna. Mauris
faucibus odio vitae risus. In nisl. Praesent purus. Integer iaculis, sem eu ege-
stas lacinia, lacus pede scelerisque augue, in ullamcorper dolor eros ac lacus.
Nunc in libero.

Vivamus commodo eros eleifend dui. Vestibulum in leo eu erat tristi-
que mattis. Cras at elit. Cras pellentesque. Nullam id lacus sit amet libero
aliquet hendrerit. Proin placerat, mi non elementum laoreet, eros elit tin-
cidunt magna, a rhoncus sem arcu id odio. Nulla eget leo a leo egestas fa-
cilisis. Curabitur quis velit. Phasellus aliquam, tortor nec ornare rhoncus,
purus urna posuere velit, et commodo risus tellus quis tellus. Vivamus leo
turpis, tempus sit amet, tristique vitae, laoreet quis, odio. Proin scelerisque
bibendum ipsum. Etiam nisl. Praesent vel dolor. Pellentesque vel magna.
Curabitur urna. Vivamus congue urna in velit. Etiam ullamcorper elemen-
tum dui. Praesent non urna. Sed placerat quam non mi. Pellentesque diam
magna, ultricies eget, ultrices placerat, adipiscing rutrum, sem.

Curabitur hendrerit. Morbi fringilla enim quis nunc. Phasellus at dui.
Curabitur fringilla dui a odio. Nunc semper condimentum arcu.

NO T E Donec commodo augue at nunc. Nunc in sapien et magna mollis sagittis. Morbi
eu elit. Phasellus lacus. Donec a quam. Etiam pulvinar sapien. Sed nibh magna,
viverra vitae, auctor eget, eleifend nec, lorem.

Curabitur vitae lectus sit amet turpis pretium condimentum. Nullam im-
perdiet mattis neque. Proin eget magna porta erat rhoncus consectetuer.
Aenean pulvinar erat vitae mi.

Footnotes, figures and tables 11

Figure 3: A table in No Starch Press style

run, and if yes, we use it. We also need to check
whether the current table width is the same as in
the previous run. If not, we need to ask the user
(or a program like Makefile or llmk or arara) to
re-run LATEX. We save the current widths in macros
with the names \nostarch@tbl@i, \nostarch@tbl@
ii, . . . : we need to use a separate counter for tables,
since nostarch numbers the tables per chapter. The
following code saves the width of the current table:

\nostarch@measurecaptionwidth

\if@filesw

\immediate\write\@auxout{%

\gdef\expandafter\noexpand

\csname nostarch@tbl@\romannumeral

\c@nostarch@tbl\endcsname

{\the\nostarch@captionwidth}}%

\fi

\expandafter\ifx

\csname nostarch@tbl@\romannumeral

\c@nostarch@tbl\endcsname\relax

\edef\@tempa{\the\textwidth}%

\else

\edef\@tempa{\csname nostarch@tbl@

\romannumeral\c@nostarch@tbl\endcsname}%

\fi

\expandafter\ifdim\@tempa=\nostarch@captionwidth

\else \gdef\nostarch@tbl@warn{%

\ClassWarningNoLine{nostarch}%

{Table widths have changed. Rerun LaTeX.}}%

\fi

The reading code part performs two tasks. First, it
steps the table number nostarch@tbl. Second, it
sets the width of the caption:

\stepcounter{nostarch@tbl}%

\expandafter\ifx

\csname nostarch@tbl@\romannumeral

\c@nostarch@tbl\endcsname\relax

\edef\@tempa{\the\textwidth}%

\else

\edef\@tempa{%

\csname nostarch@tbl@\romannumeral

\c@nostarch@tbl\endcsname}%

\fi

\expandafter\setlength\expandafter

\nostarch@captionwidth\expandafter{\@tempa}%

Another special case is long tables typeset with
the longtable package [3]. Fortunately, long tables
know its width, so we just need to read it. Here is
the corresponding code:

\ifnostarch@overridecaptionwidth\else

\global\setlength{\nostarch@captionwidth}{\z@}%

\bgroup

\def\LT@entry##1##2{%

\global\addtolength{%

\nostarch@captionwidth}{##2}}%

\csname LT@\romannumeral\c@LT@tables

\endcsname

\egroup

\fi

\global\nostarch@overridecaptionwidthfalse

Above, we deferred the discussion of the flag
\ifnostarch@overridecaptionwidth. In fact, no
automatic system is 100% accurate. Sometimes a
figure or a table contains several boxes of different
widths arranged vertically. Sometimes it is too nar-
row. Thus it makes sense to allow the user to override
the algorithm. The command \NextCaptionWidth

with one argument does just that:

\newcommand\NextCaptionWidth[1]{%

\global\nostarch@overridecaptionwidthtrue

\global\setlength{\nostarch@captionwidth}{#1}%

}

It sets the width of the following caption to the
argument and informs the measuring code to skip
the measuring.

5 Conclusion

The TEX programming layer, even in the “old” in-
carnation of LATEX2ε, is quite flexible. It can satisfy
many typesetting requirements and provide auto-
matic composition—even when the requirements
are rather unusual, as with some of those of No

Starch Press.

References

[1] D. Arseneau. The url package, 2013.
ctan.org/pkg/url

[2] LATEX Project Team. The amsmath package, 2023.
ctan.org/pkg/amslatex

[3] LATEX Project Team, D. Carlisle, D. Kastrup.
The longtable package, 2021.
ctan.org/pkg/longtable

[4] LATEX Project Team, Oberdiek Package Support
Group, et al. The hyperref package, 2023.
ctan.org/pkg/hyperref

[5] A. Sommerfeldt. The caption package, 2023.
ctan.org/pkg/caption

⋄ Boris Veytsman
borisv (at) lk dot net

https://borisv.lk.net

Boris Veytsman

https://ctan.org/pkg/url
https://ctan.org/pkg/amslatex
https://ctan.org/pkg/longtable
https://ctan.org/pkg/hyperref
https://ctan.org/pkg/caption


TUGboat, Volume 44 (2023), No. 2 203

The LATEX template generator:

How micro-templates reduce template

maintenance effort

Oliver Kopp

Abstract

Scientific findings are published by different pub-
lishers. These provide different templates. These
differ in the documentation and packages provided.
For example, hyperref or microtype are mostly not
included or not configured properly. Furthermore,
there is a demand for minimal examples in the body
of the paper. For instance, how to typeset a listing
with line numbers and hyperlink to that line num-
ber. These minimal examples should appear in any
paper template. If the minimal example is updated,
how can various paper templates be updated auto-
matically? The “LATEX Template Generator” is one
answer to this question. It uses “micro-templates”
to create full-fledged paper templates containing the
same configurations for popular packages. Thus, it
reduces the maintenance effort of LATEX templates.

1 Introduction

In scientific research, starting a new paper often in-
volves using a previous publication as a template.
Researchers adapt this base structure to meet their
current requirements. However, this practice intro-
duces the potential for inconsistencies, particularly
with respect to the usage and configuration of LATEX
packages. Although publishers offer templates for
their publication venues, these templates are rather
minimal and often omit configuration for hyperref,
microtype, listings, etc.

One solution is to offer “extended” templates for
each venue, including best practices for each LATEX
package. However, when the package is updated with
new features or when new insights about the package
emerge, all these templates must be manually up-
dated—a process prone to errors. The “LATEX Tem-
plate Generator” (LTG) addresses these challenges.
It introduces the concept of “micro templates”, each
providing a preamble and an example for a specific
LATEX package. These micro templates are then au-
tomatically consolidated into templates for various
outputs, such as journals, conferences, and student
theses. This strategy reduces the risk of errors and
simplifies the process of updating LATEX templates.

Figure 1 presents the roles when working with
the LTG:

• The role package expert is filled by an individual
with extensive knowledge about a specific pack-
age. For instance, one expert might specialize

microtype

hyperref IEEE main.tex

README.md

.latexmkrc

.gitignore

tooling expert content expert

combination

paper.tex

mindflow

…
… …

class expert

ACM

…

…

package expert

Figure 1: Roles in the process of template generation

in the hyperref package, while another might
be well-versed in the microtype package. These
experts contribute not only by configuring the
packages, but also by providing minimal exam-
ples for each package. This guidance ensures
proper usage and assists newcomers in under-
standing the package functionalities.

• The role class expert is held by an individual
who understands the necessities of each class.
They know which packages are required for each
template based on the class and which ones
might be unnecessary or counterproductive.

• The role tooling expert is held by someone profi-
cient in the respective tooling, such as latexmk
or git. They provide configurations for these
tools for templates generated by the LTG.

• The role content expert provides guidance on
how to write the scientific content of a paper.
They may offer advice on structuring arguments,
referencing sources, or other aspects of academic
writing.

• Finally, the role template user describes the
ultimate user of the template crafting scientific
work.

The task of combining the different inputs into
a template file (“combination” in Figure 1) is done
by the LATEX Template Generator.

The basic idea of the LTG is to offer configu-
ration possibilities where required and to assume
sensible defaults where possible. For instance, the
template user is offered a choice for the overall tem-
plate to target (e.g., IEEE or a master’s thesis), the
language to be used (e.g., English or German), but
does not need to choose anything for packages such as
microtype, because sensible defaults are provided.

In the following, details of the LTG are provided.
First, Section 2 presents reasoning on the chosen
prompting and generation framework. Section 3 out-
lines the general concept. Section 4 presents the
usage of the LATEX template generator. Finally, Sec-
tion 5 provides a discussion and presents an outlook
on future work.

doi.org/10.47397/tb/44-2/tb137kopp-microtemplates

The LATEX template generator: How micro-templates reduce template maintenance effort

https://doi.org/10.47397/tb/44-2/tb137kopp-microtemplates


204 TUGboat, Volume 44 (2023), No. 2

2 The choice of yeoman as the basis for

the generator

To guide the template user through different options
and to generate the final template, an existing frame-
work should be used. The basic requirements are:
i) being able to mix multiple micro-templates into
larger templates (e.g., the hyperref configuration
should be stored once in the repository and used
by multiple templates) and ii) offering dependent
prompts. For instance, if “Overleaf compatibility” is
chosen, the choices of the TEX Live variants should
be constrained to versions before 2023.

In 2019, the following frameworks were eval-
uated: Yeoman,1 Cookiecutter,2 copier,3 Jinja2,4

Cheetah,5 Apache Velocity,6 and LuaLATEX. Some
of these options are templating engines only (Jinja2,
Cheetah, Apache Velocity). Thus, the prompting
would have been required to be hardwired. Lua-
LATEX is a very general “framework”, which is not
commonly used for templating. Since I was not pro-
ficient enough to use it, the final choice was between
Python-based tooling (Cookiecutter and copier) and
JavaScript-based tooling Yeoman. Since both Cookie-
cutter and copier require the choices to be made avail-
able in text-based configuration files and it seemed to
be impossible to craft choices dependent on previous
choices, I opted for Yeoman.

In 2020, TEXplate was released on CTAN.7 The
current version has a different structure than the
LTG. TEXplate relies on TOML8 files to define the
LATEX file to be generated. LTG builds upon .tex

files which are “enriched” by templating commands.
The claim of LTG is that it is easier for contributors
to edit .tex files with their editor of choice than to
edit TOML files.

All in all, Yeoman has been chosen as the gen-
erator framework. It is based on JavaScript and
fulfills both requirements: The package preambles
and examples are stored in different files (details in
Section 3) and offers built-in prompting. Prompt
choices can be modified on the fly to enable depen-
dent prompts.

To make the knowledge about the decision sus-
tainable, Markdown Any Decision Records [4] have
been written. All the aforementioned options as well
as their pros and cons are included as Markdown

1 https://yeoman.io/
2 https://github.com/cookiecutter/cookiecutter
3 https://github.com/copier-org/copier
4 http://jinja.pocoo.org/
5 http://cheetahtemplate.org/
6 http://velocity.apache.org/
7 https://ctan.org/pkg/texplate
8 https://toml.io/en/

/

generators/

app/

templates/

...

Dockerfile.iot

Texlivefile

...

main.en.tex

mindflow.example.en.tex

mindflow.preamble.en.tex

...

index.js

options.js

Figure 2: Directory tree of the generator

files inside the path docs/decisions/9 inside the
repository.

3 The concept of the LTG

This section presents the concept of LTG. Thereby,
the file structure of LTG’s source repository10 is used.
The most important files are presented in Figure 2.

The pair of files mindflow.example.en.tex and
mindflow.preamble.en.tex show the basic concept
of LTG’s micro templates using the mindflow pack-
age. The mindflow package11 is a basic LATEX pack-
age enabling a) quickly noting down thoughts and
b) having LATEX marking these thoughts visually.

A micro template consists of i) a preamble file
and ii) optionally an example file. The content of
the preamble file is put into the preamble and the
example is put as LATEX example in the document
body. The filename is always the package name,
followed by either preamble or example and then en

for English or de for German.
mindflow.preamble.en.tex looks as follows:

<% switch (documentclass) { case "acmart":

case "ieee": -%>

\usepackage[incolumn]{mindflow}

<% break; default: -%>

\usepackage{mindflow}

<% break; } -%>

On the first line, one sees the templating lan-
guage “Embedded JavaScript templating” (EJS12) in
use. In general, template commands are enclosed in

9 https://github.com/latextemplates/

generator-latex-template/tree/main/docs/decisions
10 https://github.com/latextemplates/

generator-latex-template
11 https://ctan.org/pkg/mindflow
12 https://ejs.co/

Oliver Kopp

https://yeoman.io/
https://github.com/cookiecutter/cookiecutter
https://github.com/copier-org/copier
http://jinja.pocoo.org/
http://cheetahtemplate.org/
http://velocity.apache.org/
https://ctan.org/pkg/texplate
https://toml.io/en/
https://github.com/latextemplates/generator-latex-template/blob/main/generators/app/templates/mindflow.example.en.tex
https://github.com/latextemplates/generator-latex-template/blob/main/generators/app/templates/mindflow.preamble.en.tex
https://github.com/latextemplates/generator-latex-template/blob/main/generators/app/templates/mindflow.preamble.en.tex
https://github.com/latextemplates/generator-latex-template/tree/main/docs/decisions
https://github.com/latextemplates/generator-latex-template/tree/main/docs/decisions
https://github.com/latextemplates/generator-latex-template
https://github.com/latextemplates/generator-latex-template
https://ctan.org/pkg/mindflow
https://ejs.co/


TUGboat, Volume 44 (2023), No. 2 205

<% ... %>. The minus sign before the closing %> indi-
cates that the following newline should be removed.
The intention of the EJS code is that in the case of
the document class being a two-column document
class (as it is for ACM and IEEE), the mindflow

package is passed the option incolumn. In all other
cases, just \usepackage{mindflow} is written out.

mindflow.example.en.tex looks as follows:

<%= heading2 %>{Notes separated from

the text}

The package mindflow enables writing down

notes and annotations in a way so that they

are separated from the main text.

<%- bexample %>

\begin{mindflow}

This is a small note.

\end{mindflow}

<%- eexample %>

The template command <%= heading2 %> instructs
Yeoman to put the content of the heading2 vari-
able at that place. In the case of an IEEE tem-
plate, this is \subsection; in the case of, for instance,
the provided scientific-thesis template, this is
\section, because the latter’s main structuring ele-
ment is \chapter.

The markers bexample and eexample are markers
for LATEX commands for beginning and ending an
example. The LTG defines its own environment for
examples to output both rendered LATEX code as well
as the source code. It makes use of the capabilities
of the tcolorbox package.13

The preamble is included as follows in the file
main.en.tex:

<% if (texlive >= 2021) { %><%- include

('mindflow.preamble.en.tex', this); } -%>

The reason for the guard with the TEX Live
version is that mindflow was released in 2021, and
a template may require support of earlier TEX Live
versions.

The file options.js contains all options offered
to the user. The following excerpt presents the option
for TEX Live:

{

type: "list",

name: "texlive",

message: "Which TeXLive compatibility?",

choices(state) {

const res = [

{

name: "TeXLive 2021",

value: 2021,

13 https://ctan.org/pkg/tcolorbox

B. Notes separated from the text

The package mindflow enables writing down notes and

annotations in a way so that they are separated from the main

text.

This is a small note.

Corresponding LATEX code of c:\TEMP\ltg\paper.tex

700 \begin{mindflow}

701 This is a small note.

702 \end{mindflow}

Figure 3: Mindflow example section in the rendered

IEEE template

},

{

name: "TeXLive 2022",

value: 2022,

},

];

if (!state.overleaf) {

res.push({

name: "TeXLive 2023",

value: 2023,

});

}

return res;

}

},

It starts by defining the option to be a list and
instructs that the answer should end up in a JSON

object property named texlive. The message used
for prompting is given in message. The choices are
created dynamically, based on previous choices. As
an example, the user can choose whether the tem-
plate should be usable on Overleaf. If they opted
for “yes”, the option to choose TEX Live 2023 is not
included, since (at the time of release of the LTG),
version 2023 is not supported by Overleaf. (Overleaf
typically adds support for new TEX Live releases in
the fall [2].) Coming back to the options, there are
in total 18 possible options to choose from. Some are
dependent on the chosen document class and thus
not all are shown to the user.

The file index.js calls the prompting, derives
internal variables based on the result, and finally
creates the resulting files. One internal variable
is the final file name. In the case of journals and
conferences, this is paper.tex. In case of a scientific
thesis, it is main.tex.

Figure 3 shows the rendered output of this
mindflow example, when the IEEE template is se-
lected.

The LATEX template generator: How micro-templates reduce template maintenance effort

https://github.com/latextemplates/generator-latex-template/blob/main/generators/app/templates/mindflow.example.en.tex
https://ctan.org/pkg/tcolorbox


206 TUGboat, Volume 44 (2023), No. 2

4 Usage

The LTG requires a recent Node.js installation. There,
the command
npm install -g generator-latex-template

installs the generator and makes it globally accessible
on the target machine. Then, the user can invoke
the generator using yo latex-template. After issuing
that command, LTG outputs following:

$ yo latex-template

? Which template should be generated?

(Use arrow keys)

> Scientic Thesis

Association for Computing Machinery (ACM)

Institute of Electrical and Electronics

Engineers (IEEE)

Springer's Lecture Notes in Computer

Science (LNCS)

The user is first asked which template they want
to create. Currently, a scientific thesis template,
ACM, IEEE, and LNCS are supported. More tem-
plates are part of future work.

The user navigates through the options using
arrow keys. Once a choice is made, the system pro-
ceeds to the next question, continuing this iterative
process until all questions have been answered.

The following presents the result of an example
complete process of selections:

? Which template should be generated? IEEE

? Which variant of IEEE paper? conference paper

? Which paper size to use? A4

? Overleaf compatibility? yes

? Which TeXLive compatibility? TeXLive 2022

? Should a Dockerfile be generated?

yes (Island of TeX)

? Which language should the document be?

English

? Which package to typeset listings? listings

? Which package to use to "enquote" text?

csquotes (\enquote{...} command)

? Which package to mark TODOs? pdfcomment

? Include hints on text

(e.g., how to write an abstract)? Yes

? Include minimal LaTeX examples? Yes

After all questions have been answered, Yeoman
outputs the files it creates:

create .gitignore

create .editorconfig

create paper.bib

create _latexmkrc

create localSettings.yaml

create LICENSE

create Makefile

create paper.tex

create README.md

create .dockerignore

create Dockerfile

create Texlivefile

create .github\workflows\check.yml

Note that the file latexmkrc is prefixed by an
underscore. This enables uploading the whole reposi-
tory to Overleaf without any error shown in the user
interface. A Dockerfile is also generated. In this ex-
ample, the file is generated based on Dockerfile.iot

and uses a minimal Island of TEX Docker image
[3]. The image installs all LATEX packages listed in
Texlivefile into the image. This way, the image size
is kept to a minimum.

Finally, a GitHub workflow14 file is generated.
When publishing the repository on GitHub, GitHub’s
CI will build a docker image based on the Dockerfile

and build the LATEX file using latexmk.

5 Discussion and outlook

This paper presented the LATEX Template Genera-
tor as one solution to collect knowledge about best
practices of packages and a way to include them in
rich templates for authors. To add support for a
new class, the class expert has to adapt main.en.tex
and options.js to include the class and add proper
conditions for packages which should be included or
excluded. Then, a new template file is generated.
No work for the package experts is caused: Their
templates can (most probably) just be used by the
class expert. Vice versa, if an update on the package
examples are made, the class expert (most probably)
does not need to do anything, because the contents
are directly available in their template.

For end users, installing Node.js can be tedious.
Therefore, for each supported template, a separate
GitHub repository is offered. In that repository, de-
fault paper-*.tex files are offered. For the LNCS

template,15 paper.tex uses the Computer Modern
font, microtype configuration, listings configura-
tion (including JSON support), pdfcomment16 for
TODO marking, and LATEX examples. To reduce the
size of the .tex file, no hints on writing a paper are
included.

The repository also offers other paper-*.tex

files. For instance, paper-en-times-minted.tex

provides a template where Times New Roman is
used for the font and minted17 as the package for
listings. A template user can just download the ZIP

14 https://github.com/features/actions
15 https://github.com/latextemplates/LNCS
16 https://ctan.org/pkg/pdfcomment
17 https://ctan.org/pkg/minted

Oliver Kopp

https://github.com/latextemplates/LNCS/blob/main/paper.tex
https://github.com/latextemplates/LNCS/blob/main/paper-en-times-minted.tex
https://github.com/features/actions
https://github.com/latextemplates/LNCS
https://ctan.org/pkg/pdfcomment
https://ctan.org/pkg/minted


TUGboat, Volume 44 (2023), No. 2 207

archive of the repository or even use GitHub’s tem-
plate feature18 to create a new git repository hosted
on GitHub containing the latest template files as
single commit.

The most impactful design decision is to have
the choices encoded in the templating language. For
instance, if LuaLATEX is chosen by the user, the font
configuration is generated for LuaLATEX. In case the
author wants to switch to pdfLATEX, they must re-
generate the whole template: There is no “dynamic”
LATEX if/else construct for a pdfLATEX fallback. Fu-
ture work will investigate this further and possibly
add an additional user option to generate a more
flexible template.

The LTG project itself is a true open source
project and calls for contributions of examples of
common classes, packages and practices. Currently,
around 20 packages and examples are offered. A good
start are the hints given by Beeton [1]. As the new
The LATEX Companion, third edition, discusses more
than 500 examples [5], there is lots of room to include
examples. Certainly, a careful selection of discussed
packages needs to be made. The LTG focuses on
providing only one example per topic. Thus, these
examples will surely be enriched by references to
TLC3 for the interested readers.

References

[1] B. Beeton. What every (LA)TEX newbie should
know. TUGboat 44(2):164–169, 2023.

[2] T. Hejda. TEX Live and Overleaf revisited.
TUGboat 44(2):256–256, 2023.

[3] Island of TEX. Living in containers—on TEX
live in a docker setting. TUGboat 44(2):249–252,
2023.

[4] O. Kopp, A. Armbruster, O. Zimmermann.
Markdown architectural decision records:
Format and tool support. In ZEUS, vol. 2072 of
CEUR Workshop Proceedings, pp. 55–62, 2018.
https://ceur-ws.org/Vol-2072/paper9.pdf

[5] F. Mittelbach, U. Fischer. The LATEX

Companion: Parts I & II. Addison-Wesley,
third ed., 2023.

⋄ Oliver Kopp

Sindelfingen, Germany

https://github.com/koppor

ORCID 0000-0001-6962-4290

18 https://docs.github.com/en/repositories/

creating-and-managing-repositories/

creating-a-repository-from-a-template

On bottom accents in OpenType math

Hans Hagen, Mikael P. Sundqvist

We recently worked on accents in math in ConTEXt.
While looking at the bottom accents, we realized
that there was work to be done, since Microsoft did
not specify how to deal with them (there is support
for bottom accents built in to LuaMetaTEX). While
discussing and examining examples, we noticed that
fonts behave differently, once again.

Let’s take the \wideunderrightarrow (or sim-
ply \underrightarrow) as an example. This glyph
(U+20EF) is missing in the reference font Cambria,
but it is available in Latin Modern Math and STIX

Two Math, among others. We were surprised to
find that the glyph had no width and was positioned
with the arrow tip pointing at the x-coordinate zero,
but maybe that reflects some previous “standard” on
typesetting them. We also saw that in Latin Modern,
it had no accent anchor point set, but in STIX Two,
it did. Anchor points on the base glyph and the
accent are to be aligned.

Until recently, this image shows how it came out
in ConTEXt. We show Latin Modern to the left and
STIX Two to the right.⃗𝐴 ⋅ 𝐴⃯⃗𝐴 ⋅ �⃯�
⃗𝐴 ⋅ 𝐴?⃗𝐴 ⋅ 𝐴⃯

⃗𝐴 ⋅ 𝐴⃯⃗𝐴 ⋅ �⃯�
⃗𝐴 ⋅ 𝐴?⃗𝐴 ⋅ 𝐴⃯The horizontal location of the top accent is con-

trolled by the anchors of the base character and the
accent: they align. We have not changed this behav-
ior because it is, after all, part of the specification.
The location of the bottom accent was never speci-
fied by Microsoft. Some OpenType fonts mimic old
TEX fonts, others mimic Cambria. We wanted a
simple model that works well with all fonts. Notice
that none of the arrows have orange (grayscaled for
print) boxes around them, meaning that they do not
carry real widths. The first attempt was to simply
mid-align the bottom accents. This came out as
follows: ⃗𝐴 ⋅ �⃯� ⃗𝐴 ⋅ �⃯�

The problem that the arrows do not have a
bounding box is now apparent. Looking in FontForge,
we found that the tips of the arrows are located at x-
coordinate zero. We thus needed to force the arrows

doi.org/10.47397/tb/44-2/tb137hagen-bottomaccent

On bottom accents in OpenType math



208 TUGboat, Volume 44 (2023), No. 2

to get their true widths. This was done, and then
the centering worked better:

⃗𝐴 ⋅ �⃯� ⃗𝐴 ⋅ �⃯�
During the process, we wondered if we were

making any obvious mistakes. We compared with the
LATEX output of the same examples. With LuaLATEX
we got:

⃗⃗ ⃗⃗ ⃗⃗𝐴 ⋅ �⃯⃯⃯⃯⃯�⃯ ⃗𝐴 ⋅ �⃯�
and with X ELATEX we got:

⃗⃗ ⃗⃗ ⃗⃗𝐴 ⋅ �⃯⃯⃯⃯⃯⃯� ⃗𝐴 ⋅ �⃯�
We notice that Latin Modern (left) worked well

in X ELATEX, but did not look great in LuaLATEX. On
the other hand, STIX Two (right) worked well in
LuaLATEX but not in X ELATEX. There can be several
reasons for this: one can use a traditional TEX engine
setup and map OpenType functionality, fonts and
parameters to that (maybe that is what X ETEX does)
or one can take the traditional fonts, parameters and
expectations and translate these to OpenType math
rendering (which is what LuaTEX does). Mix that
with fonts that are predominantly traditional (Latin
Modern) or standard (like Cambria) and you start
to see the confusing picture.

For these reasons, the LuaMetaTEX engine adds
a lot of detailed control in order to deal with a mis-
match. However, the fact we still get unexpected
outcomes also points to possible issues (inconsisten-
cies) in fonts. When a designer makes a new math
font, a lot of how it behaves depends on what font
was taken as its reference.

In the process of getting the best possible out-
put we decided to only use anchor points for the
top accents and simply center the bottom anchors
under the original box of the glyph. We have dis-
cussed elsewhere our getting rid of italic correction
(by changing the bounding box and introducing a
lower right corner kern). We show here the math
italic f in many fonts; it’s often one of the more
problematic characters, since it sticks out from its
box (before we tweak it).

𝑓⃯ �⃯� �⃯� �⃯� �⃯� �⃯� �⃯�

�⃯� 𝑓⃯ 𝑓⃯ 𝑓 ⃯ �⃯� 𝑓⃯ �⃯�

To sum up, there is a problem with how to place
bottom accents in Unicode math. The fonts seem to
suggest different approaches but the underlying prob-
lem lies in the absence of a standardized approach.
In light of this, we propose a solution that we hope
will effectively address this issue for our users. De-
pending on the font, an accent has a width or not.
When it doesn’t have one, we see the mentioned hori-
zontal displacements combined with strange anchors.
The displacement sort of positions at the bottom,
and the anchor aligns with the character. Because
we don’t want to rely on side effects we calculate
the width from the bounding box and recalculate
the anchors. Once more it is more reliable to simply
ignore one aspect of OpenType math and individual
font implementations.

Our discussion above considers accents below
single characters. For multiple characters, we use
the variants and extensibles to try to match the total
width.

Let us mention one more odd thing that we no-
ticed in connection with this. In STIX Two Math,
the bottom accent arrow in fact has five variants
and then an extensible recipe. It would have suf-
ficed to provide an extensible recipe and no variants.
Moreover, the extensible recipe does not use the base
character but the first variant, and that complicates
matters if one wants to wipe the variants and go
directly to the extensible recipe.

⋄ Hans Hagen

Pragma ADE

⋄ Mikael P. Sundqvist

Department of Mathematics

Lund University

Hans Hagen, Mikael P. Sundqvist



TUGboat, Volume 44 (2023), No. 2 209

A METAFONT for rustic capitals

Victor Sannier

1 Introduction

Littera capitalis rustica (literally country capital let-
ters) are a script of the Latin alphabet, the earliest
examples of which date back to the first century CE,
notably on election posters in the city of Pompeii
(see Figure 1). They were gradually regularised in
the fourth and fifth centuries and remained in use
until the ninth and tenth centuries, but mostly for
titles and distinctions [1].

Figure 1: Election poster in Asellina’s tavern, Pompeii

Many manuscripts contain splendid examples
of rustic capitals. These include the Vergilius Vat-
icanus [7] and the fifth-century Vergilius Romanus
and Codex Mediceus. The first one, an incomplete
copy of Virgil’s Aeneid and Georgics, will be the main
reference for our work, although we will attempt to
rationalise its handwriting with the METAFONT sys-
tem [3] — while maintaining a sense of authenticity —
rather than to reproduce it exactly, imperfection for
imperfection. Thus, in the spectrum of type revivals
described by Olocco and Patanè [6, Chapter 1], which
ranges from literal reproduction to reinvention, we
intend to occupy a middle ground.

Whenever possible, we use the same terminology
as that found in [2, Chapter 2].

2 Design of the repeating components

Our METAFONT project is divided into several files,
ruscap.mf defines the macros and characters, while

ruscap10.mf, ruscap14.mf, &c. define the dimen-
sions to be used for rendering to a particular font
size. In the rest of this article all values are taken
from ruscap10.mf.

2.1 Lengths and angles

After numerous measurements on various fragments
of the manuscript that we use as a reference, it
appeared that the vertical space could be divided
into twelve units, from which we also define s (for
sidebearing) and o (for overshoot).

u# := 10/12 pt#; % unit

s# := 3/4 u#; % sidebearing

o# := 1/4 u#; % overshoot

Then, most capitals occupy nine units above the
baseline, some eleven (such as ‘F’ and ‘L’), and the
letter ‘Q’ (and ‘G’ in one variant) goes down one
unit below it. The crossbar in ‘E’, the junction of
the two lobes of ‘B’, &c. are slightly above half of
the upper space.

cap_height# := 9 u#;

asc_height# := 11 u#;

desc_height# := 1 u#;

crossbar_height# := 5 u#;

Next, the serifs in our font have the shape of
a tilde, so all we need to specify is a width and an
angle (0 would mean the serif is just a horizontal
stroke); see the next section and [3, p. 152].

serif_width# := 5/2 u#;

serif_angle := 90 / 6;

Two dimensions are also needed for components
of some characters, namely the angle of the stroke
in the letters ‘A’, ‘N’, &c., and the width and angle
of the spurs.

diag_angle := 90 + 35;

spur_width# := 1/2 u#;

spur_angle := 0;

Finally, the virtual pencil used is defined by
the thickness of the thickest and thinnest strokes it
can draw, and by its slope, here 35 degrees. Rustic
capitals are known to be written with a very inclined
tool [1].

thick# := 5/4 u#;

thin# := 1/3 u#;

pen_angle := 65; % 90 - 35

2.2 Macros

Let us give the code of some macros we have written
to improve consistency and limit repetition in the
project.

doi.org/10.47397/tb/44-2/tb137sannier-rustic

A METAFONT for rustic capitals

https://doi.org/10.47397/tb/44-2/tb137sannier-rustic


210 TUGboat, Volume 44 (2023), No. 2

2.2.1 draw_serif

To create a serif, we constrain its ends to be hori-
zontally aligned and serif_width apart, and draw
a line between them with the same initial and final
angles.

def draw_serif(suffix i, j)(expr width) =

rt x.j - lft x.i = width;

y.i = y.j;

draw z.i{dir serif_angle}

.. {dir serif_angle}z.j;

enddef;

See, for example, the top arm of the letter ‘F’
in Figure 2.

2.2.2 draw_diag_stroke

With the spurs defined at both ends of the stroke,
all we need to do is set the angle between them and
connect all the points. We have increased the tension
in the main part so that it is almost straight but still
smoothly connects the spurs.

def draw_diag_stroke(suffix i, j)(expr a) =

z.i - z.i.l = z.j.r - z.j

= spur_width * dir 0;

z.j - z.i = whatever * (dir angle);

draw z.i.l .. z.i

.. tension 3

.. z.j .. z.j.r;

enddef;

In most cases the angle parameter will take
the value diag_angle, but this is not always the
case. For example, the two diagonal strokes in the
letter ‘M’ don’t have the same angle.

2.2.3 draw_I

We use the same code to draw the letters ‘I’ and ‘L’,
and the left part of the letters ‘B’, ‘P’, ‘R’, &c.

def draw_I(suffix i, j, k, l)(expr sw) =

x.i = x.j; % vertical stem

top y.i = h; bot y.j = 0;

z.i - z.i.l

= spur_width * dir spur_angle;

% Serif

rt (2 x.j - x.k) - lft x.k

= serif_width;

y.j = y.k;

draw_serif(k, l)(sw);

draw z.i.l .. z.i .. tension 5 .. z.j;

enddef;

The way we constrain the position of the serif
ends may require some explanation. The sw vari-
able stores the total width of the serif to be drawn.
Generally it is not centred around the stem; the
right part can be as long as needed and only the
width of the left part is constant and should be half
the value s of serif_width. To achieve this, the
following equation should hold:

xk + 2(xj − xk) = xk + s

which, after rewriting and taking into account the
size of the pencil nib, gives the above code.

3 Design of the characters and kerning

3.1 Example of the letter ‘T’

beginchar("T", 6u# + 2s#, cap_height#, 0);

"Rustic␣T";

pickup rustic_pen;

x1 = w - x2; top y1 = h;

draw_serif(1, 2)(w - 2s);

x3 = w - x4; bot y3 = 0;

draw_serif(3, 4)(serif_width);

draw 1/2 [z1, z2] .. 1/2 [z3, z4];

labels(range 1 thru 4);

endchar;

3.2 Example of the letter ‘N’

The letters ‘M’ and ‘N’ are the most involved we
have designed, but the code is still straightforward.

beginchar("N", 7u# + 2s#, cap_height#, 0);

"Rustic␣N";

pickup rustic_pen;

% Diagonal stroke

x1 + x2 = w; top y1 = h; bot y2 = 0;

draw_diag_stroke(1, 2)(diag_angle);

% Left stem

bot y3 = 0; lft x3 = s;

draw z1 .. z3;

1/2 (z3.l + z3.r) = z3;

draw_serif(3.l, 3.r, serif_width);

% Right stem

x4 = x5 = x2.r; % vertical stem

top y4 = h; bot y5 = 0;

z4 - z4.l

= spur_width * dir spur_angle;

draw z4.l .. z4 -- z5;

Victor Sannier



TUGboat, Volume 44 (2023), No. 2 211

labels(range 1 thru 5);

endchar;

Perhaps the most debatable choice we have made
is the angled left-hand stem and straight right-hand
stem, but we think it works well with letters such as
‘A’ and ‘L’.

3.3 Example of the letter ‘S’

The design of the letter ‘S’ is peculiar in that it
consists of a single stroke and doesn’t call any of our
custom macros.

beginchar("S", 4u# + s#, cap_height#, 0);

"Rustic␣S";

pickup rustic_pen;

lft x2 = s; x2 = x4;

rt x1 = w; x1 = x3;

top y1 = h - u; bot y4 = o;

h - y2 = y3;

z2 - z3 = whatever * dir diag_angle;

draw z1{curl 2} .. z2

.. z3 .. {curl 1}z4;

endchar;

Note the slight asymmetry introduced by a dif-
ferent curl value at each end.

3.4 Side-bearing and kerning

We chose a uniform side-bearing throughout the type-
face and corrected glaring kerning problems with a
ligature table.

ligtable "A": "C" kern -.5u#, "T" kern -u#;

ligtable "K": "O" kern -.5u#;

ligtable "L": "O" kern -.5u#, "T" kern -u#;

ligtable "N": "V" kern .5u#;

...

We believe that fine-tuning the interletter spac-
ing does not align with our goal of authenticity.

3.5 Remarks

While scanning various manuscripts and online re-
sources, we came across two variants of the letter ‘G’
[5, 8]. In the final design, we chose the one that looks
more like a square capital as the main variant, and
made the other available as ‘g’.

4 Comparison with other typefaces

See Figures 3, 4 and 5 for a comparison of fragments
of Vergilius Vaticanus with the typefaces designed
by (a) Landers [4], (b) Wilson [9] and (c) the author
respectively. The (b) and (c) typefaces were created
with the METAFONT system, (a) was not.

While the former designs may be well suited
to their authors’ aims, they do not correspond to

ABCDEFG
HIKLM
NOPQRS
TVXYZ

Figure 2: Character set of the ruscap typeface

locusinqui
locusinqui
LOCVSINQVI

Figure 3: The words “locus in qui” rendered in

different typefaces

the one we stated in the introduction. In particular,
we would like to draw the reader’s attention to the
following points:

• in (a), the letters are slightly angled to the right,

• in (a), the letters ‘E’ and ‘N’ are not the same
height, and neither are the letters ‘S’ and ‘U’,

• in (a), the letters ‘D’ and ‘R’ feature a large
spur,

• in (b), the crossbar of the letter ‘E’ is long and
sinuous,

• in (b), the strokes become significantly thicker
as they descend,

• in (a) and (b), some paths are quite steep, such
as the letter ‘D’ in (a) and the letter ‘G’ in (b).

A METAFONT for rustic capitals



212 TUGboat, Volume 44 (2023), No. 2

lacrimasque
lacrimasque
LACRIMASQVE

Figure 4: The word “lacrimasque” rendered in

different typefaces

undegenusducis
undegenusducis
VNDEGENVSDVCIS

Figure 5: The words “unde genus ducis” rendered in

different typefaces

It also seems to us that our METAFONT code is
simpler than that written by Wilson, partly, but not
only, because our character set is smaller.

5 Conclusion and future work

In this article, we have limited ourselves to presenting
just one font from the ruscap family, but META-
FONT makes it easy to achieve a variety of designs,
including different weights, by changing just a few
parameters. For example, the result of setting a
uniform pen thickness, a serif angle of 0 and a slightly
higher crossbar height is shown in Figure 6.

In the near future, we plan to iterate on the
shapes of some characters (particularly ‘M’ and ‘U’),
consider the revisions made during the TUG 2023
event, and finally submit our typeface to the Compre-
hensive TEX Archive Network (CTAN) for everyone
to use freely.

We will also consider extending the character
set to include the two “Ramist letters” ‘J’ and ‘U’,
the letter ‘W’ and the Indo-Arabic digits.

CICERONIANVS
CICERONIANVS

Figure 6: The word ‘ciceronianus’ rendered in two

fonts of the ruscap family

Acknowledgement

I would like to thank the GUTenberg Association for
funding my participation in the 44th annual meeting
of the TEX Users Group, and its president Patrick
Bideault, who provided me with Olocco and Patanè’s
excellent little book.

References

[1] Bibliothèque Nationale de France. La rustica,
2003. Educational dossier accompanying
the exhibition “Jean Fouquet : peintre et
enlumineur du XVe siècle”.
http://expositions.bnf.fr/fouquet/

reperes/32/ecriture/rustica.htm

[2] K. Cheng. Designing Type. Yale University
Press, second ed., [2005] 2020.

[3] D.E. Knuth. The METAFONTbook.
American Mathematical Society/Addison-Wesley
Publishing Company, [1986] 2021.

[4] J. Landers. Rustic capitals, 2000. MouserFonts.

[5] J.J. Marcos. Manual of Latin Paleography, 2017.
http://guindo.pntic.mec.es/jmag0042/

LATIN_PALEOGRAPHY.pdf

[6] R. Olocco, M. Patanè. Designing Type Revivals.
Lazy Dog Press, 2022.

[7] P. Vergilius Maro. Opera fragmenta, [19 BCE]
c. 400 CE. Late antique illuminated manuscript.
digi.vatlib.it/view/MSS_Vat.lat.3225

[8] S. Vittori. De scriptione capitali rustica, 2020.
youtube.com/watch?v=xcGHhBQXLNQ

[9] P.R. Wilson. Roman rustic manuscript
book-hand font, [1999] 2001.
ctan.org/pkg/rustic

⋄ Victor Sannier

GUTenberg Association

Victor Sannier

http://expositions.bnf.fr/fouquet/reperes/32/ecriture/rustica.htm
http://expositions.bnf.fr/fouquet/reperes/32/ecriture/rustica.htm
http://guindo.pntic.mec.es/jmag0042/LATIN_PALEOGRAPHY.pdf
http://guindo.pntic.mec.es/jmag0042/LATIN_PALEOGRAPHY.pdf
https://digi.vatlib.it/view/MSS_Vat.lat.3225
https://youtube.com/watch?v=xcGHhBQXLNQ
https://ctan.org/pkg/rustic


TUGboat, Volume 44 (2023), No. 2 213

An updated survey of OpenType math fonts
Ulrik Vieth

Abstract
OpenType math fonts were introduced more than
15 years ago. Over the years, more and more math
fonts have been developed and added to the font col-
lection. In this paper, we review some of the more re-
cent additions, comparing them to previous choices
of OpenType math fonts such as Cambria, Lucida,
Latin Modern, and TEX Gyre.

In our analysis, we focus on completeness of
math symbols and alphabets, and on design choices
of math alphabets. A detailed technical study of
glyph and font metrics is beyond the scope of this
paper, but some aspects of this have been recently
addressed by other contributions.

1 Introduction
OpenType math fonts were introduced more than 15
years ago. It started when Microsoft added support
for math typesetting in O昀케ce 2007 [1] and proposed
an extension of the OpenType font format, adding
a MATH table. This eventually became part of the
OpenType standard [2].

It did not take long before the TEX community
recognized the potential of OpenType math fonts
[3, 4] and started adopting the font technology for
their own purposes.

X ETEX started in 2008 to introduce limited sup-
port for OpenType math in the scope of an extended
TEX math engine [5]. LuaTEX followed in 2009 with
a more complete implementation, aiming to provide
a full-featured OpenType math engine [6, 7].

Since 2010 both engines and supporting macro
packages and font loaders have been available in the
mainstream TEX Live distribution. At this point,
the technology for OpenType math typesetting was
essentially ready for use, except that there weren’t
many OpenType math fonts available yet.

2 Overview of available math fonts
When OpenType math was introduced, only a sin-
gle math font was available: Cambria Math [8] by
Tiro Typeworks, commissioned by Microsoft and dis-
tributed as a system font with O昀케ce 2007. Cambria
Math was intended as a reference implementation
showcasing the features of OpenType math, illus-
trated in a promotional booklet.

This was followed in 2008 by Asana Math [9]
by Apostolos Syropoulos as the 昀椀rst independently
developed OpenType math font, which was based
on pxfonts by Young Ryu.

When the STIX fonts 1.0 were released in 2010,
they were quickly assembled as an OpenType math
font and released as the XITS fonts [10]. It was only
years later that OpenType versions of STIX fonts
were released with STIX fonts 1.1.1 in 2013 and the
much revised STIX2 fonts in 2016 [11, 12]. At this
time, the earlier XITS and STIX fonts are considered
obsolete; only the STIX2 fonts are maintained.

Perhaps the most signi昀椀cant contribution to the
collection of math fonts came in 2011–2014 with the
development of the Latin Modern and TEX Gyre
math fonts by the GUST font team with support
from various TEX user groups [13, 14, 15, 16].

Another contribution by the GUST team was
the development of a math font for DejaVu in 2015,
which was added to the TEX Gyre collection.

During this same time also came the develop-
ment of Lucida OpenType text and math fonts in
2011–2012, initiated as a TUG project with support
from Bigelow & Holmes and a group of volunteers.
While the Lucida fonts are not free (in either sense),
they are available at a very reasonable price from
TUG [17].

With these developments, there were already
more than 10 choices of OpenType math fonts in
2015, while there had been just a few in 2010.

But there was more to come: In the following
years, more math fonts were added, complementing
various freely available OpenType text fonts.

Starting in 2016, Khaled Hosny developed the
Libertinus OTF fonts [18], derived from Libertine
and Biolinum, and added a Libertinus Math font,
borrowing some symbols and alphabets from other
existing fonts such as the STIX fonts.

A Garamond Math font [19] followed in 2018,
developed by Yuansheng Zhao, using alphabets from
EB Garamond and borrowing a sans-serif alphabet
from Libertinus Math.

Daniel Flipo provided the Erewhon Math and
XCharter Math fonts [20, 21], using alphabets from
Michael Sharpe’s Erewhon1 and XCharter text fonts,
which, in turn, are derived from extended versions
of Adobe Utopia and Bitstream Charter. The math
symbols for Utopia and Charter are based on the
Fourier-GUT and MathDesign packages by Michel
Bovani and Paul Pichaureau.

Another recent contribution by Daniel Flipo is
the KpFonts OTF collection [22], based on KpFonts
by Christophe Caignaert, which, in turn, is derived
from a version of URW Palladio (not Kepler!) and
complemented by a sans-serif and a monospace to
make a complete font family.

1 erewhon backwards is nowhere, which alludes to Utopia.

doi.org/10.47397/tb/44-2/tb137vieth-otmath

An updated survey of OpenType math fonts

https://doi.org/10.47397/tb/44-2/tb137vieth-otmath


214 TUGboat, Volume 44 (2023), No. 2

font name 昀椀rst latest version release sources developer, maintainer ref.
Cambria Math 2007 2019 6.99 MS — Microsoft, Tiro Typeworks [8]
Asana Math 2008 2019 0.958 CTAN — Apostolos Syropoulos [9]
XITS Math 2010 2020 1.302 CTAN Github Khaled Hosny [10]
STIX Math (obsolete) 2010 2014 1.1.1 CTAN Github David Jones, STIpub [11]
STIX Two Math 2016 2021 2.13 CTAN Github David Jones, STIpub [12]
Latin Modern Math 2011 2014 1.959 CTAN GUST GUST font team [13]
TEX Gyre Pagella Math 2012 2016 1.632 CTAN GUST GUST font team [14]
TEX Gyre Termes Math 2012 2016 1.543 CTAN GUST GUST font team [14]
TEX Gyre Bonum Math 2013 2016 1.005 CTAN GUST GUST font team [14]
TEX Gyre Schola Math 2014 2016 1.533 CTAN GUST GUST font team [14]
TEX Gyre DejaVu Math 2015 2016 1.106 CTAN GUST GUST font team [14]
Lucida Bright Math 2012 2023 1.901 TUG — Bigelow & Holmes, TUG [17]
Libertinus Math 2016 2021 7.040 CTAN Github Khaled Hosny [18]
Garamond Math 2018 2022 2022-01 CTAN Github Yuansheng Zhao [19]
Erewhon Math 2019 2023 0.63 CTAN — Daniel Flipo [20]
XCharter Math 2022 2023 0.50 CTAN — Daniel Flipo [21]
KpFonts (Roman, Sans) 2020 2023 0.55 CTAN — Daniel Flipo [22]
GFS Neohellenic Math 2016 2022 1.02 CTAN — Antonis Tsolomitis, GFS [23]
Fira Math 2018 2020 0.3.4 CTAN Github Xiangdong Zeng [24]
Lato Math 2020 2020 0.1 — Github Chenjing Bu [25]
Noto Math 2020 2023 2.539 — Github Noto Fonts Project [27]
New CM Math 2019 2023 4.6 CTAN — Antonis Tsolomitis [29]
Concrete Math 2022 2023 0.50 CTAN — Daniel Flipo [30]
Euler Math 2022 2023 0.50 CTAN — Daniel Flipo, Khaled Hosny [31]

Table 1: List of available OpenType math font packages with dates of 昀椀rst and latest
releases, latest versions, availability of releases and sources, developer or maintainer,
as well as links to resources.

While KpFonts also includes a sans-serif design,
it is not the only sans-serif math font available.

There is GFS Neohellenic Math [23], maintained
by Antonis Tsolomitis, which is based on a sans-serif
font in neo-hellenic style that was developed by the
Greek Font Society (GFS).

Another example is Fira Math [24] developed
by Xiangdong Zeng in 2018, using alphabets from
Fira Sans and corresponding math symbols.

There also exists a project for Lato Math [25],
using alphabets from Lato [26] by Łukasz Dziedzic
combined with symbols borrowed from Fira Math.
Unfortunately, the project seems un昀椀nished and is
unsuitable for distribution in the current state.

Another very recent project, started in 2023,
aims to provide OpenType math functionality for
Noto Math [27]. While the font already exists for
some years, it only provided the glyphs, but it didn’t
come with a MATH table, so was lacking usable
math typesetting functionality. When the project
is done, it will provide another important addition
to the collection of sans-serif math fonts.

Finally, besides all the developments to provide
math support for various existing OpenType fonts,

there has also been renewed interest in extending
and reviving some traditional TEX fonts.

A signi昀椀cant extension is the New Computer
Modern font family [28, 29] by Antonis Tsolomitis,
which extends Latin Modern fonts in many ways.
Besides numerous additions to the text fonts, it also
adds additional Unicode blocks of mathematical and
technical symbols to the math fonts. As a result,
these fonts are now the most complete math fonts,
even more complete than STIX fonts.

Another recent contribution by Daniel Flipo has
revived some traditional TEX fonts, providing OTF
versions of Concrete Math and Euler Math [30, 31].
While Concrete Math was generated from sources,
Euler Math is based on Neo Euler [32] by Khaled
Hosny, started in 2009, which originated from a col-
laboration with Hermann Zapf more than a decade
ago but was long since abandoned [33].

With these developments, we now have more
than 20 choices of OpenType math fonts in 2023
(not counting variants). This is a signi昀椀cant increase
compared to the numbers of 2015 or 2010.

A summary of available OpenType math font
packages is provided in table 1.

Ulrik Vieth



TUGboat, Volume 44 (2023), No. 2 215

font name weights
XITS Math Regular, Bold
Lucida Bright Math Regular, Demi
Erewhon Math Regular, Bold (minimal)
XCharter Math Regular, Bold (minimal)
KpRoman Math Light, Semibold

Regular, Bold
KpSans Math Regular, Bold
New CM Math Regular, Book

Table 2: List of available OpenType math fonts which
provide bold versions or additional weights.

Some OpenType math font packages come with
multiple weights, so the total number of individual
font shapes is now more than 30.

In some cases, there is a fairly complete bold
math font, in other cases, only a bare minimum is
provided, suitable for inline math only.

Besides bold math fonts, there are also some
font packages which provide multiple weights of the
base fonts, such as light or book variants. A sum-
mary of OpenType math fonts with bold or addi-
tional weights is provided in table 2.

Nearly all OpenType math fonts discussed in
this paper are free and readily available from CTAN
or TEX Live. However, some un昀椀nished projects are
currently only available from Github.

The only non-free fonts discussed in this paper
are Cambria Math, which comes as a system font on
Windows, and Lucida, which are sold via TUG. We
have excluded other non-free fonts since we don’t
have any up-to-date information.

In this paper, we want to analyze how the avail-
able math fonts compare with regard to coverage of
symbols and alphabets, and with regard to design
choices of alphabets.

Some of these topics have also been considered
in an earlier review [34], which re昀氀ected the state
of math fonts in 2012, when just a few OpenType
math fonts were available, such as Cambria, Lucida,
Latin Modern, and some TEX Gyre fonts.

In this review, we provide an update on the
state of OpenType math fonts in 2023 with many
updated and many additional fonts available. Given
the number of available fonts, a detailed technical
study of font parameters and glyph metrics is be-
yond the scope of this paper.

Fortunately, some recent studies by the Lua-
MetaTEX developers2 have covered this topic in de-
tail and have also resulted in improvements or re-
pairs of several OpenType math fonts [35, 36, 37].

2 LuaMetaTEX (LMTX) is a follow-up of LuaTEX.

3 Completeness of available math fonts
In the following sections, we want to analyze how
the available math fonts compare with regard to
completeness of symbols and alphabets. In order to
determine the range of coverage, we are essentially
counting the number of Unicode slots provided in a
given OpenType font.

This could be done using a test script such as
Frank Mittelbach’s unicodefonttable package [38,
39], which generates a Unicode font table for a given
font and counts the available glyphs.

A similar approach, more speci昀椀c to math fonts,
would be to adapt the unimath-symbols.ltx table
from the documentation of the unicode-math pack-
age [40], which typesets a font table of Unicode math
symbols encoded in unicode-math-table.tex and
counts the available glyphs.

For our project, we used a modi昀椀ed version of
the latter, providing separate counts for symbols and
alphabetic characters. We have also used a modi昀椀ed
version of the symbol table.

The numbers determined this way represent a
lower estimate for the available glyphs, since we are
only counting the base glyphs in Unicode slots and
only the known symbols.

In most cases, OpenType math fonts provide
more than the base glyphs. For big operators, big
delimiters, wide accents, and similar objects, there
are multiple sizes and extensible versions.

Besides additional sizes, many OpenType math
fonts also provide additional glyph variants that can
be accessed via stylistic sets.

It is di昀케cult to determine an exact number of
glyphs that should be provided to make a math font
complete. The boundary between mathematical and
technical symbols is a little vague and the decision of
which symbols to include or exclude in the encoding
table is somewhat subjective.

Furthermore, Unicode makes new releases every
year, so there could be additional symbols added
from time to time, which could be overlooked if they
are missing in the symbol table.

Some of the most complete OpenType math
fonts amount to 1270 symbols and 1170 alphabetic
characters, so there would be 2440 glyphs in total,
not counting any sizes or variants. If we include
the additional sizes and variants, there will be even
more glyphs needed for a complete math font.

While the glyph variants are usually hidden and
excluded from the count, some font designers also
make them available in the private-use area, which
would add them to the count of Unicode slots, and
the total count could be misleading.

An updated survey of OpenType math fonts



216 TUGboat, Volume 44 (2023), No. 2

3.1 Completeness of math symbols
When analyzing the counts regarding completeness
of math symbols, we 昀椀nd that there are essentially
two groups of OpenType math fonts.

The 昀椀rst group aims for completeness, covering
more or less the complete range of Unicode math,
providing some 1150–1270 math symbols:

New CM Math 1270 symbols
STIX Two Math 1256 symbols
XITS Math 1253 symbols
Lato Math 1221 symbols
Asana Math 1211 symbols
GFS Neohellenic Math 1175 symbols
Noto Math 1162 symbols
Cambria Math 1157 symbols
Lucida Bright Math 951 symbols

In this group we 昀椀nd fonts that were designed for
completeness such as STIX/XITS, Noto, or Lato, but
also some new entries such as New CM Math, which
is currently the most complete math font. Cambria
is also fairly complete by now, after being much less
complete in earlier versions. Lucida is somewhere
in between: It is a little behind the 昀椀rst group, but
way ahead of the second group.

The second group does not aim for complete-
ness and covers only a subset of symbols, providing
some 500–600 math symbols:

Erewhon Math 607 symbols
Garamond Math 604 symbols
Euler Math 602 symbols
Concrete Math 600 symbols
XCharter Math 600 symbols
KpFonts (Roman, Sans) 589 symbols
Libertinus Math 560 symbols
TEX Gyre Math (5×) 556 symbols
Latin Modern Math 554 symbols
Fira Math 508 symbols

Among this group, the Latin Modern and TEX Gyre
math fonts by the GUST font team provide a con-
sistent subset across all fonts, which could be taken
as a starting point for a common subset encoding.
Unfortunately, there is not much agreement among
other fonts, so the details of symbol coverage will be
slightly di昀昀erent for each font.

While a subset of 500–600 math symbols may
seem small compared to the full Unicode symbol
range, it is not that small in practice. If we con-
sider that a traditional TEX with AMS fonts had
no more than 5 fonts of 128 slots to encode all the
math symbols and alphabets, any OpenType font
with 500–600 symbols (not including alphabets) will
be as good as any traditional TEX font.

Finally, it is interesting to note how bold math
fonts compare, if they are provided at all.

Since the regular math fonts already include
bold alphabets for markup, separate bold fonts are
only needed in the context of headings, when formu-
las are switched to bold as a whole.

As shown in table 2, only a few font packages
provide a separate bold math font, and these bold
versions come with a smaller range of math symbols
compared to the regular versions:

XITS Math Bold 499 symbols
KpFonts (Roman, Sans) 495 symbols
Lucida Bright Math Demi 478 symbols
Erewhon Math Bold 124 symbols
XCharter Math Bold 116 symbols

In the cases of Erewhon Math and XCharter Math,
the idea of only providing support for inline math
was taken to the extreme, omitting most of the big
operators and big delimiters, and only including the
basic sizes of the most common symbols.

3.2 Completeness of math alphabets
When analyzing the counts regarding completeness
of math alphabets, we 昀椀nd that there are again sev-
eral groups of OpenType math fonts.

The 昀椀rst group aims for completeness, covering
all of the math alphabets, providing some 1150–1170
alphabetic symbols:

New CM Math 1170 alphabetic
STIX Two Math 1170 alphabetic
XITS Math 1170 alphabetic
Cambria Math 1170 alphabetic
Asana Math 1167 alphabetic
Noto Math 1164 alphabetic
TEX Gyre Math (5×) 1163 alphabetic

The second group is a little less complete, covering
most of the math alphabets with some limitations,
providing some 1050–1150 alphabetic symbols:

Libertinus Math 1145 alphabetic
Erewhon Math 1117 alphabetic
Latin Modern Math 1111 alphabetic
XCharter Math 1108 alphabetic
Concrete Math 1107 alphabetic
Garamond Math 1100 alphabetic
Euler Math 1088 alphabetic
KpFonts (Roman, Sans) 1070 alphabetic
Lucida Bright Math 1038 alphabetic

Among the most common omissions are lowercase
Script and BBold, which are missing in several fonts.
Lucida Math is missing only lowercase bold Script
and bold Fraktur. Garamond Math is missing low-
ercase Greek in sans serif bold italic.

Ulrik Vieth



TUGboat, Volume 44 (2023), No. 2 217

font name regular sans-serif Script Calligr. Fraktur BBold Mono
up it bf bi up it bf bi scr bscr cal bcal frak bfrak bb tt

Cambria Math • • • • • • • • • • • • – – – – • • • • • • • •
Asana Math • • • • • • • • • • • • – – – – • • • • • • • •
XITS Math • • • • • • • • • • • • • – • – • • • • • • • •
STIX Two Math • • • • • • • • • • • • • – • – • • • • • • • •
Latin Modern Math • • • • • • • • • – • – – – – – • • • • • • • •
TEX Gyre Math (5×) • • • • • • • • • • • • – – – – • • • • • • • •
Lucida Bright Math • • • • • • • • • • • – • – • – • • – – • – • •
Libertinus Math • • • • • • • • • • • • – – – – • • • • • • • •
Garamond Math • • • • • • • ◦ • • • • • – • – • • • • • • • •
Erewhon Math • • • • • • • • • – • – – – – – • • • • • • • •
XCharter Math • • • • • • • • • – • – – – – – • • • • • • • •
KpRoman Math • • • • • • • • • – • – • – • – • • • • • – • •
KpSans Math • • • • • • • • • – • – • – • – • • • • • – • •
GFS Neohellenic Math • • • • – – – – • – – – – – – – • – – – • – – –
Fira Math • • • • – – – – – – – – – – – – – – – – • • • •
Lato Math • • • • – – – – – – – – – – – – – – – – • • • •
Noto Math • • • • • • • • • • • • – – – – • • • • • • • •
New CM Math • • • • • • • • • • • • – – – – • • • • • • • •
Concrete Math • • • • • • • • • – • – – – – – • • • • • • • •
Euler Math • • • • • • • • • – • – – – – – • • • • • • • •

Table 3: List of available OpenType math fonts with coverage of math alphabets.
For regular and sans-serif the columns indicate upright, italic, bold and bold italic.
For Script, Calligraphic, Fraktur, BBold, the columns indicate upper- and lowercase.

In previous versions, Concrete and Euler lacked
the sans-serif and typewriter alphabets, but these
have recently been added.

Since Euler is an upright design, it used to have
a special setup, which only provided the upright and
bold slots, while it left out the italic and bold italic
slots. In the most recent version, the italic slots are
now substituted with the upright symbols.

The third group consists of sans-serif designs,
which leave out the sans-serif slots, resulting in much
lower numbers:

Lato Math 606 alphabetic
Fira Math 584 alphabetic
GFS Neohellenic Math 568 alphabetic

Again, the most common omissions are lowercase
Script and BBold, which are missing in several fonts.
GFS Neohellenic is missing lowercase and bold Script
and Fraktur, as well as lowercase BBold. Lato and
Fira are missing all of Script and Fraktur, but they
do provide a full set of BBold.

While many sans-serif fonts provide a reduced
set of math alphabets, Noto is an exception: it pro-
vides the complete range of math alphabets, but
uses an inconsistent setup. While the upright uses a
sans-serif, the italic, bold, and bold italic use a serif
variant.

Finally, it is interesting to note how bold math
fonts compare in terms of math alphabets.

When formulas are switched to bold as a whole
in the context of headings, regular alphabets should
be replaced by bold alphabets, and bold alphabets
should ideally become ultrabold, if available, but in
most cases they just remain bold.

The numbers of alphabetic symbols for bold
fonts, which sometimes leave out typewriter slots,
are usually a little lower than for regular fonts:

XITS Math Bold 1093 alphabetic
KpFonts (Roman, Sans) 1066 alphabetic
Erewhon Math Bold 1001 alphabetic
XCharter Math Bold 1001 alphabetic
Lucida Bright Math Demi 961 alphabetic

Gaps in the regular fonts are usually re昀氀ected in the
bold fonts: Lucida is already missing lowercase bold
Script and bold Fraktur in the regular font, so the
bold font is also missing Script and Fraktur.

Finally, some bold fonts which only provided
a minimal set used to leave out the bold alphabets
when the regular alphabets were switched to bold,
but this practice has now been discontinued.

A summary of available or missing alphabets
in the various math fonts and bold math fonts is
provided in tables 3 and 4.

An updated survey of OpenType math fonts



218 TUGboat, Volume 44 (2023), No. 2

font name regular sans-serif Script Calligr. Fraktur BBold Mono
up it bf bi up it bf bi scr bscr cal bcal frak bfrak bb tt

XITS Math Bold • • • • • • • • • • • • • – • – • • • • • • – –
Lucida Bright Math Demi • • • • • • • • • – • – • – • – – – – – • – • •
Erewhon Math Bold • • • • • • • • • – • – – – – – • • • • • – – –
XCharter Math Bold • • • • • • • • • – • – – – – – • • • • • – – –
KpRoman Math Bold • • • • • • • • • – • – • – – – • • • • • – • •
KpSans Math Bold • • • • • • • • • – • – • – – – • • • • • – • •

Table 4: List of available OpenType bold fonts with coverage of math alphabets.
For regular and sans-serif the columns indicate upright, italic, bold and bold italic.
For Script, Calligraphic, Fraktur, BBold, the columns indicate upper- and lowercase.

While it may be di昀케cult to keep track of the
details, users of OpenType math fonts shouldn’t be
too concerned about missing alphabets, unless they
have special requirements.

In general, OpenType math fonts provide more
math alphabets than traditional TEX math fonts,
and most of the gaps only a昀昀ect speci昀椀c alphabets,
which may not be used much.

It should be safe to assume that nearly all Open-
Type math fonts provide at least the main alphabet
in 4 shapes, including Latin and Greek, as well as a
basic set of Script, Fraktur, and BBold.

There may be gaps when it comes to lowercase
Script, lowercase BBold, bold Script or bold Fraktur,
but these are much less used. There may also be
gaps in the sans-serif or typewriter alphabets.

4 Design choices of math alphabets
For a full-featured OpenType math font, a number
of math alphabets are required:

• 4 shapes of the main font (upright, italic, bold,
bold italic), each including Latin and Greek,

• 4 shapes of a sans-serif (upright, italic, bold,
bold italic), some including Latin and Greek,

• 2 shapes of Script/Calligraphic (regular, bold),
each including upper- and lowercase,

• 2 shapes of Fraktur/Blackletter (regular, bold),
each including upper- and lowercase,

• 1 shape of Blackboard bold or BBold (regular),
also including upper- and lowercase,

• 1 shape of a monospace/typewriter (regular),
also including upper- and lowercase.

To provide all these alphabets, it will be necessary to
assemble glyphs from multiple sources and to adjust
them to match the main font.

When dealing with a comprehensive font family,
some choices may be obvious, such as choosing a
sans-serif or a typewriter font, but in most cases
some design decisions will be needed.

In the following sections, we want to consider
how the available OpenType math fonts compare
with regard to design choices of math alphabets for
Script, Fraktur, and Blackboard Bold.

While some design choices in existing fonts may
be unfortunate, it is hard to change anything, once
a font has been released and put into use for some
time. It is usually necessary to create a new variant
when you want to revise some design choices.

This is what happened to the STIX fonts, which
were renamed to STIX Two after a major revision to
the glyph shapes and some math alphabets.

Similarly, the New Computer Modern fonts can
be considered a new variant of Latin Modern. While
New Computer Modern can choose to disagree with
Latin Modern and use di昀昀erent choices, any future
revisions of Latin Modern will likely have to respect
previous choices for compatibility.

4.1 Design choices of sans-serif
When choosing a sans-serif font for use in math, it
is important to keep in mind that math alphabets
are not meant for generic font switches, but for se-
mantic markup of symbols in a formula. In physics,
for example, bold sans-serif italic might be used for
tensors, while bold italic might be used for vectors.

Besides providing a suitable range of Latin and
Greek, the sans-serif glyphs also need to be clearly
distinguishable from the corresponding serif glyphs
based on their font properties, such as weight, width,
contrast or stroke thickness.

While having some contrast between serif and
sans-serif can be helpful, the sans-serif design should
not be too incompatible with the main font, since
the symbols from di昀昀erent alphabets should work
together in a formula.

In general, it is better to combine serif and sans-
serif fonts of similar weight and width, having just
enough contrast in between to make them clearly
distinguishable. It is also a good idea to use familiar
shapes and to avoid any unusual shapes.

Ulrik Vieth



TUGboat, Volume 44 (2023), No. 2 219

4.2 Design choices of Script/Calligraphic
When it comes to choices for Script or Calligraphic,
there are two di昀昀erent styles how users expect a
mathematical Script to look like.

The 昀椀rst group uses a restrained style of Script
or Calligraphic. This includes the traditional styles
used in Computer Modern, Euler Script, and Lucida
Calligraphic:3

Neohellenic 𝒜ℬ𝒞𝒳𝒴𝒵
Concrete 𝒜ℬ𝒞𝒳𝒴𝒵
Garamond 𝒜ℬ𝒞𝒳𝒴𝒵 (StylisticSet=3)
KpFonts 𝒜ℬ𝒞𝒳𝒴𝒵 (StylisticSet=1)
XITS 𝒜ℬ𝒞𝒳𝒴𝒵 (StylisticSet=3)
Lucida 𝒜ℬ𝒞𝒳𝒴𝒵 (StylisticSet=4)
Euler 𝒜ℬ𝒞𝒳𝒴𝒵
LM 𝒜ℬ𝒞𝒳𝒴𝒵
New CM 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏
STIX Two 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏
Cambria 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏
TG DejaVu 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏

The second group uses a more fancy and elaborate
style of formal Script. This includes the new design
of Lucida Script:

Erewhon 𝒜ℬ𝒞𝒳𝒴𝒵
XCharter 𝒜ℬ𝒞𝒳𝒴𝒵
KpFonts 𝒜ℬ𝒞𝒳𝒴𝒵
STIX Two 𝒜ℬ𝒞𝒳𝒴𝒵 (StylisticSet=1)
XITS 𝒜ℬ𝒞 𝒳 𝒴 𝒵 𝒶𝒷𝒸𝓍𝓎𝓏
Libertinus 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏
Garamond 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏
Noto 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏
TG Termes 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏
TG Schola 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏
Lucida 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏

TEX Gyre Pagella uses a unique style, which could
make this font’s Script less usable:

TG Pagella 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏
Several OpenType math fonts also provide an

alternate style of Script or Calligraphic, which can
be accessed using stylistic sets. These variants have
also been included in the overview.

It is interesting to note that the STIX Two fonts
have reversed a design decision of the XITS fonts
regarding the choice of Script, and the designs have
also been modi昀椀ed. New Computer Modern extends
the Script from Latin Modern using the same style,
while Concrete Math has adopted the original style
of Calligraphic from Computer Modern.

3 Some fonts have been scaled to match the size of other
fonts: Lucida Calligraphic to 90% and Lucida Script to 85%,
DejaVu to 90%, Termes, Pagella, and Schola to 95%.

4.3 Design choices of Fraktur/Blackletter
When it comes to choices for Fraktur or Blackletter,
there is only one preferred style for how users expect
a mathematical Fraktur to look.

The 昀椀rst group includes a majority of math
font packages which use this typical style of Fraktur.
Many fonts make use of Euler Fraktur, such as Latin
Modern, New Computer Modern, and Pagella:4

LM 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
New CM 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
Concrete 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
Euler 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
Erewhon 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
XCharter 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
TG Pagella 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
TG Termes 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
Noto 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
Garamond 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
Cambria 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
Libertinus 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
STIX Two 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
XITS 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
TG Schola 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
TG DejaVu 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷

The second group uses a Blackletter style instead
of Fraktur, which is fairly unusual and could make
these fonts less usable for this variant:

Neohellenic 𝔄𝔅ℭ𝔛𝔜ℨ
Lucida 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
KpFonts 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷

These designs could be just a fallback option when
no suitable design of Fraktur was available.

4.4 Design choices of Blackboard Bold
When it comes to choices for Blackboard Bold, there
are again two styles using a sans-serif or serif style
of the BBold letters.

The 昀椀rst group uses a sans-serif style of BBold:
LM 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ 𝕒𝕓𝕔 𝟘𝟙𝟚
Euler 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔𝟘𝟙𝟚
Erewhon 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔𝟘𝟙𝟚
STIX Two 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔𝟘𝟙𝟚
XITS 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐 ℤ 𝕒𝕓𝕔 𝟘𝟙𝟚
Lucida 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ
KpSans 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ
Neohellenic 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ
Fira 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔
Noto 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔𝟘𝟙𝟚
Lato 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔𝟘𝟙𝟚

4 Some fonts have been scaled to match the size of other
fonts: DejaVu to 90%, Schola to 95%. Termes, Pagella, and
Lucida Blackletter are not scaled and shown at 100%.

An updated survey of OpenType math fonts



220 TUGboat, Volume 44 (2023), No. 2

The second group uses a serif style of BBold:5

New CM 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔 𝟘𝟙𝟚
Concrete 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔𝟘𝟙𝟚
XCharter 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔𝟘𝟙𝟚
KpRoman 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ
Garamond 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔 𝟘𝟙𝟚
Libertinus 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔 𝟘𝟙𝟚
Cambria 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔𝟘𝟙𝟚
TG Schola 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ 𝕒𝕓𝕔 𝟘𝟙𝟚
TG Termes 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ 𝕒𝕓𝕔 𝟘𝟙𝟚
TG Pagella 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ 𝕒𝕓𝕔 𝟘𝟙𝟚
TG DejaVu 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ 𝕒𝕓𝕔 𝟘𝟙𝟚

While Latin Modern has adopted a sans-serif BBold,
which also includes lowercase and numerals, New
Computer Modern and Concrete Math have reverted
to the traditional style of BBold from AMS fonts,
at least for the uppercase. Many other fonts have
chosen a scaled or adjusted variant of the sans-serif
BBold from STIX/XITS.

5 Summary and conclusions
OpenType math fonts were introduced more than
15 years ago. Over the years, more math fonts have
been developed and added to the font collection. As
of this year, we have more than 20 choices of Open-
Type math fonts available (not counting variants)
and more than 30 individual fonts (including vari-
ants and additional weights).

Nearly all OpenType math fonts discussed in
this paper are free and readily available from CTAN
or TEX Live, except for some non-free fonts and
some un昀椀nished projects from Github.

The available choices of OpenType math fonts
cover most of what was previously available in other
formats, including traditional TEX fonts (Computer
Modern, Concrete, Euler), standard PostScript fonts
(Times, Palatino), and other free PostScript fonts
(Garamond, Utopia, Charter, DejaVu).

In our analysis, we have analyzed the coverage
of math symbols and alphabets, as well as design
choices and available font features.

While the range of symbols and alphabets may
vary for each font, most available fonts will be good
enough for general use, providing at least as much
as traditional TEX fonts or even more.

Regarding design choices, most available font
packages follow typical styles of how users expect
mathematical Script, Fraktur, or Blackboard Bold
to look. There are only few exceptions which use a
unique or unusual style.

5 Some fonts have been scaled to match the size of other
fonts: DejaVu to 85%, Termes, Pagella, and Schola to 90%.
Lucida is not scaled and shown at 100%.

In general, OpenType math fonts are not ex-
pected to provide the same level of stability and com-
patibility as traditional TEX fonts. While it should
be possible to reprocess existing documents, you can-
not expect the exact same line breaks, unless you
archive and use speci昀椀c versions of fonts.

In some cases, OpenType math fonts happen to
be stable simply because they haven’t been updated
for years, but they may still exhibit the same bugs or
limitations. Over time, it becomes more and more
di昀케cult to change anything. The longer a font has
been left unchanged, the more likely that it will be
necessary to introduce new variants for major revi-
sions.

While font development is ongoing, OpenType
math fonts are readily available for use today.

References
[1] Murray Sargent: High-quality editing and

display of mathematical text in O昀케ce 2007.
https://learn.microsoft.com/en-us/
archive/blogs/murrays

[2] Microsoft Typography: OpenType
speci昀椀cation, version 1.9, December 2021.
https://learn.microsoft.com/en-us/
typography/opentype/spec

[3] Ulrik Vieth: Do we need a Cork math font
encoding? TUGboat, 29(3), 426–434, 2008.
https://tug.org/TUGboat/tb29-3/
tb93vieth.pdf
Reprinted in MAPS, 38, 3–11, 2009.
https://ntg.nl/maps/38/02.pdf

[4] Ulrik Vieth: OpenType Math Illuminated.
TUGboat, 30(1), 22–31, 2009.
https://tug.org/TUGboat/tb30-1/
tb94vieth.pdf
Reprinted in MAPS, 38, 12–21, 2009.
https://ntg.nl/maps/38/03.pdf

[5] Jonathan Kew: X ETEX Live.
TUGboat, 29(1), 151–156, 2008.
https://tug.org/TUGboat/tb29-1/tb91kew.
pdf

[6] Taco Hoekwater: Math in LuaTEX 0.40.
MAPS, 38, 22–31, 2009.
https://ntg.nl/maps/38/04.pdf

[7] Hans Hagen: LuaTEX math enhancements.
TUGboat, 37(3), 269–274, 2016.
https://tug.org/TUGboat/tb37-3/
tb117hagen-otmath.pdf

[8] Tiro Typeworks: Cambria Math.
https://tiro.com/projects.html

[9] Apostolos Syropoulos: Asana Math.
https://ctan.org/pkg/asana-math

Ulrik Vieth

https://learn.microsoft.com/en-us/archive/blogs/murrays
https://learn.microsoft.com/en-us/archive/blogs/murrays
https://learn.microsoft.com/en-us/typography/opentype/spec
https://learn.microsoft.com/en-us/typography/opentype/spec
https://tug.org/TUGboat/tb29-3/tb93vieth.pdf
https://tug.org/TUGboat/tb29-3/tb93vieth.pdf
https://ntg.nl/maps/38/02.pdf
https://tug.org/TUGboat/tb30-1/tb94vieth.pdf
https://tug.org/TUGboat/tb30-1/tb94vieth.pdf
https://ntg.nl/maps/38/03.pdf
https://tug.org/TUGboat/tb29-1/tb91kew.pdf
https://tug.org/TUGboat/tb29-1/tb91kew.pdf
https://ntg.nl/maps/38/04.pdf
https://tug.org/TUGboat/tb37-3/tb117hagen-otmath.pdf
https://tug.org/TUGboat/tb37-3/tb117hagen-otmath.pdf
https://tiro.com/projects.html
https://ctan.org/pkg/asana-math


TUGboat, Volume 44 (2023), No. 2 221

[10] Khaled Hosny: XITS font package.
https://ctan.org/pkg/xits
https://github.com/alif-type/xits

[11] STIX Consortium: STIX font package.
https://ctan.org/pkg/stix

[12] STIX Consortium: STIX2 font package.
https://ctan.org/pkg/stix2-otf
https://github.com/stipub/stixfonts

[13] GUST e-foundry: Latin Modern Math.
https://ctan.org/pkg/lm-math
https://gust.org.pl/projects/e-foundry

[14] GUST e-foundry: TEX Gyre Math.
https://ctan.org/pkg/tex-gyre-math
https://gust.org.pl/projects/e-foundry

[15] Bogusław Jackowski, Piotr Strzelczyk, Piotr
Pianowski: GUST e-foundry font projects.
TUGboat, 37(3), 269–274, 2016.
https://tug.org/TUGboat/tb37-3/
tb117jackowski.pdf

[16] Bogusław Jackowski, Piotr Strzelczyk, Piotr
Pianowski: Parametric math symbol fonts.
TUGboat, 38(2), 208–211, 2017.
https://tug.org/TUGboat/tb38-2/
tb119jackowski.pdf

[17] TEX Users Group: Lucida fonts from TUG.
https://tug.org/lucida/

[18] Khaled Hosny: Libertinus Fonts.
https://ctan.org/pkg/libertinus-fonts
https://github.com/alerque/libertinus

[19] Yuansheng Zhao, Xiangdong Zeng:
Garamond Math.
https://ctan.org/pkg/garamond-math
https://github.com/YuanshengZhao/
Garamond-Math

[20] Daniel Flipo: Erewhon Math.
https://ctan.org/pkg/erewhon-math

[21] Daniel Flipo: XCharter Math.
https://ctan.org/pkg/xcharter-math

[22] Daniel Flipo: KpFonts OTF package.
https://ctan.org/pkg/kpfonts-otf

[23] Antonis Tsolomitis: GFS Neohellenic Math.
https://ctan.org/pkg/gfsneohellenicmath

[24] Xiangdong Zeng: Fira Math.
https://ctan.org/pkg/firamath
https://github.com/firamath/firamath

[25] Chenjing Bu: Lato Math.
https://github.com/abccsss/LatoMath

[26] Łukasz Dziedzic: Lato Fonts.
https://github.com/latofonts/
lato-source

[27] Noto Fonts Project: Noto Math.
https://github.com/notofonts/math

[28] Antonis Tsolomitis: New Computer Modern
font family. TUGboat, 42(1), 52–55, 2021.
https://tug.org/TUGboat/tb42-1/
tb130tsolomitis-newcm.pdf

[29] Antonis Tsolomitis: New Computer Modern.
https://ctan.org/pkg/newcomputermodern

[30] Daniel Flipo: Concrete Math.
https://ctan.org/pkg/concmath-otf

[31] Daniel Flipo: Euler Math.
https://ctan.org/pkg/euler-math

[32] Khaled Hosny: Neo Euler — An abandoned
OpenType port of Euler math font.
https://github.com/aliftype/euler-otf

[33] Hans Hagen, Taco Hoekwater, Volker Schaa:
Reshaping Euler: A collaboration with
Hermann Zapf.
TUGboat, 29(3), 283–287, 2008.
https://tug.org/TUGboat/tb29-2/
tb92hagen-euler.pdf

[34] Ulrik Vieth: OpenType math font
development: Progress and challenges.
TUGboat, 33(3), 302–308, 2012.
https://tug.org/TUGboat/tb33-3/
tb105vieth.pdf

[35] Hans Hagen, Mikael P. Sundqvist:
Pushing math forward with ConTEXt LMTX.
TUGboat, 43(2), 202–206, 2022.
https://tug.org/TUGboat/tb43-2/
tb134hagen-math.pdf

[36] Hans Hagen, Mikael P. Sundqvist:
New directions in math fonts.
TUGboat, 43(3), 300–310, 2022.
https://tug.org/TUGboat/tb43-3/
tb135hagen-mathchange.pdf

[37] Hans Hagen, Mikael P. Sundqvist:
Patching Lucida Bright Math.
TUGboat, 43(3), 311–316, 2022.
https://tug.org/TUGboat/tb43-3/
tb135hagen-lucida.pdf

[38] Frank Mittelbach:
The unicodefonttable package.
TUGboat, 42(3),287–304, 2021.
https://tug.org/TUGboat/tb42-3/
tb132mitt-unicodefonttable.pdf

[39] Frank Mittelbach: unicodefonttable.
https://ctan.org/pkg/unicodefonttable

[40] Will Robertson: unicode-math package.
https://ctan.org/pkg/unicode-math⋄ Ulrik Vieth

Stuttgart, Germany
ulrik dot vieth (at) arcor dot de

An updated survey of OpenType math fonts

https://ctan.org/pkg/xits
https://github.com/alif-type/xits
https://ctan.org/pkg/stix
https://ctan.org/pkg/stix2-otf
https://github.com/stipub/stixfonts
https://ctan.org/pkg/lm-math
https://gust.org.pl/projects/e-foundry
https://ctan.org/pkg/tex-gyre-math
https://gust.org.pl/projects/e-foundry
https://tug.org/TUGboat/tb37-3/tb117jackowski.pdf
https://tug.org/TUGboat/tb37-3/tb117jackowski.pdf
https://tug.org/TUGboat/tb38-2/tb119jackowski.pdf
https://tug.org/TUGboat/tb38-2/tb119jackowski.pdf
https://tug.org/lucida/
https://ctan.org/pkg/libertinus-fonts
https://github.com/alerque/libertinus
https://ctan.org/pkg/garamond-math
https://github.com/YuanshengZhao/Garamond-Math
https://github.com/YuanshengZhao/Garamond-Math
https://ctan.org/pkg/erewhon-math
https://ctan.org/pkg/xcharter-math
https://ctan.org/pkg/kpfonts-otf
https://ctan.org/pkg/gfsneohellenicmath
https://ctan.org/pkg/firamath
https://github.com/firamath/firamath
https://github.com/abccsss/LatoMath
https://github.com/latofonts/lato-source
https://github.com/latofonts/lato-source
https://github.com/notofonts/math
https://tug.org/TUGboat/tb42-1/tb130tsolomitis-newcm.pdf
https://tug.org/TUGboat/tb42-1/tb130tsolomitis-newcm.pdf
https://ctan.org/pkg/newcomputermodern
https://ctan.org/pkg/concmath-otf
https://ctan.org/pkg/euler-math
https://github.com/aliftype/euler-otf
https://tug.org/TUGboat/tb29-2/tb92hagen-euler.pdf
https://tug.org/TUGboat/tb29-2/tb92hagen-euler.pdf
https://tug.org/TUGboat/tb33-3/tb105vieth.pdf
https://tug.org/TUGboat/tb33-3/tb105vieth.pdf
https://tug.org/TUGboat/tb43-2/tb134hagen-math.pdf
https://tug.org/TUGboat/tb43-2/tb134hagen-math.pdf
https://tug.org/TUGboat/tb43-3/tb135hagen-mathchange.pdf
https://tug.org/TUGboat/tb43-3/tb135hagen-mathchange.pdf
https://tug.org/TUGboat/tb43-3/tb135hagen-lucida.pdf
https://tug.org/TUGboat/tb43-3/tb135hagen-lucida.pdf
https://tug.org/TUGboat/tb42-3/tb132mitt-unicodefonttable.pdf
https://tug.org/TUGboat/tb42-3/tb132mitt-unicodefonttable.pdf
https://ctan.org/pkg/unicodefonttable
https://ctan.org/pkg/unicode-math


222 TUGboat, Volume 44 (2023), No. 2

Appendix: Font samples
As requested by conference participants, a selection
of font samples has been included as an appendix.

The font samples show some typical equations
from theoretical physics, using the proper notation
conventions, such as bold italic for vectors.

These examples only use the main alphabets
and don’t use any Script, Fraktur or BBold. A much
wider variety of examples would be needed to cover
other notations. Other resources often use mathe-
matical theorems in font samples, which may appear
di昀昀erently since they focus on other material.

Cambria and Lucida fonts
This section shows font samples for Cambria Math
[8] and Lucida Bright Math [17], both of which are
unique designs and also not free. Since Lucida tends
to run larger and wider, the font samples had to be
reduced to 昀椀t the column width.

Cambria Math:Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0𝛁𝜆 + 𝜇0𝜕𝒋𝜕𝑡Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋iℏ𝜕𝜓𝜕𝑡 = 12𝑚 �ℏi 𝛁 − 𝑞𝑨(𝒓)�2𝜓 + 𝑞𝜙(𝒓)𝜓𝛾𝛼 �ℏi 𝜕𝛼 − 𝑞𝐴𝛼�𝜓 +𝑚0𝑐𝜓 = 0
𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈

Lucida Bright Math (95%):

Δ𝑬− 1𝑐2
𝜕2𝑬𝜕𝑡2 = 1𝜀0𝛁𝜆+𝜇0 𝜕𝒋𝜕𝑡

Δ𝑩− 1𝑐2
𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁×𝒋

iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁− 𝑞𝑨(𝒓))2𝜓+𝑞𝜙(𝒓)𝜓
𝛾𝛼 (ℏi 𝜕𝛼 −𝑞𝐴𝛼)𝜓+𝑚0𝑐𝜓 = 0
𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 +𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈

Variants of traditional TEX fonts
This section shows samples for variants of traditional
TEX fonts, derived from Computer Modern, such as
Latin Modern [13], New Computer Modern [29], and
Concrete Math [30]. It also includes font samples for
Euler Math [31] using an upright style.

Latin Modern (regular):Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0 𝛁𝜆 + 𝜇0 𝜕𝒋𝜕𝑡Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓) 𝜓𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼) 𝜓 + 𝑚0𝑐 𝜓 = 0𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈
New Computer Modern (book):Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0𝛁𝜆+ 𝜇0 𝜕𝒋𝜕𝑡Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁× 𝒋iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁− 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓) 𝜓𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼)𝜓 +𝑚0𝑐 𝜓 = 0𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈
Concrete Math:Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0𝛁𝜆 + 𝜇0 𝜕𝒋𝜕𝑡

Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁× 𝒋
iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁− 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓) 𝜓
𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼)𝜓 +𝑚0𝑐 𝜓 = 0
𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀 𝜇𝜈

Euler Math:Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0𝛁𝜆 + 𝜇0 𝜕𝒋𝜕𝑡Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁× 𝒋
iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓+ 𝑞𝜙(𝒓)𝜓
𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼)𝜓+𝑚0𝑐𝜓 = 0
𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 +𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈

Ulrik Vieth



TUGboat, Volume 44 (2023), No. 2 223

Variants of fonts derived from Times
This section shows samples of variants of traditional
PostScript fonts derived from Times, such as TEX
Gyre Termes [14], XITS (based on STIX 1.0) [10],
and STIX Two [12].

While TEX Gyre and XITS follow the traditional
look of Times, STIX Two includes a comprehensive
redesign of the letter shapes for improved readabil-
ity, which looks clearly di昀昀erent.

Further information about the redesign can be
found in the package documentation, but it should
be clear that STIX Two has been much improved,
although it deviates from the traditional look.

TEX Gyre Termes:Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0 𝛁𝜆 + 𝜇0 𝜕𝒋𝜕𝑡
Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋
iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓) 𝜓
𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼) 𝜓 + 𝑚0𝑐 𝜓 = 0
𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈

XITS (based on STIX 1.0):

Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0 𝛁𝜆 + 𝜇0 𝜕𝒋𝜕𝑡
Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋
iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓) 𝜓
𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼) 𝜓 + 𝑚0𝑐 𝜓 = 0
𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈

STIX Two:Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0𝛁𝜆 + 𝜇0 𝜕𝒋𝜕𝑡Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋
iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓) 𝜓
𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼) 𝜓 + 𝑚0𝑐 𝜓 = 0
𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈

Variants of fonts derived from Palatino
This section shows samples of variants of traditional
PostScript fonts derived from Palatino, such as TEX
Gyre Pagella [14], KpRoman [22] derived from URW
Palladio, and Asana Math [9].

While the letter shapes should be expected to
be similar, there are signi昀椀cant di昀昀erences in the
design, sizing, and spacing of delimiters, and also in
the placement of superscripts and subscripts.

Besides the di昀昀erences in quality, KpFonts also
provides a choice of additional weights, but only the
regular version is shown here for comparison.

TEX Gyre Pagella:Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0 𝛁𝜆 + 𝜇0 𝜕𝒋𝜕𝑡
Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋
iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓) 𝜓
𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼) 𝜓 + 𝑚0𝑐 𝜓 = 0
𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈

KpRoman Math (regular):Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0𝛁𝜆 + 𝜇0𝜕𝒋𝜕𝑡
Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋
iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓) 𝜓
𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼) 𝜓 + 𝑚0𝑐 𝜓 = 0
𝑅𝜇𝜈 − 12𝑅𝑔 𝜇𝜈 + 𝛬𝑔 𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈

Asana Math:Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0𝛁𝜆 + 𝜇0𝜕𝒋𝜕𝑡Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋iℏ𝜕𝜓𝜕𝑡 = 12𝑚 �ℏi 𝛁 − 𝑞𝑨(𝒓)�2𝜓 + 𝑞𝜙(𝒓) 𝜓𝛾𝛼 �ℏi 𝜕𝛼 − 𝑞𝐴𝛼�𝜓 + 𝑚0𝑐 𝜓 = 0𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈
An updated survey of OpenType math fonts



224 TUGboat, Volume 44 (2023), No. 2

Other choices of serif fonts
This section shows font samples of other serif fonts,
derived from traditional PostScript fonts or other
freely available fonts. These include several of the
TEX Gyre fonts [14], such as Schola, Bonum, and
DejaVu, as well as other fonts such as Libertinus
[18], Garamond Math [19], Erewhon, and XCharter
Math [20, 21].

Since the Schola, Bonum, DejaVu and XCharter
designs tend to run larger and wider, several font
samples had to be reduced to 昀椀t the column width.

Along with the scaling also comes a reduction
in height, which may not always be desirable.

TEX Gyre Schola (95%):Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0 𝛁𝜆 + 𝜇0 𝜕𝒋𝜕𝑡Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋
iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓) 𝜓
𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼) 𝜓 + 𝑚0𝑐 𝜓 = 0
𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈

TEX Gyre Bonum (95%):Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0 𝛁𝜆 + 𝜇0 𝜕𝒋𝜕𝑡
Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋
iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓) 𝜓
𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼) 𝜓 + 𝑚0𝑐 𝜓 = 0
𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀 𝜇𝜈

TEX Gyre DejaVu (95%):Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0 𝛁𝜆 + 𝜇0 𝜕𝒋𝜕𝑡
Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋
iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓) 𝜓
𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼) 𝜓 + 𝑚0𝑐 𝜓 = 0
𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈

Libertinus Math:Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0𝛁𝜆 + 𝜇0 𝜕𝒋𝜕𝑡Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓) 𝜓𝛾 𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼) 𝜓 + 𝑚0𝑐 𝜓 = 0𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀 𝜇𝜈
Garamond Math:Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0𝛁𝜆 + 𝜇0 𝜕𝒋𝜕𝑡Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓) 𝜓𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼) 𝜓 + 𝑚0𝑐 𝜓 = 0𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈
Erewhon Math (Utopia):

Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0𝛁𝜆 + 𝜇0 𝜕𝒋𝜕𝑡
Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋
iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓)𝜓
𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼)𝜓 +𝑚0𝑐𝜓 = 0
𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀 𝜇𝜈

XCharter Math (95%):

Δ𝑬 − 1𝑐2 𝜕
2𝑬𝜕𝑡2 = 1𝜀0𝛁𝜆 + 𝜇0 𝜕𝒋𝜕𝑡

Δ𝑩 − 1𝑐2 𝜕
2𝑩𝜕𝑡2 = −𝜇0𝛁× 𝒋

iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓)𝜓
𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼)𝜓 +𝑚0𝑐𝜓 = 0
𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈

Ulrik Vieth



TUGboat, Volume 44 (2023), No. 2 225

Choices of sans-serif fonts
This section shows font samples of sans-serif fonts,
derived from freely available fonts. These include
KpSans [22], Neohellenic Math [23], Fira Math [24],
Lato Math [25] (unsupported), and Noto Math [27].
Unfortunately, it isn’t known which sans-serif de-
sign was chosen in the KpFonts distribution or from
where it originates.

At the moment, Noto Math uses an inconsis-
tent setup of sans-serif and serif alphabets, which
has been partially corrected by substitutions in the
example, but this isn’t always possible.

KpSans Math:Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0𝛁𝜆 + 𝜇0 𝜕𝒋𝜕𝑡
Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋
iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓) 𝜓
𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼) 𝜓 + 𝑚0𝑐𝜓 = 0
𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈

Neohellenic Math:Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0 𝛁𝜆 + 𝜇0 𝜕𝒋𝜕𝑡Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓) 𝜓𝛾 𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼) 𝜓 + 𝑚0𝑐 𝜓 = 0𝑅 𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀 𝜇𝜈

Lato Math:Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0𝛁𝜆 + 𝜇0𝜕𝒋𝜕𝑡Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓) 𝜓𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼) 𝜓 + 𝑚0𝑐𝜓 = 0𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈
Fira Math:Δ𝑬 − 1𝑐2 𝜕2𝑬𝜕𝑡2 = 1𝜀0𝛁𝜆 + 𝜇0 𝜕𝒋𝜕𝑡Δ𝑩 − 1𝑐2 𝜕2𝑩𝜕𝑡2 = −𝜇0𝛁 × 𝒋iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝛁 − 𝑞𝑨(𝒓))2𝜓 + 𝑞𝜙(𝒓)𝜓𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼)𝜓 + 𝑚0𝑐𝜓 = 0𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈
Noto Math:Δ𝙀 − 1𝑐2 𝜕2𝙀𝜕𝑡2 = 1𝜀0𝝯𝜆 + 𝜇0 𝜕𝙟𝜕𝑡Δ𝘽 − 1𝑐2 𝜕2𝘽𝜕𝑡2 = −𝜇0𝝯 × 𝙟

iℏ𝜕𝜓𝜕𝑡 = 12𝑚 (ℏi 𝝯 − 𝑞𝘼(𝙧))2𝜓 + 𝑞𝜙(𝙧)𝜓
𝛾𝛼 (ℏi 𝜕𝛼 − 𝑞𝐴𝛼)𝜓 +𝑚0𝑐𝜓 = 0
𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 + 𝛬𝑔𝜇𝜈 = −8𝜋𝐺𝑐2 𝑀𝜇𝜈

An updated survey of OpenType math fonts



226 TUGboat, Volume 44 (2023), No. 2

Standardizing OpenType math fonts

Hans Hagen, Mikael P. Sundqvist

1 Introduction

ConTEXt has always had a good support for the
typesetting of mathematics. ConTEXt MkII uses the
pdfTEX engine and hence traditional (Type 1) fonts.
Several math fonts are available, specifically designed
to work seamlessly with TEX. ConTEXt MkIV, the
successor version, utilizes the LuaTEX engine, provid-
ing support not only for traditional fonts but also for
OpenType Unicode math fonts. Unlike the X ETEX
engine, which interpreted these new fonts in a man-
ner similar to traditional TEX fonts, LuaTEX adheres
more closely to the (unfortunately somewhat vague)
OpenType specification.1 When new fonts appeared,
some were more like the traditional fonts, others
more like OpenType Unicode math fonts. This leads
to difficulties in achieving consistent results across
different fonts and might be one reason that the
Unicode engines are not yet used as much as they
probably should.

In autumn 2021 we started to discuss how to
improve the typesetting of OpenType Unicode math-
ematics, and it was natural to go on and do this
for the LuaMetaTEX engine, and hence for Con-
TEXt LMTX. Since then, we have been engaging in
daily discussions covering finer details such as glyphs,
kerning, accent placement, inter-atom spacing (what
we refer to as math microtypography), as well as
broader aspects like formula alignment and formula
line breaking (math macrotypography). This article
will primarily focus on the finer details. Specifically,
we will explore the various choices we have made
throughout the process. The OpenType Unicode
math specification is incomplete; some aspects are
missing, while others remain ambiguous. This issue
is exacerbated by the varying behaviors of fonts.

We make runtime changes to fonts, and add a
few additional font parameters that we missed. As
a result, we deviate from the standard set by Mi-
crosoft (or rather, we choose to interpret it in our
own way) and exercise the freedom to make runtime
changes to font parameters. Regarding this aspect,
we firmly believe that our results often align more
closely with the original intentions of the font design-
ers. Indeed, the existence of “oddities” in these fonts
may be attributed to the lack of an engine, during
their creation, that supported all the various features,
making testing difficult, if not essentially impossible.
Within ConTEXt LMTX, we have the necessary sup-

1 learn.microsoft.com/en-us/typography/opentype/

spec/math

port, and we can activate various helpers that allow
us to closely examine formulas. Without them our
work would not have been possible.

Ultimately, we hope and believe that we have
made straightforward yet effective choices, rendering
the existing OpenType Unicode math fonts usable.
We hope that this article might be inspiring and
useful for others who aim to achieve well-designed,
modern math typesetting.

2 Traditional vs. OpenType math fonts

There is a fundamental difference between traditional
TEX math fonts and OpenType Unicode fonts. In
the traditional approach, a math setup consists of
multiple independent fonts. There is no direct rela-
tionship between a math italic x and an ˆ on top
of it. The engine handles the positioning almost
independently of the shapes involved. There can be
a shift to the right of x̂ triggered by kerning with a
so-called skew character but that is it.

A somewhat loose coupling between fonts is
present when we go from a base character to a larger
variant that itself can point to a larger one and
eventually end up at an extensible recipe. But the
base character and that sequence are normally from
different fonts. The assumption is that they are
designed as a combination. In an OpenType font,
variants and extensibles more directly relate to a
base character.

Then there is the italic correction which adds
kerns between a character and what follows depend-
ing on the situation. It is not, in fact, a true italic
correction, but more a hack where an untrue width is
compensated for. A traditional TEX engine defaults
to adding these corrections and selectively removes
or compensates for them. In traditional TEX this
fake width helps placing the subscript properly while
the italic correction is added to the advance width
when attaching subscripts and/or moving to the next
atom.

In an OpenType font we see these phenomena
translated into features. Instead of many math fonts
we have one font. This means that one can have
relations between glyphs, although in practice lit-
tle of that happens. One example is that a specific
character can have script and scriptscript sizes with
a somewhat different design. Another is that there
can be alternate shapes for the same character, and
yet another is substitution of (for instance) dotted
characters by dotless ones. However, from the per-
spective of features a math font is rather simple and
undemanding.

Another property is that in an OpenType math
font the real widths are used in combination with

doi.org/10.47397/tb/44-2/tb137sundqvist-otmath

Hans Hagen, Mikael P. Sundqvist

https://learn.microsoft.com/en-us/typography/opentype/spec/math
https://learn.microsoft.com/en-us/typography/opentype/spec/math
https://doi.org/10.47397/tb/44-2/tb137sundqvist-otmath


TUGboat, Volume 44 (2023), No. 2 227

optional italic correction when a sequence of charac-
ters is considered text, with the exception of large
operators where italic correction is used for position-
ing limits on top and below. Instead of abusing italic
corrections this way, a system of staircase kerns in
each corner of a shape is possible.

Then there are top (but not bottom) anchor
positions that, like marks in text fonts, can be used
to position accents on top of base characters or boxes.
And while we talk of accents: they can come with
so-called flat substitutions for situations where we
want less height.

All this is driven by a bunch of font parameters
that (supposedly) relate to the design of the font.
Some of them concern rules that are being used in
constructing, for instance, fractions and radicals but
maybe also for making new glyphs like extensibles,
which is essentially a traditional TEX thing.

So, when we now look back at the traditional
approach we can say that there are differences in the
way a font is set up: widths and italic corrections,
staircase kerns, rules as elements for constructing
glyphs, anchoring of accents, flattening of accents,
replacement of dotted characters, selection of smaller
sizes, and font parameters. These differences have
been reflected in the way engines (seem to) deal with
OpenType math: one can start with a traditional
engine and map OpenType onto that; one can im-
plement an OpenType engine and, if needed, map
traditional fonts onto the way that works; and of
course there can be some mix of these.

In practice, when we look at existing fonts, there
is only one reference and that is Cambria. When
mapped onto a traditional engine, much can be made
to work, but not all. Then there are fonts that
originate in the TEX community and these do not
always work well with an OpenType engine. Other
fonts are a mix and work more or less. The more
one looks into details, the clearer it becomes that
no font is perfect and that it is hard to make an
engine work well with them. In LuaMetaTEX we
can explicitly control many of the choices the math
engine makes, and there are more such choices than
with traditional TEX machinery. And although we
can adapt fonts at runtime to suit the possibilities,
it is not pretty.

This is why we gradually decided on a somewhat
different approach: we use the advantage of having a
single font, normalize fonts to what we can reliably
support, and if needed, add to fonts and control the
math engine, especially the various subsystems, with
directives that tell it what we want to be done. Let
us discuss a few things that we do when we load a
math font.

3 Getting rid of italic corrections

OpenType math has italic corrections for using char-
acters in text and large operators (for limits), stair-
case kerns for combining scripts, and top anchor
for placement of accents. In LuaMetaTEX we have
access to more features.

Let’s remind ourselves. In a bit more detail,
OpenType has:

• An italic correction is injected between char-
acters in running text, but: a sequence of atoms
is not text, they are individually spaced.

• An italic correction value in large operators
that reflects where limits are attached in display
mode; in effect, using the italic correction as an
anchor.

• Top anchors are used to position accents over
characters, but not so much over atoms that
are composed from more than characters, e.g.,
including fractions, fences, radicals, and so on.

• Flat accents as substitution feature for situa-
tions where the height would become excessive.

• Script and scriptscript as substitution fea-
ture for a selection of characters that are sensi-
tive for scaling down.

This somewhat limited view on math character
positioning has been extended in LuaMetaTEX, and
we remap the above onto what we consider a bit
more reliable, especially because we can tweak these
better. We have:

• Corner kerns that make it possible to adjust
the horizontal location of sub- and superscripts
and prescripts.

• Although flat accents are an existing feature,
we extended them by providing additional scal-
ing when they are not specified.

• In addition to script sizes we also have mirror
as a feature so that we can provide right to left
math typesetting. (This also relates to dropping
in characters from other fonts, like Arabic.)

• In addition to the top anchors we also have
bottom anchors in order to properly place bot-
tom accents. These are often missing, so we
need to construct them from available snippets.

• An additional extensible italic correction

makes it possible to better anchor scripts to
sloped large operators. This is combined with
keeping track of corner kerns that can be spec-
ified per character.

• Characters can have margins which makes it
possible to more precisely position accents that
would normally overflow the base character and
clash with scripts. These go in all four direc-
tions.

Standardizing OpenType math fonts



228 TUGboat, Volume 44 (2023), No. 2

• In order to be able to place the degree in a
radical more precisely (read: not run into the
shape when there is more than just a single
degree atom) we have radical offsets.

There are plenty more tuning options but some
are too obscure to mention here. All high level
constructors, like fences, radicals, accents, operators,
fractions, etc. can be tuned via optional keyword and
key/values at the macro end.

We eliminate the italic correction in math fonts,
instead adding it to the width, and using a negative
bottom right kern. If possible we also set a top and
bottom accent anchor. This happens when we load
the font. We also translate the italic correction on
large operators into anchors. As a result, the engine
can now completely ignore italic corrections in favor
of proper widths, kerns and anchors. Let us look at
a few examples.

The italic f is used a lot in mathematics and it is
also one of the most problematic characters. In TEX
Gyre Bonum Math the italic f has a narrow bounding
box; the character sticks out on both the left and
right. To the right, this is compensated by a large
amount of italic correction. This means that when
one adds sub- and superscripts, it works well. We
add italic correction to the width, and introducing
a negative corner kern at the bottom right corner,
and thus the placement of sub- and superscripts is
not altered. Look carefully at the bounding boxes
below.𝑓 10 𝑓 10

original tweaked

Compare with Lucida Bright Math, which comes
with staircase kerns instead of italic correction. We
convert these kerns into corner kerns.𝑓10 𝑓10

original tweaked

For characters that stick out to the left, we also
increase the width and shift the glyph to ensure that
it does not stick out on the left side. This prevents
glyphs from clashing into each other.

(𝑓 ) ( 𝑓 )
original tweaked

As mentioned, for the integral, one of the most
common big operators, the limits are also placed
with help of the italic correction. When the lim-
its go below and on top, proper bottom and top
anchor points are introduced, calculated from the
italic correction. (The difference in size of the in-
tegral signs is a side effect of the font parameter
DisplayOperatorMinHeight being tweaked, as we’ll
discuss more later. OpenType fonts can come with
more than two sizes.)

∫𝑏𝑎 𝑓 (𝑥) 𝑑𝑥 ∫𝑏𝑎 𝑓 (𝑥) 𝑑𝑥 𝑏∫𝑎 𝑓 (𝑥) 𝑑𝑥
original tweaked, nolimits tweaked, limits

Compare these integrals with the summation,
that usually does not have any italic correction bound
to it. This means that the new anchor points end
up in the middle of the summation symbol.𝑛∑𝑘=1𝑎𝑘 𝑛∑𝑘=1𝑎𝑘

original tweaked

We also introduce some corner kerns in cases
where there were neither italic corrections nor stair-
case kerns. This is mainly done for delimiters, like
parentheses. We can have a different amount of kern-
ing for the various sizes. Often the original glyph
does not benefit from any kerning, while the variants
and extensibles do.( 11 + 𝑥2)2 ( 1−−−−−−−−−−−−−−−−−1 + 𝑥2)2

original tweaked

Note also the different sizes of the parentheses
in the example above. Both examples are set with
\left( and \right), but the font parameters are
chosen differently in the tweaked version. Font de-
signers should have used the opportunity to have
more granularity in sizes. Latin Modern Math has
four, many others have steps in between, but there
is a lack of consistency.

Hans Hagen, Mikael P. Sundqvist



TUGboat, Volume 44 (2023), No. 2 229

4 Converting staircase kerns

We simplify the staircase kerns, which are often some-
what sloppy and seldom complete (see figure below),
into more reliable corner kerns. It’s good enough
and looks better on the whole. We also avoid bugs
that way.

italic V upright V

5 Tweaking accents

We ignore the zero dimensions of accents, simply
assuming that one cannot know if the shape is cen-
tered or sticks out in a curious way, and therefore use
proper widths with top and bottom anchors derived
from the bounding box. We compensate for negative
llx values being abused for positioning. We check for
overflows in the engine. In case of multiple accents,
we place the first one anchored over the character,
and center the others on top of it.̂̂̂𝑓

We mentioned in an earlier TUGboat article2

that sometimes anchor points are just wrong. We
have a tweak that resets them (to the middle) that
we use for several fonts and alphabets.

Some accents, like the hat, can benefit from
being scaled. The fonts typically provide the base
size and a few variants.̂𝑓 + 𝑔 �̂� + 𝑔

original tweaked

The only fonts we have seen that support flat-
tened accents are Stix Two Math and Cambria Math.

2“New directions in math fonts”, 43:3,

tug.org/TUGboat/tb43-3/tb135hagen-mathchange.pdf

̂𝑎 ̂𝐴 ̂𝐶 �̂��̂��̂�
Stix Two Cambria

If you look carefully, you notice that the hats
over the capital letters are not as tall as the one
over the lowercase letter. There is a font parame-
ter FlattenedAccentBaseHeight that is supposed
to specify when this effect is supposed to kick in.
Even though other fonts do not use this feature, the
parameter is set, sometimes to strange values (if
they were to have the property). For example, n
Garamond Math, the value is 420.

We introduced a tweak that can fake the flat-
tened accents, and therefore we need to alter the
value of the font parameter to more reasonable val-
ues. We communicated to Daniel Flipo, who main-
tains several math fonts, that the parameter was not
correctly set in Erewhon math. In fact, it was set
such that the flattened accents were used for some
capital letters (C in the example below) but not for
others (A below). He quickly fixed that. The green
(gray in print) rules in the picture have the height
of FlattenedAccentBaseHeight; it did not need to
be decreased by much.�̂� �̂� ̂𝐶 �̂� �̂� ̂𝐶

Erewhon, not fixed Erewhon, fixed

6 Getting rid of rules

We get rid of rules as pseudo-glyphs in extensibles
and bars. This also gives nicer visual integration
because flat rules do not always fit in with the rest
of the font. We also added support for this in the
few (Polish) Type 1 math fonts that we still want to
support, like Antykwa Toruńska.√1+ 𝑥1 − 𝑥 √−−−−−−−−−−−−1 + 𝑥−−−−−−−−−−−−1 − 𝑥 � � � � �1 + 𝑥� � � �1 − 𝑥

with rule with glyph Antykwa

Here is an enlarged example of an Antykwa rule.
Latin Modern has rounded corners, here we see a
rather distinctive ending.

𝑥 2 + 2 𝑥 + 2� � � � � � �
Standardizing OpenType math fonts

https://tug.org/TUGboat/tb43-3/tb135hagen-mathchange.pdf


230 TUGboat, Volume 44 (2023), No. 2

7 Tweaking primes

We make it no secret that we consider primes in
math fonts a mess. For some reason no one could
convince the Unicode people that a ‘prime’ is not a
‘minute’ (that is, U+2032 PRIME is also supposed to
be used as the symbol for minutes); in case you’d
like to argue that “they often look the same”, that
is also true for the Latin and Greek capital ‘A’. This
lost opportunity means that, as with traditional TEX
fonts, we need to fight a bit with placement. The
base character can or cannot be already anchored
at some superscript-like position, so that makes it
basically unusable. An alternative assumption might
be that one should just use the script size variant as
a superscript, but as we will see below, that assumes
that they sit on the baseline so that we can move
it up to the right spot. Add to that the fact that
traditional TEX has no concept of a prime, and we
need some kind of juggling with successive scripts.
This is what macro packages end up doing.

But this is not what we want. In ConTEXt MkIV
we already have special mechanisms for dealing with
primes, which include mapping successive primes
onto the multiple characters in Unicode, where we
actually have individual triple and quadruple primes
and three reverse (real) primes as well. However,
primes are now a native feature, like super- and
subscripts, as well as prescripts and indices. (All
examples here are uniformly scaled.)

Because primes are now a native feature, we
also have new font parameters PrimeShiftUp and
PrimeShiftUpCramped, similar to
SuperscriptShiftUp and
SuperscriptShiftUpCramped, which add a horizon-
tal axis where the primes are placed. There is also
a fixprimes tweak that we can use to scale and fix
the glyph itself. Below, we see how very different
the primes from different fonts look (all examples
are uniformly scaled), and then examples comparing
the original and tweaked primes.

Latin Modern st sts

Lucida ssty

Erewhon st sst

Libertinus ssty1𝑓 ′(𝑥) + 𝑒𝑓 ′(𝑥) 𝑓 ′(𝑥) + 𝑒𝑓 ′(𝑥)
Latin Modern original tweaked

𝑓′(𝑥) + 𝑒𝑓′(𝑥) 𝑓′(𝑥) + 𝑒𝑓′(𝑥)
Lucida original tweaked𝑓′(𝑥) + 𝑒𝑓′(𝑥) 𝑓′(𝑥) + 𝑒𝑓′(𝑥)
Erewhon original tweaked𝑓 ′(𝑥) + 𝑒𝑓 ′(𝑥) 𝑓 ′(𝑥) + 𝑒𝑓 ′(𝑥)
Libertinus original tweaked

8 Font parameters

We add some font parameters, ignore some existing
ones, and fix at runtime those that look to be sub-
optimal. We have no better method than looking at
examples, so parameters might be fine-tuned further
in the future. Following are examples of pdfLATEX
math, LuaLATEX math, and (as of this writing) Con-
TEXt LMTX:

Hans Hagen, Mikael P. Sundqvist



TUGboat, Volume 44 (2023), No. 2 231

h
3
+ h2 + h

3

2
+ h

′ℎ3 + ℎ2 + ℎ32 + ℎ′ℎ3+ ℎ2+ ℎ32+ ℎ′
We have already mentioned that we have a few

new parameters, PrimeShiftUp and
PrimeShiftUpCramped, to position primes on their
own axis, independent of the superscripts. They are
also chosen to always be placed outside superscripts,
so the inputs $f’^2$ and $f^2’$ both result in f2′.
Authors should use parentheses in order to avoid
confusion.

Let us briefly mention the other parameters.
These are the adapted parameters for TEX Gyre
Bonum:

AccentTopShiftUp = -15

FlattenedAccentTopShiftUp = -15

AccentBaseDepth = 50

DelimiterPercent = 90

DelimiterShortfall = 400

DisplayOperatorMinHeight = 1900

SubscriptShiftDown = 201

SuperscriptShiftUp = 364

SubscriptShiftDownWithSuperscript

= "1.4*SubscriptShiftDown"

PrimeShiftUp

= "1.25*SuperscriptShiftUp"

PrimeShiftUpCramped

= "1.25*SuperscriptShiftUp"

Some of these are not in OpenType. We can set
up much more, but it depends on the font what is
needed, and also on user demands.

We have noticed that many font designers seem
to have had problems setting some of the values; for
example, DisplayOperatorMinHeight seems to be
off in many fonts.

9 Profiling

Let us end with profiling, which is only indirectly
related to the tweaking of the fonts. Indeed, font pa-
rameters control the vertical positioning of sub- and
superscripts. If not carefully set, they might force a
non-negative \lineskip where not necessary. In the
previous section we showed how these parameters
were tweaked for Bonum.

Sometimes formulas are too high (or have a too
large depth) for the line, and so a \lineskip is added
so that the lines do not clash. If the lowest part of
the top line (typically caused by the depth) and the

tallest part of the bottom line (caused by the height)
are not close to each other on the line, one might
argue that this \lineskip does not have to be added,
or at least with reduced amount. This is possible
to achieve by adding \setupalign[profile]. An
example is in figure 1.

In the figure, we enabled a helper that shows us
where the profiling feature kicks in. We also show
the lines (\showmakeup[line]). Below we show the
example without those helpers. You can judge for
yourself which one you prefer.

It is worth emphasizing that, contrary to what
one might believe at first, the profiling does not
substantially affect the compilation time. On a 300-
page math book we tried, which usually compiles in
about 10 seconds, profiling did not add more than 0.5
seconds. The same observation holds for the other
math tweaks we have mentioned: the overhead is
negligible.

10 Conclusions

All these tweaks can be overloaded per glyph if
needed; for some fonts, we indeed do this, in so-
called goodie files. The good news is that by doing
all this we present the engine with a font that is
consistent, which also means that we can more easily
control the typeset result in specific circumstances.

The reader may wonder how we ended up with
this somewhat confusing state of affairs in the font
world. Here are some possible reasons. There is
only one reference font, Cambria, and that uses its
reference word processor renderer, Word. Then came
X ETEX that as far as we know maps OpenType math
onto a traditional TEX engine, so when fonts started
coming from the TEX crowd, traditional dimensions
and parameters sort of fit in. When LuaTEX showed
up, it started from the other end: OpenType. That
works well with the reference font but less so with
that ones coming from TEX. Eventually more fonts
showed up, and it’s not clear how these got tested
because some lean towards the traditional and others
towards the reference fonts. And, all in all, these
fonts mostly seem to be rather untested in real (more
complex) math.

The more we looked into the specific properties
of OpenType math fonts and rendering, the more we
got the feeling that it was some hybrid of what TEX
does (with fonts) and ultimately desired behavior.
That works well with Cambria and a more or less
frozen approach in a word processor, but doesn’t suit
well with TEX. Bits and pieces are missing, which
could have been added from the perspective of gener-
alization and imperfections in TEX as well. Lessons
learned from decades of dealing with math in macros

Standardizing OpenType math fonts



232 TUGboat, Volume 44 (2023), No. 2

So the question is: how good an approximation to 𝜎 is 𝜎 ∗ 𝑊𝜙? But the attentive readerL__

will realize that we have already answered this question in the course of proving the sharpL__

Gårding inequality. Indeed, suppose 𝜙 ∈ 𝒮 is even and ||𝜙||2 = 1, and set 𝜙𝑎(𝑥) = 𝑎𝑛/4𝜙(𝑎1/2𝑥).L__

Then we have shown (cf. Remark (2.89)) that 𝜎 − 𝜎 ∗ 𝑊𝜙𝑎 ∈ 𝑆𝑚−(𝜌−𝛿)𝜌,𝛿 whenever 𝜎 ∈ 𝑆𝑚𝜌,𝛿 isL__

supported in a set where ⟨𝜉⟩𝜌+𝛿 ≈ 𝑎.L__

No pro昀椀ling

So the question is: how good an approximation to 𝜎 is 𝜎 ∗ 𝑊𝜙? But the attentive readerL__

will realize that we have already answered this question in the course of proving the sharpL__

Gårding inequality. Indeed, suppose 𝜙 ∈ 𝒮 is even and ||𝜙||2 = 1, and set 𝜙𝑎(𝑥) = 𝑎𝑛/4𝜙(𝑎1/2𝑥).L__
LI:0.000

Then we have shown (cf. Remark (2.89)) that 𝜎 − 𝜎 ∗ 𝑊𝜙𝑎 ∈ 𝑆𝑚−(𝜌−𝛿)𝜌,𝛿 whenever 𝜎 ∈ 𝑆𝑚𝜌,𝛿 isL__
LI:0.000

supported in a set where ⟨𝜉⟩𝜌+𝛿 ≈ 𝑎.L__

Pro昀椀ling

So the question is: how good an approximation to 𝜎 is 𝜎 ∗ 𝑊𝜙? But the attentive reader
will realize that we have already answered this question in the course of proving the sharp
Gårding inequality. Indeed, suppose 𝜙 ∈ 𝒮 is even and ||𝜙||2 = 1, and set 𝜙𝑎(𝑥) = 𝑎𝑛/4𝜙(𝑎1/2𝑥).
Then we have shown (cf. Remark (2.89)) that 𝜎 − 𝜎 ∗ 𝑊𝜙𝑎 ∈ 𝑆𝑚−(𝜌−𝛿)𝜌,𝛿 whenever 𝜎 ∈ 𝑆𝑚𝜌,𝛿 is
supported in a set where ⟨𝜉⟩𝜌+𝛿 ≈ 𝑎.

No pro昀椀ling

So the question is: how good an approximation to 𝜎 is 𝜎 ∗ 𝑊𝜙? But the attentive reader
will realize that we have already answered this question in the course of proving the sharp
Gårding inequality. Indeed, suppose 𝜙 ∈ 𝒮 is even and ||𝜙||2 = 1, and set 𝜙𝑎(𝑥) = 𝑎𝑛/4𝜙(𝑎1/2𝑥).
Then we have shown (cf. Remark (2.89)) that 𝜎 − 𝜎 ∗ 𝑊𝜙𝑎 ∈ 𝑆𝑚−(𝜌−𝛿)𝜌,𝛿 whenever 𝜎 ∈ 𝑆𝑚𝜌,𝛿 is
supported in a set where ⟨𝜉⟩𝜌+𝛿 ≈ 𝑎.

Pro昀椀ling

Figure 1: Above: comparison of standard (no profiling) and math profiling
typesetting, with guides for where profiling occurred; namely, the fourth and fifth
baselines are altered. Below: the same, without the guides.

and math fonts were not reflected in the OpenType
fonts and approach, which is of course understand-
able as OpenType math never especially aimed at
TEX. But that also means that at some point one
has to draw conclusions and make decisions—which
is what we do in ConTEXt, LuaMetaTEX and the
runtime-adapted fonts. And it gives pretty good and
reliable results.

⋄ Hans Hagen
Pragma ADE

⋄ Mikael P. Sundqvist
Department of Mathematics
Lund University

Hans Hagen, Mikael P. Sundqvist



TUGboat, Volume 44 (2023), No. 2 233

Behind the scenes of the Great TikZlings

Christmas Extravaganza

samcarter, Gert Fischer

“O, wonder! How many goodly creatures are there

here.”

(William Shakespeare, The Tempest, V, 1)

Abstract

The Great TikZlings Christmas Extravaganza is an
annual video series that utilises LATEX to produce
animated films. This proceeding will offer a look
behind the scenes of the Extravaganza and explain
how we use LATEX to create the videos.

1 The Rise of the TikZling

In 2005 Till Tantau was about to publish his new tool
to create graphic elements in LATEX and was looking
for a name. He turned to a recursive acronym and
chose “TikZ ist kein Zeichenprogramm”, in English:
“TikZ is not a drawing program”. This might be
understood as a cautioning of users not to expect
too much. The instant success and the usefulness
of the package and its updates till today show that
this probably was too modest a name. Also, as in
all great creations, there were hidden dimensions the
creator had not intentionally included and could not
and did not foresee.

So TikZ too had its Goedelian moments. One
came when samcarter was probably the first human
to discover that there were animals in TikZ. In 2017
she found a duck. And in quick succession other
creatures were discovered. With the help of Paulo
Cereda, Ulrike Fischer, Carla Maggi and many oth-
ers, samcarter listed and categorised them and in a
second step supplied them with clothes and other
items helping them to feel comfortable at the fringes
of TikZ. The question of how to name the newly dis-
covered was put to the TikZ community and resolved
democratically. In an open ballot the members voted
almost unanimously for Stefan Kottwitz’s proposal.
From now on there would be “TikZlings”. By 2018
the TikZlings ecosystem had been thoroughly docu-
mented on GitHub [3] in a flexible grid allowing the
addition of hitherto unknown species.

While this important work was going on, some of
samcarter’s collaborators decided in 2017 to honour
her efforts with a special Christmas present. They
took it upon them to teach some of the TikZducks to
dance and sing. As the following quotes from their
e-mail exchange show, Paulo Cereda, Gert Fischer,
Ulrike Fischer and Carla Maggi were in deep water
at once:

• “never tried it before”

• “I tried something but it doesn’t work”

• “I have almost no experience with videos”

• “when everything fails, I’ll record my own screen”

• “the arara rule doesn’t work”

• “it’s the first time I use github”

But somehow it worked. At the end the resulting
memes were merged into a video film under the
title “The Great TikZducks Christmas Extravaganza”.
Samcarter loved it!

From then on there was no looking back. Sam-
carter joined the team bringing in the expertise so
sorely lacking in the first Extravaganza. Two other
additions were Professore Paulinho van Duck of Sem-
pione Park University, Milano, Italy, and Bär who
came in as assistant to the producers and fashion
consultant to the TikZlings cast [1]. And the Ex-
travaganza was indeed there to stay. The TikZducks
Extravaganza became the TikZlings Extravaganza
which since 2018 has appeared every year in De-
cember, sometimes with the additional help of non-
permanent team members such as Marmot and Pler-
gux. All editions can be viewed on the Internet [2].
Over the years the Extravaganza has gained a group
of fervent supporters and it has also made its impact
on TUG, where the outgoing president Boris Veyts-
man has been recommending it to the members from
the start.

Having said as much, a view behind the scenes
proves that Christmas preparations require some
programming skills—or as The Bard has it:
“Though this be madness, yet there is method in’t”

(Hamlet, Prince of Denmark, II, 2).

2 Creating multi-page PDFs

The basic idea of creating animated films with LATEX
is to first create a multi-page PDF with incremental
motion between each page, which then gets converted
into a movie.

There are many possible ways of using LATEX to
create a multi-page PDF. For many of our scenes,
we use a combination of beamer and TikZ.

The overlay mechanism of beamer is used to
repeat the animation on all pages, and TikZ makes
it easy to position individual elements on a page.

The following code block shows a shortened ex-
ample of how this setup can be used to let a penguin
move across a page:

\documentclass{beamer}

\usepackage{tikz}

\usetikzlibrary{tikzlings}

\begin{document}

\begin{frame}

doi.org/10.47397/tb/44-2/tb137samcarter-tikzlings

Behind the scenes of the Great TikZlings Christmas Extravaganza

https://doi.org/10.47397/tb/44-2/tb137samcarter-tikzlings


234 TUGboat, Volume 44 (2023), No. 2

\begin{tikzpicture}[remember picture,overlay]

\foreach \macro in {1,...,5}{

\path<+>[fill=white]

(2*\macro,-0.7*\macro) pic{penguin};

}

\end{tikzpicture}

\end{frame}

\end{document}

This code produces a PDF with five pages. In
Figure 1 the five pages are stacked on top of each
other with different levels of transparency to visualise
the movement of the penguin.

Figure 1: Visualisation of a penguin moving across a
page. The different opacity levels denote the different
pages stacked on top of each other. (Grayscaled for
print.)

3 Converting PDFs into videos

Converting a PDF into a video consists of multiple
steps. The first step is converting each page of the
PDF into a raster image. We are using PNG as
image format as many of the protagonists in our
videos consist of simple geometric shapes with clear
edges and PNG is a format which will preserve these
edges and won’t introduce image artefacts.

There are many tools available to convert PDFs
into PNGs. Currently, our tool of choice is pdftoppm,
which is part of the Poppler1 package:

pdftoppm -png -r 240 Example.pdf Example

Compared to the widely used convert command
from ImageMagick, we found that pdftoppm is faster
in converting the PDF and lighter on CPU usage.

The next step is to use FFmpeg2 to assemble
the individual images into a video and combine it
with suitable music:

ffmpeg \

-ss 00:00:00 -i Example-%03d.png \

-ss 00:00:10 -i Music.m4a \

-shortest \

1 poppler.freedesktop.org/
2 ffmpeg.org/

Example_raw.mp4

We sometimes encountered problems with videos
not working in some multimedia players, so we now
preventively run the resulting video through Hand-
Brake:3

HandBrakeCLI --crop 0:0:0:0 \

-i Example_raw.mp4 -o Example.mp4

This leaves us with one video clip for each scene and
each intermission, which need to be combined into
a single video. To make the resulting video more
pleasant to watch, transitions between the individual
videos have to be inserted and the volume level of
some of the clips needs to be adjusted to fit in with
the others.

In the past, we used video editing applications
like iMovie (macOS) to combine the videos. They
usually required some level of manual interaction,
e.g. dragging videos into the correct order, clipping
them if necessary, etc. This turned out to be error-
prone and could also be frustrating if there were last-
minute changes to one of the clips which required
re-rendering the whole video.

Our current solution is to script the whole pro-
cess using moviepy,4 a python library for video edit-
ing. An abbreviated example of our merge script is
shown in the following:

###############################################

# stitching together the videos

# and adding transitions

###############################################

from moviepy.editor import *

import os

# duration of transitions between the videos

padding = 1.5

video_clips = [

VideoFileClip("../intermissions/title.mp4"),

VideoFileClip("../intermissions/example.mp4"),

VideoFileClip("../example-scene/Example.mp4")

↪ .volumex(1.1),

VideoFileClip("../intermissions/credits.mp4"),

]

###############################################

# merge title and first intermission to get

# continious audio

###############################################

video_fx_list = []

idx = 0

for video in video_clips[0:2]:

video_fx_list.append(video.set_start(idx)

3 handbrake.fr/
4 zulko.github.io/moviepy/

samcarter, Gert Fischer

https://poppler.freedesktop.org/
https://ffmpeg.org/
https://handbrake.fr/
https://zulko.github.io/moviepy/


TUGboat, Volume 44 (2023), No. 2 235

↪ .crossfadein(padding)

↪ .crossfadeout(padding)

↪ .audio_fadein(padding)

↪ .audio_fadeout(padding))

idx += video.duration - padding

merged_video =

↪ CompositeVideoClip(video_fx_list)

duration = merged_video.end

audioclip = AudioFileClip("../intermissions/

↪ JingleBells.m4a").subclip(2,duration+2)

merged_video =

↪ merged_video.set_audio(audioclip)

###############################################

# adding rest of the scenes

###############################################

video_fx_list = []

idx = 0

# adding the merged video first

video_fx_list.append(merged_video

↪ .set_start(idx).crossfadein(padding)

↪ .crossfadeout(padding).audio_fadein(padding)

↪ .audio_fadeout(padding))

idx += merged_video.duration - padding

# rest of the videos

for video in video_clips[2:]:

video_fx_list.append(video.set_start(idx)

↪ .crossfadein(padding)

↪ .crossfadeout(padding)

↪ .audio_fadein(padding)

↪ .audio_fadeout(padding))

idx += video.duration - padding

final_video = CompositeVideoClip(video_fx_list)

final_video.write_videofile

↪ ("Extravaganza_raw.mp4")

The full version of this moviepy script is available
from github.com/TikZlings/Extravaganza2022/

blob/main/videos/merge_videos.py.
The final step is another pass through Hand-

Brake. This will ensure that the video is properly
encoded and all potential issues are fixed. It also
reduces the file size quite a bit.

4 Watch the videos

The finished video gets published on Vimeo. If you
would like to watch some of the previous videos,
we collected the links to all our previous videos
at github.com/TikZlings. This site also contains
links to the source code of all the previous extrava-
ganzas in case you are curious about how a particular
clip was made.

References

[1] U. Fischer. The Bearwear package: Shirts to

dress TikZbears. ctan.org/pkg/bearwear

[2] TikZlings organisation, 2023.
github.com/TikZlings

[3] samcarter. TikZlings, 2023.
github.com/samcarter/tikzlings

◇ samcarter

◇ Gert Fischer
Bonn, Germany

Behind the scenes of the Great TikZlings Christmas Extravaganza

https://github.com/TikZlings/Extravaganza2022/blob/main/videos/merge_videos.py
https://github.com/TikZlings/Extravaganza2022/blob/main/videos/merge_videos.py
https://github.com/TikZlings
https://ctan.org/pkg/bearwear
https://github.com/TikZlings
https://github.com/samcarter/tikzlings


236 TUGboat, Volume 44 (2023), No. 2

Curvature combs and harmonized paths

in METAPOST

Linus Romer

Abstract

Most font editors offer curvature-related tools. One
of these tools is the visualization of curvature via
curvature combs. Another tool is the so-called har-

monization, which makes the curvature continuous
along paths. An implementation of both tools in
METAPOST will be presented. Curvature-optimized
paths already play a significant role in METAFONT

and METAPOST and therefore example METAPOST

paths will be examined for their curvature behavior.

1 Curvature

The curvature in a point of a curve is the inverse
of the radius of the osculating circle at this point
(depicted here as a “curvature vector” on the opposite
side of the radius):

1
2

2

1
2

2

For straight segments, the curvature is constantly
zero, since the radius of the osculating circle is in-
finitely large. Vice versa, the curvature becomes
infinitely large when the radius of the osculating
circle tends to zero.

2 Curvature combs in METAPOST

We can assemble these curvature vectors into a cur-
vature comb:

The curvature may be additionally mapped to a color
and the gaps may be filled (all images are grayscaled
for print):

A figure like the above can be achieved with

path p; p = ⟨path⟩ ; comb(p,300); draw p;

using the comb macro that will be presented here
(the 300 scales the curvature comb).

We start by defining the macro crossprod that
returns the cross product between two given vectors
w⃗ and z⃗:

primarydef w crossprod z =

(xpart w * ypart z - ypart w * xpart z)

enddef;

Then the macro curv will be applied to a path p,
returning a “curvature vector” that is orthogonal to
the path in its initial point. The length of the vector
is proportional to the initial curvature of the path:

vardef curv expr p =

save v,w,l; pair v,w;

v = direction 0 of p;

l = length v;

v := v/l;

w = (point 0 of p - 2*postcontrol 0 of p

+ precontrol 1 of p)/l;

2/3*(v crossprod w)/l*(v rotated -90)

enddef;

Here is the math behind this macro. A cubic Bézier
segment can be described by:
(
x(t)

y(t)

)

= t3(3Q⃗− P⃗ + S⃗ − 3R⃗) + 3t2(P⃗ − 2Q⃗+ R⃗)

+ 3t(Q⃗− P⃗ ) + P⃗

P⃗

Q⃗ R⃗

S⃗t = 0 t = 1

The initial derivatives are then:
(
ẋ(0)

ẏ(0)

)

= 3 (Q⃗− P⃗ )
︸ ︷︷ ︸

=:v⃗

(
ẍ(0)

ÿ(0)

)

= 6 (P⃗ − 2Q⃗+ R⃗)
︸ ︷︷ ︸

=:w⃗

The signed curvature is calculated by

(
ẋ
ẏ

)
×

(
ẍ
ÿ

)

∣
∣
(
ẋ
ẏ

)∣
∣
3 .

Using l := |v⃗| we finally have the formula used in the
macro for the initial curvature:

3v⃗ × 6w⃗

(3l)3
=

2

3

v⃗ × w⃗

l3
=

2

3l
·
(
1

l
v⃗ × 1

l
w⃗

)

The separated divisions by l are necessary to prevent
arithmetic overflows. The special case

∣
∣
(
ẋ(0)
ẏ(0)

)∣
∣ = 0 is

not handled here. The curvature then would diverge
to ±∞ (or be 0 if the cubic Bézier segment is a line
segment).

Now we define the curvature comb macro of a
path p by subdividing each segment in 50 parts and
filling an area over each part. Each part of the comb
is made of two subsequent “curvature” vectors k⃗, c⃗
that are scaled by a constant factor s given by the
user. The color depends on their average length.

doi.org/10.47397/tb/44-2/tb137romer-curvetools

Linus Romer

https://doi.org/10.47397/tb/44-2/tb137romer-curvetools


TUGboat, Volume 44 (2023), No. 2 237

t = 0 t = 1

t = i−1
50

t = i
50

c⃗

k⃗

p

q

vardef comb(expr p,s) =

save q,c,k; path q; pair c,k;

for n = 0 upto length(p)-1:

c := s * curv subpath(n,n+1) of p;

for i = 1 upto 50:

k := c;

c := s * curv subpath(n+i/50,

n if i<25: +1 fi) of p;

q := subpath(n+(i-1)/50,n+i/50) of p;

fill q -- point 1 of q + c

-- point 0 of q + k

-- cycle withcolor

(1,1/(1+.1*.5[length c,length k]),0);

endfor

endfor

enddef;

The condition if i<25: +1 fi makes the subpath
as large as possible to get better accuracy.

A curvature of 0 is mapped to yellow and an
infinitely large curvature is mapped to red. This is
done by changing the green value between 1 and 0.
If the .1 is increased, the green value tends faster
to 0.

3 Harmonize paths in METAPOST

In METAPOST, the code

z0 = (70,60); z1 = (0,30); z2 = (20,0);

draw z0{left} .. z1 .. z2{right};

produces the following curve:

z0

z1

z2

While the directions at the start and the end of the
path were set by the user, METAPOST has chosen
the angle of the path in z1 to equalize the so-called
mock curvature on both sides. The mock curvature
is a Taylor approximation of the real curvature [1].
After that, two cubic Bézier segments that nearly
minimize the curve energy have been drawn between
the given points.

z0

z1

z2

z0{left}

.. z1

.. z2{right}

The curvature comb in the preceding picture shows
that the curvature at z1 indeed is not continuous
but only near-continuous. When a user sets the
direction in the joining knot, METAPOST has no
possibility of optimizing the curvature in the joint
and the curvature often changes more abruptly at
the joint (see the following picture). This case is
frequent in type design because knots at horizontal
and vertical extrema are preferred over knots with
arbitrary direction.

z0

z1

z2

z0{left}

.. z1{down}

.. z2{right}

Fortunately, a METAPOST path can be modified to
a continuous-curvature curve with the harmonize
macro we’ll define later. It moves the joining knot
along its tangent:

z0

z1

z2

harmonize z0{left}

.. z1{down}

.. z2{right}

4 The math of harmonization

Assume two adjoint cubic Bézier segments that have
the same direction at their join and do not have zero-
handles. Furthermore, assume the joining knot is
not a point of inflection. By translation and rotation
we can force one control point next to the joining
knot to lie on the origin of the coordinate system
and the joining knot tangent to lie on the x-axis.
Additionally, the depicted coordinate d will be non-
negative:

(..., d)

(0, 0)

(g, 0)

(i, 0)

(..., l)

Curvature combs and harmonized paths in METAPOST



238 TUGboat, Volume 44 (2023), No. 2

We want to choose g such that the curvature is con-
tinuous. So the curvature on both sides of (g, 0) must
be equal:

2d

3g2
=

2l

3(i− g)2

Solving for g and obeying the condition 0 ≤ g ≤ i

we get

g =

√
d√

d+
√
l
· i.

(..., d)

(0, 0)

(
√
d√

d+
√
l
· i, 0)

(i, 0)

(..., l)

If either d or l is zero, g =
√
d√

d+
√
l
· i becomes either 0

or i. That means the joining knot will become collo-
cated with one of its control points, which generally
should be avoided. One reason for this avoidance is
that the curvature might become infinitely large:

(..., 0)

(0, 0)

(i, 0)

(..., l)

undesireable

So, we will not alter the paths at all in the case of
either d or l being zero. This case occurs also when
a straight line goes over to a curve, which is quite
frequent in type design:

When the joining knot is a point of inflection, the
curvatures 2d

3g2 and 2l
3(i−g)2 must have different signs.

(..., d)

(0, 0)

(g, 0) (i, 0)

(..., l)

Hence, a curvature-continuous solution forces d =
l = 0, so all control points must lie on one line, as in:

In this situation, one could also satisfy further con-
ditions like the preservation of area. On the other
hand, having all four control points on the same line
as the two affected cubic Bézier segments is critical.
Due to rounding errors, such a conversion may add
new points of inflection. So, instead of this, we will
only guarantee the absolute value of the curvature
to be continuous in the case of points of inflection
by moving the joining knot in the same manner as
before, between its control points:

Finally, the solution of setting

gnew =







gold if d = 0 or l = 0,√
|d|√

|d|+
√

|l|
· i else

is chosen here and shall be the definition of harmo-

nization. By harmonization the curvatures at the
other segment ends will not change.

We define a corresponding macro harmonize that
returns a harmonized version of a given path p. In
the generic case, the tangent in the joining knot is
not the x-axis (as depicted in the preceding figures),
so we calculate d and l as the height to the tangent
by cross products.

Linus Romer



TUGboat, Volume 44 (2023), No. 2 239

vardef harmonize expr p =

save t,u,d,l,n,q; pair t,u,q[];

n = length p;

for j = if cycle p: 0 else: 1 fi upto n-1:

q[j] = point j of p;

t := unitvector(direction j of p);

u := unitvector(point j of p

- precontrol j of p);

if eps > abs((u dotprod t) - 1): % smooth

l := abs(t crossprod

(precontrol j+1 of p - point j of p) );

d := abs(t crossprod

(postcontrol j-1 of p - point j of p) );

if not ( (l = 0) or (d = 0) ):

q[j] := if (d = l): .5 else:

( sqrt(d) / (sqrt(d) + sqrt(l)) ) fi

[precontrol j of p,postcontrol j of p];

fi

fi

endfor

if not cycle p:

q[0] = point 0 of p;

q[n] = point n of p;

fi

q[0] % start returned path

for j = 0 upto n-1: % define new path

.. controls postcontrol j of p

and precontrol j+1 of p .. if (j = n-1)

and (cycle p): cycle else: q[j+1] fi

endfor

enddef;

A mostly equivalent algorithm has been published
in [2].

5 Examples of harmonization

Should you use harmonization? At least it does no
harm to consider it. Most of the time, the changes
are subtle, as in the following bulb terminal:

original harmonized

And sometimes they are less subtle, as in the follow-
ing calligraphic dots:

original harmonized

After harmonization, the dot has become rather more
rounded and may have lost its “personality”.

6 Smoothing out paths even more

Since harmonization does not affect off-curve control
points nor the curvatures at other joining knots it
can be easily used over several cubic Bézier segments.
Nonetheless, harmonized paths normally no longer
interpolate the knots they were originally meant
to. The author once thought it might therefore be
a good idea to leave the joining knots and move
the control points instead. Then we not only can
make the curvature continuous but also the change
of curvature. The curve then becomes something
that may be termed “supersmooth”.

harmonized “supersmooth”

original

However, there are some problems that come with
this “supersmoothness”: It might introduce addi-
tional points of inflection (see below). Furthermore,
this will normally change the curvature at other knots
and break curvature continuity there.

harmonized “supersmooth”

original

References

[1] J.D. Hobby. Smooth, easy to compute interpo-
lating splines. Discrete & Computational Ge-

ometry 1(2):123–140, 1986. doi.org/10.1007/

BF02187690

[2] R.L. Roach. Curvature continuity of cubic Bezier
curves in the solid modeling aerospace research
tools design software. Interim report, NASA
Langley Research Center, 1990. ntrs.nasa.gov/
citations/19900012238

⋄ Linus Romer
Kantonsschule Glarus
Winkelstrasse 1
8750 Glarus (Switzerland)

Curvature combs and harmonized paths in METAPOST

https://doi.org/10.1007/BF02187690
https://doi.org/10.1007/BF02187690
https://ntrs.nasa.gov/citations/19900012238
https://ntrs.nasa.gov/citations/19900012238


240 TUGboat, Volume 44 (2023), No. 2

Using Asymptote like METAPOST

Jim Hefferon

Abstract

Asymptote is a vector graphics language for technical
drawing that fits very well with TEX, LATEX, and
friends. It deserves to be more widely known.

One appealing thing is that it is in part based on
algorithms from METAFONT and METAPOST but it
extends those to three dimensions. I’ll discuss a cou-
ple of workflow issues that a beginner to Asymptote
who is coming from METAPOST might find useful, in
particular using a single source file to output many
related graphics.

1 Introduction

I wrote a book years ago using METAPOST and found
that it had many advantages. I cannot draw, at all,
and it was a comfort to be able to tell the computer
to, say, make this line to be exactly two thirds the
length of that other line.

But the best feature is that METAPOST fits
a person who thinks mathematically. For example
there is a simple way to find where two lines intersect.

However, having worked with METAPOST a lot,
I was aware of some warts. For me the two biggest are
lack of any real 3D abilities, and that programming
in the language can be . . . quirky. So when I saw
the new Asymptote system I was eager to try it. It
has been very good.

2 Overview

Asymptote is a powerful descriptive vector graphics
language. It provides a natural coordinate-based
framework for technical drawing. LATEX typesets the
text and equations.1

• It is inspired by METAPOST, including generaliz-
ing METAPOST’s path construction algorithms
to three dimensions.2 It inherits METAPOST’s
impedance match with a mathematical mindset.
But it is a more standard programming lan-
guage, including declared types, familiar syntax,
and IEEE floating point numbers.

• It outputs high-quality PostScript, OpenGL,
PDF, SVG, WebGL, and V3D, as well as 3D

vector WebGL graphics for HTML files and 3D

vector PRC graphics for PDF files.

• It uses deferred drawing to solve size constraint
issues between fixed-sized objects, such as labels
and arrowheads, and objects that should scale
with figure size.

1 asymptote.sourceforge.io/asymptote.pdf
2 asymptote.sourceforge.io/gallery/3Dgraphs/

• It runs on Unix, macOS, and Windows, and is
under continuing development.

You can even try it in your browser without
installing it, using the Asymptote Web Application.3

3 Compared to TikZ

Many readers will be familiar with TikZ so I will
briefly compare with that system.

I have not used TikZ much, and have not used
it lately at all. But I lined up the two when I was
starting my latest project, some years ago. They have
many of the same strengths. I found that Asymptote
had some technical advantages, including the native
3D graphics, and I also found TikZ harder to program
in.

Another difference, relevant here, is that the
basic paradigm in TikZ is that your figures are in
your document, generated when the document is
generated. In Asymptote the paradigm is that they
are generated outside the document. (Yes, you can
generate stand-alone in TikZ and yes, you can include
Asymptote code in a document.)

I had a bad experience in the past when I was
using PSTricks and the LATEX world switched to
pdfLATEX. That left me with a preference for a
dependence chain that is shorter and broader over
one that is taller and thinner. I saw this again
recently when there was an issue with Ghostscript
and I was able to put the external PDF figures into
my repository until the issue was resolved. So one
factor in my comparison tipping me to Asymptote
was a preference for generating figures independently
from the documents.

4 Working in METAPOST

The basic structure of METAPOST input is that one
file holds many figures. This will output a graphic
into a file numbered 1 and another graphic into a file
numbered 2.

beginfig (1) % MetaPost

% first figure drawing commands

endfig;

beginfig (2)

% second figure drawing commands

endfig;

Putting a number of related sources in the same file
is convenient. For instance, if these are drawings for
a calculus lecture then you might at the top of the
file declare VECTOR_THICKNESS=0.8pt, and use that
in lots of the figures.

3 http://asymptote.ualberta.ca/

doi.org/10.47397/tb/44-2/tb137hefferon-asymptote

Jim Hefferon

https://asymptote.sourceforge.io/asymptote.pdf
https://asymptote.sourceforge.io/gallery/3Dgraphs/
http://asymptote.ualberta.ca/
https://doi.org/10.47397/tb/44-2/tb137hefferon-asymptote


TUGboat, Volume 44 (2023), No. 2 241

I will describe two adjustments that may help a
person coming from METAPOST and that took me
some time to dope out.

5 Adjustment one: multiple figures per file

Here is the skeleton to put multiple figures in one
Asymptote file.

This outputs a file test000.pdf containing the
graphic with a diagonal red line.

string OUTPUT_FN = "test%03d";

// =============

picture pic; int picnum = 0;

unitsize(pic, 1cm); // dist from x=0 to x=1

draw(pic, (0,0)--(1,1), red); // make a line

shipout(format(OUTPUT_FN,picnum),

pic, format="pdf");

// =============

picture pic; int picnum = 1;

...

shipout(...);

Some things to notice in that code:

• The OUTPUT_FN gives all file names the same
structure. So if you have lots of graphics (my
current book has more than 2000) then it is
easier to work with them. Of course, %03d gives
the picture number as a three decimal place
integer. I find two decimal places is too tight.

• A second picture begins with the declarations
picture pic and int picnum = 1 and ends
with an identical shipout(...), as shown.

• I write picnum = 0 and picnum = 1, etc., in-
stead of picnum = picnum+1. When you go
back a week later into a file with eighty pictures,
looking to fix a bug in the fifty-third, you want
it this way.

• Because of the multiple outputs from a single in-
put, lots of commands need a picture argument.
The code has it in the draw(...) command. If
you leave out the pic then the line gets drawn
somewhere (that is, there is no error) but not in
the output file where you are looking for it. The
pic is also in the unitsize(...) command.

A comment: METAPOST is set up so the figure
code blocks are isolated, in that if, say, you set x=1
inside one beginfig ... endfig then that does not
affect an x inside another. There is no such isolation
here. But I sometimes reuse variables in a number
of related figures so I’m happy with this.

6 Adjustment two: style files

This is related to the prior adjustment in that one
way that having multiple outputs from a single input

is helpful is to enforce uniformity. You can have
parameters such as line thickness or font size, and
specify them in just the one file.

But the same applies across multiple files. It is
useful to have every Asymptote source file get desired
global parameters from a single file.

You bring in a file with the import fn command.
For instance, Asymptote has a standard file called
settings.asy that you usually want to bring in.

import settings;

settings.outformat="pdf";

If that file is in the list of directories searched by
the Asymptote system then you are good. The list
is what you might guess: first the current directory,
then one or more directories given by the environment
variable ASYMPTOTE_DIR, etc.

Here is part of the style file for my current book.

import fontsize;

defaultpen(fontsize(9.24994pt));

import texcolors;

pen darkgrey_color=rgb("595241");

pen lightgrey_color=rgb("E0D4BE");

pen white_color=rgb("FFFFFF");

pen lightblue_color=rgb("ACCFCC");

pen red_color=rgb("8A0917");

// Use these names, not prior ones

pen highlightcolor=red_color;

pen backgroundcolor=lightblue_color;

pen boldcolor=darkgrey_color;

pen lightcolor=lightgrey_color;

pen verylightcolor=white_color;

(I like the color names such as highlightcolor to
make graphics because I sometimes adjust the color
scheme, for instance when I get a proof copy from
the publisher.)

In my current project I also have a LATEX style
file containing the font information and document-
specific macros that is used by every Asymptote file,
as well as by the LATEX driver file book.tex, ensuring
that the figures match the text.

7 Ending

Asymptote does a great job drawing technical graph-
ics. Adding some METAPOST-like workflow makes
it even more fun.

⋄ Jim Hefferon

Mathematics and Statistics

University of Vermont

jim.hefferon (at) gmail dot com

https://hefferon.net

Using Asymptote like METAPOST



242 TUGboat, Volume 44 (2023), No. 2

Interactive and real-time typesetting for

demonstration and experimentation: ETAP

Didier Verna

Abstract

We present ETAP, a platform designed to support
both demonstration of, and experimentation with
digital typesetting, interactively, and in real-time.

ETAP provides a GUI which currently focuses
on all aspects involved in paragraph formatting. A
number of pre-processing features can be switched
on or off (hyphenation, kerning, ligaturing, etc.). A
specific paragraph formatting scheme may be selected
from a pool of ready-made algorithms, and adding
new algorithms to that pool is easy. Each algorithm
comes with its own set of configuration parameters,
and the GUI allows you to tweak those parameters
and observe the effects in real-time.

ETAP may also be used without, or in paral-
lel with the GUI. While the application is running,
the whole programmatic infrastructure is manipula-
ble from a command-line interface. This allows in-
spection of the various typesetting objects normally
displayed by the GUI, and also to perform compu-
tations with them, for example, data collection and
statistical measurements.

1 Introduction

The world of digital typesetting is a fascinating one.
As an application domain, it combines a strong focus
on aesthetics with many interesting technical chal-
lenges, thus making it an Art as much as a Science.
The motivation for the project described in this pa-
per is twofold: experimentation (the Science) and
demonstration (the Art).

Experimentation Suppose you want to try out
a new ideas for paragraph justification. Experimen-
tation (including rapid prototyping and debugging)
would be made a lot easier with a direct visualiza-
tion of the results on a sample text (actual contents
not necessarily important), and with the ability to
interactively tweak such or such parameter from a
GUI (Graphical User Interface), while observing the
effects in real time.

Demonstration In terms of demonstration, my
personal experience (in particular when trying to
raise students’ awareness of the beauty and the sub-
tlety of high quality typesetting) is that showing off
static pages of text simply doesn’t cut it. On the
other hand, there is nothing like having the ability
to switch kerning on and off, and immediately see
the result, to strike people’s minds. The same goes
for ligaturing, with no characters actually displayed,

but only their bounding boxes which, all of a sudden,
go from two or three to just one.

By now, the reader has noticed that whether it is
for experimentation or demonstration purposes, the
system(s) we are talking about share two common
traits: they need to be interactive, and work in real-
time. It turns out that, if given those two properties,
there is no reason why a single such system couldn’t
fulfill both objectives. The purpose of this paper is
precisely to exhibit one such possible system.

In general, typesetting experimentation is not a
very practical thing to do. WYSIWYG (What You
See is What You Get) systems are very reactive (for
example, you can see the paragraphs being formatted
as you type them) but provide neither the highest
rendering quality, nor the highest degree of configura-
bility, let alone extensibility. TEX [8, 9], on the other
hand, is renowned for the quality of its rendering, but
works more like a non-interactive programming lan-
guage, with its separate development / compilation
/ visualization phases.

Granted, there are several attempts at bridging
the gap. Overleaf, BaKoMa, LyX, and TEXworks
provide WYSIWYG environments to TEX, increasing
the interactive “feel”. Batch Commander [3] was an
attempt at providing a GUI for TEX configuration.
LuaTEX provides some level of access to TEX’s inter-
nals. However, none of these systems would let you
fundamentally change the way TEX works (they are
not meant to).

We must also mention TeXmacs, a very inter-
esting project not in fact based on TEX, but still
providing high-quality typesetting from within a
WYSIWYG environment. TeXmacs is written in C++

and embeds a Guile interpreter (a dialect of Scheme,
from the Lisp family) as an extension language. This
makes the project very close to LuaTEX, at least in
spirit. This also makes it share the same character-
istics: it is a heterogeneous platform, and the C++

core is neither interactive, nor easily modifiable.
As a matter of fact, most available systems today

would fail the experimentation goal for a simple
reason: they are production systems.

We present ETAP (Experimental1 Typesetting
Algorithms Platform), a tool written to ease typeset-
ting experimentation and demonstration. ETAP cur-
rently focuses on paragraph formatting, and provides
an extensible list of configurable algorithms. ETAP

1 Whether the “experimental” part refers to typesetting,

algorithms, platform, or a combination of them is left to the

discretion of the user. . .

doi.org/10.47397/tb/44-2/tb137verna-realtime

Didier Verna

https://doi.org/10.47397/tb/44-2/tb137verna-realtime


TUGboat, Volume 44 (2023), No. 2 243

Figure 1: The ETAP GUI

also features switchable kerning, ligaturing, and hy-
phenation. The source text is editable, and the re-
sulting paragraph is (re)displayed in real-time, along
with many switchable visual hints, such as paragraph,
character, and line boxes, baselines, over/underfull
boxes, hyphenation clues, etc. All these parame-
ters, along with the desired paragraph width, are
adjustable interactively through the GUI.

But ETAP can also be used without, or in par-
allel with, the GUI, as a scriptable application. This
comes directly from its homogeneous design: the ap-
plication is written entirely in one industrial-strength
programming language, Common Lisp [1], which is
multi-paradigm, dynamic, and interactive. In partic-
ular, fully reflexive access to the various internal data
structures, and in fact, to the whole program while it
is running, allows for considerable experimentation
opportunities, such as batch-formatting in various
environmental conditions, and data collection for
empirical evaluation and statistical measurements.

Section 2 provides a description of the appli-
cation’s most important features, focusing on inter-

active manipulation through the GUI. Section 3
discusses some software engineering aspects of its
implementation. Finally, Section 4 describes the
programmatic (interactive, yet non-graphical) capa-
bilities of ETAP for experimentation.

2 The platform

Note: for the interested reader, another, slightly dif-
ferent description of the platform is available in [16].

A screenshot of ETAP’s GUI is provided in Fig-
ure 1. For as much as an interactive and real-time
application can be described on paper, the picture
should at least give the reader a general feeling of
what is available.

The Knuth-Plass algorithm [10] has been se-
lected, along with the default values for all its param-
eters. The source text for the paragraph is typeset
accordingly, in justified disposition, and with kern-
ing, ligatures (although there are none here), and
hyphenation.

A number of visual clues have been activated as
well and can be observed in the paragraph rendering
area (the bottom half of the window). In addition to

Interactive and real-time typesetting for demonstration and experimentation: ETAP



244 TUGboat, Volume 44 (2023), No. 2

the characters themselves, the paragraph’s bounding
box is drawn. The small arrows pointing upward
between characters represent the hyphenation points
at which the algorithm has decided not to break lines.
Finally, the unfilled triangle to the right of line 2
indicates an intentionally overstretched line. This
means that the algorithm has decided on a scaling (of
glue) ratio which exceeds 1. Indeed, the Knuth-Plass
algorithm ran twice here, using a tolerance threshold
of 200 the second time. One can also observe that
the third line had to be hyphenated, which confirms
this is not the result of pass 1 of the algorithm.

Finally, one can see a small popup window near
the bottom-right corner of the typeset paragraph.
This is actually a “properties tooltip” which pops up
when the mouse is moved over a line, and provides
feedback on the line in question. In this particular
case, it indicates that the line is 280pt wide (the para-
graph’s width, as the line is properly justified), and is
stretched by a scaling factor of approximately 0.475.
Also, because the selected algorithm is the Knuth-
Plass one, the tooltip reports the line’s fitness class,
badness, and local demerits. If we were to move the
mouse over the paragraph’s left margin, the tooltips
would advertise a number of global paragraph prop-
erties, such as the total demerits, the algorithm’s
pass number, and the number of remaining active
nodes at the end of execution.

Since we are talking about the Knuth-Plass
algorithm, note that this project does not aim at
providing an exact replica of it, nor of any other
currently available line-breaking algorithms (notably
Barnett [2] and Duncan [6]), nor of any future ones.
In fact, it is our opinion that what is called the
“Knuth-Plass algorithm” is actually not an algorithm
per se, but rather the combination of a typical short-
est path finding algorithm with a particular cost
function having the suitable properties for dynamic
programming optimization, all of this written in a
relatively low-level imperative language with perfor-
mance concerns of that time (the 1980s) in mind.

On the other hand, what we are interested in is
providing an exact replica of the algorithm’s logic.
Common Lisp is a much higher-level programming
language, and most performance concerns of the
time have long been obsoleted by the continuously
increasing computing power at hand (besides, perfor-
mance is rarely a top priority for an experimentation
platform). Consequently, our design and choice of
precise data structures diverge from the original. For
example, we actually provide two different implemen-
tations of the Knuth-Plass algorithm: one, close to
the original, equipped with the same dynamic pro-
gramming optimization, and another one based on

the exploration of a complete graph of solutions (not
the brute force and exhaustive 2n one, though!).

Another example where we differ from the origi-
nal is, again, motivated by demonstration and experi-
mentation. In the original Knuth-Plass, pass 1 of the
algorithm works on a non-hyphenated text (hyphen-
ation was considered too costly at the time). Only
if that fails does TEX hyphenate the text and try a
second pass (also with a different tolerance thresh-
old). In our case, we want to be able to display the
hyphenation clues every time, if so requested. Con-
sequently, the hyphenation process is implemented
as a global option (independent of the selected type-
setting algorithm), and pass 1 of the Knuth-Plass
algorithm may consequently run on an already hy-
phenated text, in which case it simply disregards the
hyphenation points as potential break points.

3 Software engineering

In the context where TEX is still one of the best
typesetting systems out there, but also one of the
oldest, we deem it important to say a word about
software engineering. It is a well-known fact that
the science of programming languages and paradigms
has evolved considerably over the years. Some people
have written about the virtues of a purely functional
approach to paragraph breaking in the past [4, 13].
We, on the other hand, favor a more pragmatic than
theoretical approach. In particular, instead of having
a single paradigm (e.g., functional programming)
imposed on us, we prefer the freedom and flexibility
provided by a multi-paradigm language [15].

Virtually any programming paradigm aims at in-
creasing both the code’s clarity and concision at the
same time. Table 1 provides a rough estimate of the
project’s size in LoC (Lines of Code), and clearly illus-
trates the benefits of being multi-paradigm for con-
cision. Liang’s hyphenation algorithm [11] amounts
to 150 LoC. The 500 lines of “lineup” correspond
to the pre-processing of the source text, including
hyphenation, kerning, ligaturing, and glueing. The
currently available paragraph formatting algorithms
comprise between 150 and 450 LoC (each variant
of Knuth-Plass takes 350 lines). We believe this

Table 1: Rough estimate of ETAP’s size

LoC

GUI 800
Hyphenation 150
Lineup 500
Algorithms 150–450
Knuth-Plass 350 per variant

Didier Verna



TUGboat, Volume 44 (2023), No. 2 245

kp-mixin

pass-number
demerits

paragraph

width
disposition
lines

graph-par

layouts-number

kp-graph-parkp-dyn-par

nodes-number

Figure 2: The paragraph classes

makes the whole platform rather small, considering
the functionality offered. In fact, the whole thing
currently remains below 5000 LoC, exclusive of large
data blocks: an additional 5000 lines is the “lispifica-
tion” of Adobe’s glyph list, and another 5000 lines
for English hyphenation patterns.

Let us now illustrate why being multi-paradigm
is beneficial for the project, via some examples.

3.1 Object orientation

Traditional, class-based object orientation revolves
around two fundamental concepts: inheritance (or-
ganization of the data) for code reuse, and polymor-
phism (manipulation of the data) for genericity.

Figure 2 depicts the paragraph class hierarchy
in a UML fashion. Every subclass incorporates the
contents of its superclass(es), thus avoiding duplica-
tion. The presence of multiple inheritance (not avail-
able in all object-oriented languages) ensures max-
imum sharing of code: the kp-dyn-par class repre-
sents paragraphs typeset with the dynamic program-
ming variant of the Knuth-Plass algorithm. Such a
paragraph is a regular paragraph before anything
else, but it also is a kp-mixin one, which means that
it remembers its pass number and total demerits.
Finally, this class also has one additional property of
its own: the number of remaining active nodes when
the algorithm terminates.

The GUI is passed a paragraph object which,
most of the time, is an instance of one of the sub-
classes (for example, a kp-dyn-par). But the visual
rendering function is interested only in the contents
of the base class (it needs to know only the para-
graph’s width, disposition and lines to perform the
formatting) so it is in fact unaware of the object’s ex-
act class. On the other hand, the properties tooltip
popup is implemented via a polymorphic generic

;; Duncan

(make-graph lineup width)

;; Knuth-Plass, graph variant

(make-graph lineup width

;; alternative "next boundaries" function...

:next-boundaries #’kp-next-boundaries

;; ... plus some specific arguments.

:threshold pre-tolerance)

Figure 3: The make-graph higher order function

function with different implementations for every
paragraph class. That is why, in a single function
call, it can still advertise the nodes-number proper-
ties when available, and simply doesn’t otherwise.

3.2 First class functions

The second example is that of functional program-
ming, although not in the “purely functional” sense
mentioned earlier, but rather in Christopher Stra-
chey’s sense [5, 14]. Functions in a programming
language are said to be “first class”, or “first order”,
or even “higher order” if they behave like any other
kind of object: they can be created dynamically,
passed as arguments to other functions, provided as
return values, etc.

Figure 3 provides an illustration of how func-
tional programming contributes to concision as much
as object orientation, only in a different way. ETAP

has a function called make-graph which accepts a
lineup and a paragraph width as arguments, and re-
turns a graph of all possible break point solutions. By
default, starting at a specific position in the lineup,
the next possible break points would be those involv-
ing a scaling of at most 1 in absolute value. There is
a function called next-boundaries which computes
the list of such break points.

On the other hand, some algorithms may have
a different view on what the next possible break
points actually are. For instance, the Knuth-Plass
algorithm does not look at the scaling alone, but
considers hyphenation and uses a pre-tolerance or a
tolerance threshold, depending on the pass number.
Creating a Knuth-Plass graph thus only differs from
a regular one in the way the next possible break
points are computed. It would be unsatisfactory to
write a specific version of make-graph just because
of that small divergence from the default behavior.
In fact, most of the code would actually be redundant
with the regular version.

What we do instead, is parameterize the “next
boundaries” function. The Knuth-Plass implemen-
tation comes with an alternative function called
kp-next-boundaries. As you can see in Figure 3,

Interactive and real-time typesetting for demonstration and experimentation: ETAP



246 TUGboat, Volume 44 (2023), No. 2

make-graph is in fact a higher order function, ac-
cepting a “next boundaries” function as argument.
This ensures that the skeleton of make-graph does
not need to be duplicated.

4 Experimentation

The last critical software engineering aspect which
we want to emphasize is the dynamic and interactive
nature of Common Lisp, ETAP’s implementation
language. Just like the more mainstream scripting
languages such as Ruby, Python, or Perl, Lisp pro-
vides a REPL (Read Eval Print Loop) from which
the programmer can interact with the program while
the program is running. In fact, both the REPL and
the GUI may be used at the same time to interact
with the system, and the homoiconic [7, 12] nature
of the language makes it trivial to introspect the live
objects, or even destructively modify them.

A typical experimentation scenario is as follows.
The programmer runs a typesetting experiment via
the GUI in various conditions, and observes a surpris-
ing (or suspicious) situation. The programmer then
switches to the REPL and from there, has the ability
to inspect (or debug) the complete program state,
without leaving the program. It is even possible to
hot-modify the typesetting code, for example to fix
a bug and switch back to the GUI in order to trigger
a redisplay.

Let us now illustrate the benefits of interactivity
with two examples, the second being a recent and
true anecdote.

4.1 Statistics

ETAP provides a short (around 200 LoC) generic
infrastructure for data collection and statistical mea-
surements of all sorts. For example, there is a func-
tion called scalar-statistics that loops over all
available algorithms and paragraph widths, and each
time collects a scalar value computed by a function
passed as an argument (another case of functional
programming at work).

This function can be used to generate compara-
tive charts for any criterion one may think of. For
example, with the two function calls below, we are
able to generate the charts presented in Figures 4
and 5.

(scalar-statistics #’collect-scales-mean)

(scalar-statistics #’collect-scales-variance)

Those charts are primarily meant to be visualized
on (large) screens, so they will appear somewhat
cluttered in a PDF. Their actual content is not so
important here, as the point is merely to illustrate
the current capabilities of the platform.

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

150 200 250 300 350 400 450 500 550 600

L
in
e
sc
al
in
g
m
ea
n
s

Paragraph width (pt)

Best-Fit
Barnett
Duncan

Knuth-Plass/Graph
Knuth-Plass/Dynamic

Figure 4: Scales mean

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

150 200 250 300 350 400 450 500 550 600

L
in
e
sc
al
in
g
va
ri
an

ce

Paragraph width (pt)

Best-Fit
Barnett
Duncan

Knuth-Plass/Graph
Knuth-Plass/Dynamic

Figure 5: Scales variance

The first one shows the average line scaling for
every algorithm and paragraph width. It is immedi-
ately visible on this chart that except for very narrow
paragraphs, the Barnett algorithm has a tendency
to compress a lot. On the other hand, the second
chart also shows that Barnett has a higher scaling
variance than the other algorithms. In TEX’s terms,
this means that the adjacent demerits would prob-
ably be off the charts (and that would be easy to
confirm too).

These two charts are just examples. Other ready-
made data collection functions allow you to compute
the graph sizes, the number of possible solutions, the
number of under/overfull lines, etc., usually in less
than 15 LoC.

4.2 The anecdote

The final example we want to provide here takes the
form of an anecdote, and we think it illustrates pretty
well why having such a platform for experimentation
is convenient.

Didier Verna



TUGboat, Volume 44 (2023), No. 2 247

100

1000

10000

100000

1× 106

1× 107

1× 108

150 200 250 300 350 400 450 500 550 600

T
E
X
’s

d
em

er
it
s

Paragraph width (pt)

Best-Fit
Barnett
Duncan

Knuth-Plass/Graph
Knuth-Plass/Dynamic

Figure 6: TEX’s view of the competition

At some point, we were curious to get an idea
of TEX’s view of the competition. In other words,
the question was: given a paragraph formatted by
an algorithm other than Knuth-Plass, what is this
paragraph’s number of total demerits?

We thus wrote a 50-line function to compute
the chart presented in Figure 6. Of course, the
expected general result is that when there is a valid
paragraph breaking solution, TEX should find itself
better than the competition, because again, it does
find optimal solution according to its own quality
criteria. Figure 6 does confirm this, although if you
look closely, you will spot a curious area, near the
440pt paragraph width, where the Best Fit algorithm
seems to perform better.

At first, we thought there was a bug somewhere
in the implementation of one algorithm or the other,
but in fact the code was correct. Visualizing the
resulting paragraphs made it apparent that the Best
Fit solution contained hyphens, and the Knuth-Plass
one didn’t. Recall that TEX will stop at pass 1 of the
algorithm if it finds a valid solution without hyphens.

The next hypothesis, then, was that there would
be cases in which a hyphenated paragraph would
amount to fewer demerits than its non-hyphenated
counterpart. Once you come to think of it, this
hypothesis is in fact very plausible, given that by de-
fault, hyphen penalties are quite small (50) compared
to, say, adjacency penalties (10000).

We were able to confirm that hypothesis in lit-
erally one line of code. Indeed, generating the chart
presented in Figure 7 took only one function call.
This chart plots the demerits for all paragraph widths
with or without pass 1 of the Knuth-Plass algorithm.
Recall that short-circuiting pass 1 is done by setting
the pre-tolerance parameter to −1 (which is what
LATEX does, by the way).

100

1000

10000

100000

1× 106

150 200 250 300 350 400 450 500 550 600

T
E
X
’s

d
em

er
it
s

Paragraph width (pt)

1/2/3
2/3

Figure 7: With or without pre-tolerance

On this chart, some areas are clearly visible
where pass 2 of the algorithm performs better (in
terms of total demerits) than pass 1. It is a bit
surprising that after 25 years of using LATEX, we only
recently realized that. But the important point, here
is how ETAP made the experimentation, hypothesis
formulation, and confirmation simple.

5 Conclusion and perspectives

As we hope to have demonstrated in this paper, ETAP

has now reached a state where it is suitable for both
demonstration and experimentation. The project
is available on GitHub (github.com/didierverna/
etap), and as a matter of fact, we were quite happy
that after the presentation at TUG 2023, half a dozen
attendees immediately expressed some interest in
using it. Consequently, we immediately updated the
installation instructions so that everyone may now
use it, without any prior knowledge of Lisp.

The existing list of planned improvements is
already quite large. For example, more flexibility
in font selection is a high priority. In general, our
plans for the future will follow three complementary
directions.

Bibliography We plan on studying more line-
breaking literature and port existing ideas or al-
gorithms we find to ETAP. By the way, here is a
small plea for help: our Duncan [6] and Barnett [2]
implementations are based only on the descriptions
that are given in the Knuth-Plass paper. We couldn’t
recover the original publications, and hence would
love it if anyone could contribute them.

Research One of our top priorities in the research
area is working on river detection. We also plan on
looking into microtype extensions, and perhaps a
number of smaller or simpler issues.

Interactive and real-time typesetting for demonstration and experimentation: ETAP

https://github.com/didierverna/etap
https://github.com/didierverna/etap


248 TUGboat, Volume 44 (2023), No. 2

One such issue is what we call “character lad-
ders”. In the same way TEX has this notion of
“double hyphen demerits” for hyphenation ladders, it
is usually undesirable that consecutive lines begin or
end with the same characters or short words. Taking
this into account is in fact very simple, and can even
be implemented as an extension to the Knuth-Plass
algorithm by adding a new kind of demerits.

Speaking of Knuth-Plass extensions, the ability
to have a graph-based implementation as well as the
original dynamic programming optimization opens
the door to a number of interesting research ques-
tions. For example, the way TEX addresses adjacency
problems is rather coarse. It only has four fitness
categories because in order for its cost function to
remain dynamically optimizable, the number of ac-
tive nodes to keep around depends on the number of
fitness classes (which needs to be discrete!). This is
in fact sub-optimal because if two consecutive lines
belong to different classes, the adjacency cost will
be the same, whether or not those lines are close to
each other in terms of scaling. On the other hand,
if one maintains a full graph of possible breaking
solutions, the adjacency demerits can be turned into
a continuous, hence much more accurate function. It
would be interesting to see how much of a difference
this makes in practice.

Development Finally, there are also some more
technical aspects that we want to address, one of
them being a tighter integration between the GUI

and the platform’s core. The current design offers
a number of features that are not yet accessible to
the GUI. For example, every possible break point
in the lineup has a local penalty value that can be
changed programmatically. The GUI only allows
global changes to the default initial value (TEX’s
hyphen penalty for example), but it would be nice
if we could, say, right click on hyphenation points,
and get a slider to change said penalty, having the
paragraph reformatted immediately. Indeed, this
would be an extremely convenient feature to have in
a production system as well.

References

[1] ANSI. American National Standard: Programming
Language—Common Lisp. ANSI X3.226:1994
(R1999), 1994.

[2] M.P. Barnett. Computer Typesetting: Experiments
and Prospects. MIT Press, Jan. 2000.

[3] K. Bazargan. Batch commander: a graphical user
interface for TEX. TUGboat 26(1):74–80, 2005.
tug.org/TUGboat/tb26-1/bazargan.pdf

[4] R.S. Bird. Transformational programming
and the paragraph problem. Science of
Computer Programming 6(2):159–189, 1986.
doi.org/10.1016/0167-6423(86)90023-7

[5] R. Burstall. Christopher Strachey—Understanding
programming languages. Higher Order Symbolic
Computation 13(1–2):51–55, 2000.

[6] C. Duncan, J. Eve, et al. Computer typesetting:
an evaluation of the problems. Printing Technology
7:133–151, 1963.

[7] A.C. Kay. The Reactive Engine. Ph.D. thesis,
University of Utah, 1969.

[8] D.E. Knuth. The TEXbook. Addison-Wesley, 1984.

[9] D.E. Knuth. TEX: The Program, vol. B of
Computers & Typesetting. Addison-Wesley,
Jan. 1986.

[10] D.E. Knuth, M.F. Plass. Breaking paragraphs
into lines. Software: Practice and Experience
11(11):1119–1184, 1981.
doi.org/10.1002/spe.4380111102

[11] F.M. Liang. Word Hy-phen-a-tion by Com-put-er
(Hyphenation, Computer). Ph.D. thesis,
Stanford University, 1983. tug.org/docs/liang

[12] M.D. McIlroy. Macro instruction extensions of
compiler languages. Communications of the ACM
3:214–220, Apr. 1960.
doi.org/10.1145/367177.367223

[13] O. de Moor, J. Gibbons. Bridging the
algorithm gap: a linear-time functional
program for paragraph formatting. Science
of Computer Programming 35(1):3–27, 1999.
doi.org/10.1016/S0167-6423(99)00005-2

[14] J. Stoy, C. Strachey. OS6—An experimental
operating system for a small computer. Part 2:
Input/output and filing system. The Computer
Journal 15(3):195–203, 1972.

[15] D. Verna. Star TEX: the next generation.
TUGboat 33(2):199–208, 2012.
tug.org/TUGboat/tb33-2/tb104verna.pdf

[16] D. Verna. ETAP: Experimental typesetting
algorithms platform. In 15th European Lisp
Symposium, pp. 48–52, Porto, Portugal, Mar. 2022.
doi.org/10.5281/zenodo.6334248

⋄ Didier Verna
EPITA Research Lab
14–16, rue Voltaire
94270 Le Kremlin-Bicêtre
France
didier (at) lrde.epita.fr

https://www.lrde.epita.fr/~didier/

ORCID 0000-0002-6315-052X

Didier Verna

https://tug.org/TUGboat/tb26-1/bazargan.pdf
https://doi.org/10.1016/0167-6423(86)90023-7
https://doi.org/10.1002/spe.4380111102
https://tug.org/docs/liang
https://doi.org/10.1145/367177.367223
https://doi.org/10.1016/S0167-6423(99)00005-2
https://tug.org/TUGboat/tb33-2/tb104verna.pdf
https://doi.org/10.5281/zenodo.6334248


TUGboat, Volume 44 (2023), No. 2 249

Living in containers—on TEX Live
(and ConTEXt) in a Docker setting

Island of TEX

Abstract

Over the course of the last year(s), the Island of TEX
has received quite some interest in its Docker con-
tainers. This article gives a brief overview about our
container infrastructure for TEX Live and ConTEXt,
including some examples on using our containers in
production environments. Last but not least, we
will elaborate on some interesting (mostly still open)
problems connected to containerizing TEX Live.

1 Overview of the Island’s Docker images

Since 2019, the Island of TEX provides multiple
Docker images for TEX Live and ConTEXt. Our first
publication on this topic was in TUGboat, Volume 40
(2019), No. 3 and stays mostly relevant. Therefore,
let us keep this introductory section short.

We still conceive Docker as an easy way to ship a
portable setup of software to users by providing them
with an operating system layer, operating system
packages (like Python) and the software layer (in our
case TEX Live or ConTEXt LMTX) bundled into one
single compressed file (the Docker image; simplified
but sufficient for visualization). By pulling a Docker
image the user has a reproducible setup at hand
without caring about his own host operating system
or software dependencies.

To this end, we provide a fairly minimal Con-
TEXt LMTX image (contextgarden/context:lmtx)
with the LMTX standalone distribution and the mod-
ules that ship with this ConTEXt distribution. The
image is based on Debian (testing branch) and is
about 250MB in size.

On the other end of the spectrum we provide
Docker images for TEX Live (texlive/texlive) in
different flavors. For all releases from 2013 on up
until the latest historic release (currently 2022), we
provide the historic images following the naming
scheme TL{YEAR}-historic. They always contain
a scheme-full TEX Live installation without doc-
umentation and source tree unless you explicitly
request one or the other of these removed trees by
appending -doc or -src respectively (doc first if you
want to have both, e.g. TL2022-historic-doc-src).

Like the ConTEXt images, the historic images
are based on Debian’s testing branch. Additionally,
they ship with required software to run most of the
tools included in TEX Live, e.g. Java for tools like
arara, Python for pygments (needed for the popular
minted package), and so on. This comes at a cost:

the TL2022-historic image without documentation
and source files tips the scales at 2.16GB.

A note on the word historic: The images are
structured into multiple layers, one of them being the
historic TEX Live tree that does not change. However,
the other layers which contain the operating system
and OS software packages are updated monthly. This
does not necessarily reflect the operating system soft-
ware situation that has been present in the historic
TEX Live release’s year but is beneficial from multi-
ple other points of view, e.g. when you want to run
your own scripts for pre- or postprocessing.

Apart from the historic images, we provide im-
ages for the latest release of TEX Live (currently
2023). The basic setup concerning the Debian base
and software packages is identical to the historic
images. However, in addition to splitting off the doc-
umentation and source tree you may request any of
the TEX Live schemes of the latest release by append-
ing a hyphen and the scheme’s name to the latest
tag, e.g. latest-small or latest-medium-doc, to
name just two variations. The default latest tag
will pull a scheme-full installation: handle with
care. All these various images are updated weekly,
with both Debian and TEX Live package updates.

You can find our images on both Docker Hub:
hub.docker.com/r/texlive/texlive

hub.docker.com/r/contextgarden/context

and our GitLab registry; see the projects’ code repos-
itories at:
gitlab.com/islandoftex/images/texlive

gitlab.com/islandoftex/images/context

2 Using the images in a local setup

One of the two primary use cases we focus on when
developing the images is use in a local environment,
i.e. replacing your local TEX Live installation. To
start off, let us emphasize that usually, especially
when using the latest TEX Live release locally, you do
not want to use our Docker images here for various
reasons including imperfect updating strategies and
space overhead.

However, in many settings there are a number
of benefits using Docker images locally, especially
when using the historic images. For the sake of this
discussion, let’s suppose you are coordinating a team
who have used LATEX for their various documents on
various operating systems for years.

. . . enter story telling mode . . .

Now let’s imagine a new, not so tech-savvy, con-
tributor joining; meet Bob. You have to explain
to him how to install a TEX installation on his ma-
chine which runs an operating system you are not
comfortable interacting with. You use last year’s

doi.org/10.47397/tb/44-2/tb137island-docker

Living in containers—on TEX Live (and ConTEXt) in a Docker setting

https://hub.docker.com/r/texlive/texlive
https://hub.docker.com/r/contextgarden/context
https://gitlab.com/islandoftex/images/texlive
https://gitlab.com/islandoftex/images/context
https://doi.org/10.47397/tb/44-2/tb137island-docker


250 TUGboat, Volume 44 (2023), No. 2

image: registry.gitlab.com/islandoftex/images/texlive:TL2022-historic

build:

script:

- find -name "*.tex" -exec arara -v "{}" \;

artifacts:

paths:

- ./**/*.pdf

Figure 1: Preliminary .gitlab-ci.yml file to rebuild all .tex sources with arara.

TEX Live release so you have to refer Bob to one
of the guides on how to install a historic TEX Live
release there. And you use arara for build manage-
ment and minted in your documents . . . the thought
of guiding Bob through Java and Python installa-
tions and debugging a setup on another operating
system is not that appealing. But wait a minute,
at this point you could also refer him to one of
the various setup guides for Docker and let him
docker pull texlive/texlive:TL2022-historic

and be done.
No sooner said than done. Bob now has his

Docker-based TEX Live up and running, including
all the dependencies needed for his daily typesetting.
He creates his first document and runs it in the
Docker container using:

docker run -i \

-v "$PWD":/opt/doc:z -w /opt/doc \

texlive/texlive:TL2022-historic \

arara -v document.tex

To avoid typing all this every time, he configures his
editor to run this command on compilation. Bob is
happy, you are happy, onboarding done.

As a short interlude for the interested reader:
the longish command above pulls and runs the his-
toric image of TEX Live 2022 from Docker Hub (re-
member that it is the image without documentation
or sources). When it starts the image, it will mount
the current working directory in the Docker image,
ensuring that all documents are accessible and the
build results will appear there. It then starts the
arara call at the end of the command, in interactive
mode so you can interact with the output of the com-
mand transparently through the Docker boundary.

A week later, Bob is tasked to typeset an up-
dated version of one of the older documents which
does not compile on TEX Live 2022 any more. To see
how it looked back then, an older TEX Live release is
needed. Luckily, you have avoided needing to remind
him of the installation instructions for a historic TEX
Live release just to find yourself in the situation to
explain to him how to set the PATH variable of his
operating system to the older release and back to

the newer one. You just let him duplicate his editor
configuration for TEX Live 2022 and use the older
release.

docker run -i \

-v "$PWD":/opt/doc:z -w /opt/doc \

texlive/texlive:TL2018-historic \

arara -v document.tex

and everything works. Docker even pulled the image
on first use without needing a separate pull com-
mand.

Now that you just happened to have finished
onboarding a new contributor you decide to write
a short setup guide for future new contributors in
your team. Interestingly enough, the whole setup
guide fits onto one A4 page. Happy that you have
a concise guide covering everything from installing
to running multiple TEX Live releases with a repro-
ducible environment and dependencies, you close
that onboarding chapter.

3 Using the images in a CI setting

Bob got hooked, all this Docker business was easy
enough to be well hidden behind his editor for now.
All this technical stuff being a bit magical to him he
would still like to verify that documents he makes
available to you will always compile. As you are using
GitLab anyway, you introduce him to git (a lot more
work than the one A4 page for the local setup) and set
up a continuous integration pipeline on your GitLab
instance that compiles all the documents when a new
commit is pushed.

The setup is simple: you add a .gitlab-ci.yml
file to your repository which has the content shown
in figure 1.

Done. The pipeline runs and finishes . . . after
quite some time. Waiting 10 minutes for the feed-
back that the documents Bob just touched compile
seems a bit subpar to you. Your inner Don Knuth
starts yelling at you about something with premature
optimization but you are convinced: the repository
grows, it cannot be a good idea to always run all
documents when we are only interested in potential
compilation errors of a few of them.

Island of TEX



TUGboat, Volume 44 (2023), No. 2 251

So your preferred setup would instead look some-
thing like this:

...

script:

- bash compile-only-needed.sh

...

with some bash magic taking care of compiling only
what is needed. A deep dive into GitLab’s documen-
tation later you see this is not as hard as you had
imagined. So your bash script is surprisingly short:

#!/usr/bin/env bash

gitsha="$(curl \

--header "PRIVATE-TOKEN: \

$GL_API_ACCESS_TOKEN" \

"https://gitlab.com/api/v4/projects/\

$CI_PROJECT_ID/pipelines?ref=$CI_DEFAULT_BRANCH\

&sort=desc&status=success" \

| grep -o -E -m1 ’"sha":"([^"]*)"’ \

| head -1 | cut -c 8-47)"

changed_files=$(git diff-tree \

--no-commit-id --name-only -r \

"$gitsha".."$CI_COMMIT_SHA")

compile_all=false

for file in $changed_files; do

if [[ $file == texmf/* ]]; then

compile_all=true

break

fi

done

if [ "$compile_all" = true ]; then

latex_files=$(find . -name "*.tex")

for file in $latex_files; do

if grep -Fq "arara" "$file"; then

base_dir="$(dirname "$file")"

base_name="$(basename "$file")"

cd "$base_dir"

arara -v "$base_name"

cd "$(git rev-parse --show-toplevel)"

fi

done

else

for file in $changed_files; do

base_dir="$(dirname "$file")"

base_name="$(basename "$file")"

if [[ ! -f "$file" ]] \

|| [[ "$file" != *.tex ]] \

|| ! grep -Fq "arara" "$file"; then

continue

fi

cd "$base_dir"

arara -v "$base_name"

cd "$(git rev-parse --show-toplevel)"

done

fi

You know that you ignored most of the sanity
checking you should have done. But as the old en-
gineering adage says: “it works”. It even takes into
account that it needs to recompile everything if one
of your “global” files changes— the ones you have in
your texmf folder in your repository like your logo,
custom packages, etc.

The basic structure is even easy to explain: first,
the GitLab API is queried for the last commit on your
default branch a pipeline has successfully run. Then,
git is run to determine all files that have changed
since that commit. If one of the changed files affects
all documents, the CI runs basically the find call of
your first CI example1 with some directory changes.
If no such file has been changed, arara is run on all
relevant changed LATEX sources.

With this simple bash script, you successfully
turned your 10 minute pipeline into a 3 minute on
average pipeline leaving you quite satisfied but won-
dering why it takes so long to typeset one or two
documents.

A short investigation of the CI log later you
have identified the culprit: you use the full TEX Live
image, i.e. scheme-full which pulls more than 2GB

each time your pipeline runs, making up more than
2 minutes of that 3 minutes. Unfortunately, you are
using a historic image which does not provide a split
by schemes (and you use too many packages anyway)
so you cannot slim down on that one. But you notice
that your team has spare server capacity and set up
a GitLab runner for your project that caches the
historic TEX Live images.

Now that you have successfully reduced your
average pipeline to less than one minute running time
you are confident that it is future-proof enough. And
after a few more minutes than originally intended
you have successfully implemented Bob’s request.

. . . story telling mode off . . .

4 Maintenance challenges of the
TEX Live images

The Island of TEX manages and builds all its Docker
images using GitLab and the GitLab CI. Unfor-
tunately, we reached some limits on the main in-
stance at gitlab.com quite early in our image build
processes. Thanks to Marei Peischl and Vı́t Starý
Novotný we have access to custom CI runners (read:
servers that build our images) which have massively
improved the stability of our build process.

1 At this point we should add that that find call in the

first example would not work properly due to executing arara

in the wrong base directory, which is a bad idea in general.

But as it was a motivating example and is fixed in the bash

script, we consider this error a case of “no harm done”.

Living in containers—on TEX Live (and ConTEXt) in a Docker setting

https://gitlab.com


252 TUGboat, Volume 44 (2023), No. 2

However, there is still something calling for man-
ual intervention every other week. So we are inter-
ested in improving our build setups to avoid all this
intervention. Part of that will include switching to
new infrastructure, and part of that in turn will
include optimizing the build process and caching.

To further build optimizations, we would like
to provide the historic images split by scheme as
we do for the latest images. This will require more
substantial changes than we would like to admit but
also bring the benefits of smaller images to many,
especially as we acknowledge the importance of the
historic images.

Revisiting the topic of automation, there is a
minor annoyance also caused by requiring manual
intervention: each year, when a new TEX Live is
released we have to add the now-historic TEX Live
to our build matrix for historic images. We would
like to fix this but have not found the way to go yet.
Ideas are welcome.

Another topic that looks for helping hands is
the layering of the TEX Live images. This is espe-
cially important with the split by schemes which
could potentially be layered on top of each other but
also to improve the update situation for local uses of
the latest images. Experimentation, ideas, and fruit-
ful discussions on our issue tracker at gitlab.com/
islandoftex/images/texlive/-/issues would be
greatly appreciated.

Last but not least, there is one topic that has
been a challenge so far but is on the short-term
roadmap of actually being resolved: providing multi-
architecture images. Currently, our images only pro-
vide binaries for the x86_64 architecture but a few
platforms, most notably smartphones and Raspberry
Pis, run on a different architecture, namely ARM.
TEX Live ships with binaries for these architectures
and by the next time you hear from us we hope our
images do too.

⋄ Island of TEX

https://gitlab.com/islandoftex

https://islandoftex.gitlab.io

News from the HINT project: 2023

Martin Ruckert

Abstract

The HINT file format [5] was presented at TUG 2019
[4], and at TUG 2020 [6], the first usable viewer for
HINT files was presented. The HiTEX engine became
part of TEX Live in 2022. This presentation will
explore the changes that have taken place since then
and what to expect in the future. This article will

• explain the improvements in glyph rendering in
more recent versions of the HINT file viewer;

• describe the use of links, labels, and outlines;

• present hints on how to design TEX macros for
variable page sizes;

• and discuss the capabilities of the HINT file for-
mat to convert pages to plain text for searching
or text-to-speech processing.

1 Displaying glyphs

Initially, the HINT viewer supported only .pk fonts.
These font files contain METAFONT fonts at a fixed
resolution, usually 600 dpi. Rendering such a font
on a computer screen with a typically much lower
resolution, was done in three steps:

1. Decoding the font file header and caching it for
later use.

2. Decoding a glyph into a black and white bitmap
and caching it for later use.

3. For each pixel on screen intersecting the glyph’s
bounding box

• map the pixel center to a source point in
the glyph’s bitmap, and

• compute the pixel’s gray value by linearly
interpolating the black and white values
of the four pixels surrounding the source
point in the bitmap.

Since high resolutions, even above 300 dpi, are com-
mon on small mobile devices, the results were more
than acceptable on these devices. On ordinary com-
puter screens, typically with resolutions less than
100 dpi, the results were insufficient. In particular,
the rendering of thin lines would distribute the avail-
able amount of black ink over a two-pixel-wide area
and the line would fade away into a blurry light-gray.

Things changed with the use of the FreeType
font rendering library [7]. This library can render
PostScript Type 1 outline fonts at any resolution de-
sired. After replacing the .pk fonts by .pfb fonts,
the viewer could render the glyphs as gray-value bit-
maps for the actual screen resolution [3]. To produce
good looking glyphs from an outline font, first the

doi.org/10.47397/tb/44-2/tb137ruckert-hint23

Martin Ruckert



TUGboat, Volume 44 (2023), No. 2 253

positions of key points of the outline, for example
the points where the outline has a horizontal or ver-
tical tangent, will be rounded to the pixel grid. Af-
ter that, pixels that are only partly covered by the
outline will be assigned gray values, depending on
the amount of coverage. This results in less blur
and consistent stroke widths, improving readability
especially for small font sizes.

The quality of the font rendering in the HINT

viewer was, however, still inferior to a rendering of
the same font by other programs. The reason was
that the viewer would not map the glyph bitmap
one to one to the screen but instead would map
the bitmap to TEX’s exact glyph position —usually
not aligned to the pixel grid— using step 3 as given
above.

To improve readability at small font sizes, the
current viewer rounds the glyph position to the pixel
grid before rendering the glyph. It also replaces the
linear interpolation of pixel values by using the gray
value of the nearest source pixel. The rounding will
occur only if the font size is below a given threshold.
In principle the rounding can be split into rounding
horizontal and rounding vertical position. While the
first affects character distances, the latter moves en-
tire lines and is less distracting. For a demonstra-
tion, see [3].

a) no alignment b) vertical alignment

c) horizontal alignment d) full alignment

Figure 1: A cmr 10pt V with different alignment to

the pixel grid.

Further improvements are possible, but not yet
implemented. One potential method is oversam-
pling, where a glyph is rendered at, for example,
four different horizontal positions on the pixel grid.
Choosing one of these four renderings, the horizontal
glyph position must be rounded to 1/4 of the pixel
size which is far less distracting. Another method is

sub-pixel rendering. This method uses the fact that
one white pixel on screen actually consists of three
colored dots: red, green, and blue. So by consid-
ering them as independent light sources, the hori-
zontal resolution can be tripled. This improves the
positioning but leads to colored borders which some
people find distracting.

2 Links, labels, and outlines

People my age learned how to navigate through thick
books already in primary school, if not in kindergar-
ten. These skills are more or less obsolete when it
comes to navigating through “thick” electronic doc-
uments. So good replacements are necessary. The
most obvious point to start exploring a book is its
table of contents where for each section the corre-
sponding page number is listed. The HINT file for-
mat supports the concept of a home page: a position
in the document identified by the author that can be
reached in the viewer with a single key stroke, touch,
or click. The HINT document, however, has no fixed
page numbers. The pages grow and shrink with the
window size (and with the magnification factor). So
instead, a table of contents must use a clickable link
that brings you immediately to the section in ques-
tion. Similar links are used for the table of figures,
index, and all kinds of cross-references, be it to indi-
vidual parts of the text, a figure, a table, a citation,
or a displayed formula.

As an alternative to the table of contents, the
HINT file format also supports “outlines”: A clickable
table of contents, hierarchically organized and dis-
played in a separate window. To allow optimal use
of the available space, sub-levels of the hierarchy can
be hidden or expanded as needed [3].

At present, a driver [2] for the LATEX hyperref

package offers support for most of the above fea-
tures.

In one respect HINT files are radically different
from books and PDF files: There are no predefined
pages. So following a link is not as simple as display-
ing a page with a given page number, but requires
finding two good page breaks so that the target is
on the page between them. The algorithm used in
the current HINT viewer is still under development
and there are cases where the choice of page breaks
could be better.

3 Designing macros for variable pages

The traditional implementation of centering text is
the \centerline macro. It expands to \hbox to

\hsize{\hfill text \hfill} which will look nice
as long as the text is shorter than \hsize. If the
text is longer, it will produce an overfull box, stick

News from the HINT project: 2023



254 TUGboat, Volume 44 (2023), No. 2

out into the margin, and even go past the edge of the
window. A better solution uses TEX’s line breaking
procedure which requires a vertical box.

\vbox{\rightskip 0pt plus2em

\leftskip=\rightskip

\parfillskip=0pt\parindent 0pt

\spaceskip.3333em

\xspaceskip.5em\relax

This is Text Centered on the Page

}

Letting \rightskip and \leftskip stretch enough,
but not too much, so that the line breaking routine
will try to keep the lines filled but still has enough
room to produce decent lines (see [3]). The inter-
word glue, on the other hand, is prevented from
stretching. It could be made to allow some shrinking
to gain additional flexibility.

The only new feature introduced in HiTEX since
2019 is support for \vtop. This is important because
writing for variable page sizes often requires replac-
ing a horizontal box by a vertical box to enable the
breaking of paragraphs into lines. \vtop is required
if multiple vertical boxes need to be aligned on the
top baseline (see [3]).

4 Searching

The user input in a search field is just a plain se-
quence of characters coded in UTF-8 or perhaps an-
other encoding such as ISO 8859-1. The text as rep-
resented in a TEX document is far more complex
and searching requires finding a match between both
representations. Even if the input consists only of
ASCII characters the HINT viewer must handle some
special cases.

If the word the user wants to find uses a liga-
ture, the match is made using the replacement char-
acters, which are retained in TEX’s ligature node.
If the word on the page is hyphenated and split
across lines, the match must ignore extra characters
inserted by the pre- and post-hyphenation lists, as
well as the space that is usually separating the word
at the end of one line from the word that starts the
new line.

Thus, the HINT backend provides a function
that converts entire pages into sequences of char-
acters moving from top left to bottom right, elimi-
nating the effects of ligatures and hyphenations and
condensing various combinations of glue— indenta-
tions, spaces, baseline skips, left skips, and right
skips, to name just a few— to a single space. Kerns,
meanwhile, are completely ignored. An infelicity
here is the definition of the LATEX macro, which uses
a glue instead of a kern between ‘A’ and ‘T’. So you
have to search for “LA TEX”.

It is planned to use the page-to-string function
also to feed a text-to-speech converter.

Currently searching does not work well with
non-ASCII characters, but it is planned to imple-
ment UTF-8 as the default encoding used for HiTEX
and HINT files.

5 New viewers for Linux, macOS, and iOS

Together with the viewers for Windows and An-
droid, the applications for Linux, macOS, and iOS

complete the set of viewers. The Windows applica-
tion, being the oldest and my workhorse for conduct-
ing experiments, is the most complex. The applica-
tion for macOS is the most recent and was presented
on Jonathan Fine’s TEX Hour [1, 3]. The applica-
tion for Linux is the simplest: it consists beside the
backend and the OpenGL renderer (shared between
all applications) of only a 600-line main program [2].
This is a good starting point for writing your own
viewer.

References

[1] J. Fine, M. Ruckert, et al. Rethinking TEX in
STEM. texhour.github.io/2022/09/29/

rethink-tex-in-stem/, Sept. 2022.

[2] M. Ruckert. HINT source repository.
github.com/ruckertm/HINT.

[3] M. Ruckert. The HINT video collection.
hint.userweb.mwn.de/hint/video/.

[4] M. Ruckert. The design of the HINT file
format. TUGboat 40(2):143–146, 2019. tug.

org/TUGboat/tb40-2/tb125ruckert-hint.

pdf

[5] M. Ruckert. HINT: The File Format. 2019.
ISBN 1-079-48159-1.
amazon.com/dp/1079481591

[6] M. Ruckert, G. Socher. The HINT project:
Status and open questions. TUGboat

41(2):208–211, 2020. tug.org/TUGboat/

tb41-2/tb128ruckert-hint.pdf

[7] D. Turner, W. Lemberg, et al. FreeType.
www.freetype.org/.

⋄ Martin Ruckert

Hochschule München

Lothstrasse 64

80336 München

Germany

martin.ruckert (at) hm dot edu

Martin Ruckert

https://texhour.github.io/2022/09/29/rethink-tex-in-stem/
https://texhour.github.io/2022/09/29/rethink-tex-in-stem/
https://github.com/ruckertm/HINT
https://hint.userweb.mwn.de/hint/video/
https://tug.org/TUGboat/tb40-2/tb125ruckert-hint.pdf
https://tug.org/TUGboat/tb40-2/tb125ruckert-hint.pdf
https://tug.org/TUGboat/tb40-2/tb125ruckert-hint.pdf
https://amazon.com/dp/1079481591
https://tug.org/TUGboat/tb41-2/tb128ruckert-hint.pdf
https://tug.org/TUGboat/tb41-2/tb128ruckert-hint.pdf
https://www.freetype.org/


TUGboat, Volume 44 (2023), No. 2 255

Bumpy road towards a good LATEX visual

editor at Overleaf

Ben Davies

Abstract

Overleaf has both a Code editor and a Visual (“Rich
Text”) editor. We recently redesigned the Visual
editor. Benefits, drawbacks, and specific issues this
editor duality poses will be presented, together with
some takeaways we have learned on the way.

1 Introduction

Overleaf is a collaborative tool designed to help peo-
ple work together on a document. We do this by
placing one ‘true’ version in the cloud which everyone
works from. However, each collaborator will have
different needs, so will need tools to suit them.

For instance, someone working on a document
might not know LATEX or is providing proofreading
services and thus can do without seeing the raw form.
It is important that we can enable these people to
contribute content and make changes to the docu-
ment without feeling excluded. Further, we want to
reduce the burden that can sometimes be placed on
those who do know LATEX in such circumstances.

Another place we hope to make a difference is
in learning LATEX and for those intimidated by code.
We want to help lower the barrier to learning LATEX
by making it more familiar and easier to interact
with. In these cases, a mode that focuses just on
the content but still allows edits to be seen without
recompiling would seem to be a useful tool.

2 Road to the Visual Editor

A first attempt at such an editor was our Rich Text
mode. This used CodeMirror 5 to decorate parts of
the document such as maths (using MathJax) and
figures. There were also attempts at ‘hiding’ code
that didn’t need to be seen all the time, such as the
preamble and common styling commands. Regard-
less of the decorations, a core principle ensuring that
code was always accessible was, and is, maintained.

However, at this time, the Source mode used
the Ace editor; as a result, certain features were
not available across both modes. Collaborative fea-
tures such as track changes and commenting were
not transferable to the Rich Text mode, limiting col-
laborators’ ability to contribute. This meant people
needed to switch back and forth between the modes
costing them time and causing distraction.

Given these issues, we decided to migrate both
editors to CodeMirror 6. There are several advan-
tages to this outside of the Visual editor, such as

better support for accessibility features, mobile de-
vices and non-Latin languages. A key feature is the
ability to support both versions of the editor: Code
and Visual.

After the migration, we were able to share fea-
tures across both editors more easily, bringing the
collaborative features to the Visual Editor. Not only
that, there is now parity between the editors when
it comes to, for instance, themes, keybindings and
auto-completion. This is because the Visual Editor
is now effectively the Code Editor with decorations.

Having completed the migration we are now
using an element-by-element design approach to im-
prove the experience. Focusing on specific environ-
ments or commands allows us to make more contin-
uous improvements and helps us consider the best
behaviours more fully.

3 Features

The best way of experiencing the Visual Editor is
to go to Overleaf, start a project and toggle the
Visual Editor on. You will find a toolbar containing
common actions that also provides familiarity for
those new to LATEX. There’s a figure modal so you
can insert figures without writing any LATEX at all.

Given the documents that are usually written
in LATEX it is perhaps unsurprising that the maths
environments are also decorated (now including cus-
tom maths commands) as well as decorated headings,
lists, theorems, text styling and much more.

The Visual Editor was demonstrated at the
conference; the video of the talk is available at
youtube.com/c/texusersgroup.

4 Conclusions

We still have questions about the content we can
handle efficiently and how certain things should be-
have, especially across the two editors. There are
also considerations about how much can be done
whilst ensuring we retain the full power of LATEX for
all users.

We did learn that providing parity to different
code editors (CM6, CM5, Ace) is difficult; we are
happier with one. We also learned that just because
we know how we would write the LATEX doesn’t
mean we know what the ‘button’ should do and vice

versa. And finally that providing different interfaces
enhances user experience and has been met very
positively by the community. So long as we are
achieving that, we will keep at it!

⋄ Ben Davies

Overleaf

ben dot davies (at) overleaf dot com

doi.org/10.47397/tb/44-2/tb137davies-visual

Bumpy road towards a good LATEX visual editor at Overleaf

https://youtube.com/c/texusersgroup
https://doi.org/10.47397/tb/44-2/tb137davies-visual


256 TUGboat, Volume 44 (2023), No. 2

Overleaf and TEX Live

Tom Hejda

Abstract

Overleaf makes an annual deployment of TEX Live,
which we sum up here, including the testing we
perform as part of the deployment process. The talk
at the TEX Users Group conference was followed by
a discussion about Overleaf’s process with regards to
LATEX development and TEX Live testing; however,
this discussion is not captured in this article.

1 Introduction

Overleaf is an online LATEX collaborative platform
that is available at overleaf.com. For more back-
ground on TEX Live, see tug.org/texlive.

The LATEX compiler is run as a Docker image
that contains a modified version of the texlive-full
scheme. In this short article, the actions needed to
successfully deploy new TEX Live images will be
presented.

2 TEX Live deployment procedure

We deploy TEX Live usually in the third quarter
each year. The procedure can be summed up in the
following steps:

1. Prepare the initial Docker image that contains
a full Linux installation and has texlive-full.

2. Use tlmgr to update the packages to the latest
versions.

3. Make sure that helper tools such as Image-
Magick, Inkscape, and requested R packages
are properly installed.

4. Optimize fonts available in the Docker image—
remove duplicates of fonts coming from multiple
sources, and precompile fonts.

5. Remove the documentation that was installed
together with texlive-full to decrease the im-
age size.

6. Perform testing (see next section for details) and
write documentation.

7. Go live and monitor for further issues reported
by users.

3 Testing of the TEX Live image

Overleaf is running the Overleaf Gallery, which cur-
rently contains about 10 thousand LATEX templates
and example documents. With each new TEX Live
version, we check whether the templates compile
under the new version; the goal is to make each tem-
plate use by default the most recent version possible,
and maximize the number of templates that can run
on the new version.

To this end, we manually check the templates
that fail with the latest TEX Live version; sometimes
it is possible that a simple patch to a package would
solve the issue, in which case we try to coordinate
with the package maintainers and see whether a fix is
feasible. If that is not possible, we keep the template
at an older version to ensure it uses a version where
it runs without errors.

4 Conclusion

We are always looking for improvements to the pro-
cess; currently we are aware of the issue of bad align-
ment in timing between our process and the TEX
Live annual build procedure, and we are looking into
ways of improving this while still giving our users
good and stable experiences with the compiler.

The video of the talk is available at youtube.

com/c/texusersgroup.

⋄ Tom Hejda

Overleaf

tom dot hejda (at) overleaf dot com

doi.org/10.47397/tb/44-2/tb137hejda-overleaf-tl

Tom Hejda

https://overleaf.com
https://tug.org/texlive
https://youtube.com/c/texusersgroup
https://youtube.com/c/texusersgroup
https://doi.org/10.47397/tb/44-2/tb137hejda-overleaf-tl


TUGboat, Volume 44 (2023), No. 2 257

Primo—A new sustainable solution

for publishing

Rishikesan Nair T, Apu V, Hàn Th´̂e Thành,
Jan Vaněk

Abstract

Primo is a cutting-edge, cloud-based authoring, sub-
mission, and proofing framework that provides a
sustainable solution for academic publishing. It com-
bines the advantages of XML-based workflows that
facilitate controlled authoring and/or editing in ac-
cordance with specific DTDs and house styles, with
the visually appealing and mathematically precise
typesetting language of TEX, enabling the creation of
high-quality PDFs and mathematical images (offering
an alternative to MathML coding).

By speaking the widely accepted communicating
lingua franca of mathematics and science (i.e., TEX),
and utilizing the XML/MathML format for archiving,
Primo has the potential to revolutionize the publish-
ing industry. This tool caters to both the author
and the publisher, bringing their needs together with
enhanced participation of authors in the publishing
process. The three main modules of Primo include
Authoring, Submission/Reviewing, and Proofing, all
of which are equipped with usability checks during
submission, a collaborative editing feature, a WYSI-

WYG math editing tool, and publisher/journal-based
PDF manuscript rendering. With Primo, authors can
be assured that their work will be published with
the highest level of precision and quality.

1 Introduction

Primo, the latest addition to the lineup of TEX-based
tools, is developed by STM Software Engineering Pvt
Ltd., a specialized TEX typesetting house renowned
for its top-notch typesetting and prepress services,
catering to the needs of STM publishing giants spe-
cialized in the typesetting of complex articles. With
its state-of-the-art technologies, STM Software Engi-
neering Pvt Ltd. developed a range of cloud-based
typesetting frameworks, including TEXFolio [2] and
Ithal [1], primarily designed for in-house typesetting
and format conversion purposes within publishing
houses. On the other hand, Neptune [3] and Primo
target authors directly, providing them with efficient
and user-friendly TEX-based tools.

2 Primo

Primo’s modular structure and well-designed tools
enable authors to navigate the entire publication
journey with ease, from initial authoring to final
proofing. By integrating these three modules, Primo

optimizes the authoring, submission, and proofing
processes, making it a comprehensive and efficient
platform for scholarly publishing.

3 Authoring tool

An offshoot of the aforementioned processes is a
standalone authoring tool, currently named Primo
Editor (figs. 1–4). This tool encompasses all the
necessary elements to compose an article meeting all
technical requirements for seamless uploading to a
publisher.

3.1 Salient features

Please note that while the list below covers the main
features, undoubtedly additional features will be
added.

1. Collaborative editing: Multiple authors can
contribute simultaneously.

2. Operating system independence: The tool
is operating system independent and has aWYSI-

WYG interface.

3. Cloud-based with TEX installation: A com-
pletely cloud-based version with a TEX installa-
tion comprising essential packages, fonts, com-
pilers and utilities. The user need not worry
about installation or configuration of a TEX dis-
tribution.

4. Proper template: With the Primo author-
ing tool, authors no longer need to spend time
searching for the appropriate template for their
submissions. The tool offers a comprehensive
collection of templates, and given the name of
the journal and publisher, it automatically se-
lects the most suitable template. This eliminates
the hassle of manually locating the correct tem-
plate and ensures that authors can focus on their
content without the added burden of formatting.

5. Math input: Users can enter mathematical
equations using LATEX syntax or utilize built-in
math tools from the menu.

6. Form-like interface: A user-friendly form-like
interface is available to capture front matter
data such as author information, affiliations,
abstract, keywords, graphical or stereo-chemical
abstracts, and more.

7. WYSIWYG interfaces for tables and fig-

ures: WYSIWYG interfaces for entry of table
and figure data.

8. BIBTEX support: BibTEX data is always wel-
come if the user prefers to use the same.

9. Bibliography data checking: Checking bibli-
ography data with Crossref is an added benefit.

doi.org/10.47397/tb/44-2/tb137rishi-primo

Primo—A new sustainable solution for publishing

https://doi.org/10.47397/tb/44-2/tb137rishi-primo


258 TUGboat, Volume 44 (2023), No. 2

Figure 1: Primo: The main page.

Figure 2: The author and affiliation screens.

10. Bibliography import: With the help of Primo,
users can easily import bibliography data using
identifiers such as DOIs (Digital Object Identi-
fiers) or PMID (PubMed IDs), streamlining the
referencing process.

11. Enhanced author participation: The tool
promotes active author involvement in the pub-
lishing process, minimizing errors and semantic
inconsistencies introduced by typesetters. This
enhances the overall quality and reduces the
time gap between submission and publication.

12. Compliance checking: The tool automati-
cally checks the manuscript’s adherence to the
style guidelines of the publisher or journal, ensur-
ing compliance with formatting requirements.

These features collectively provide a compre-
hensive and user-friendly platform for collaborative
manuscript preparation, improving the efficiency and
quality of the publishing process.

4 Submission tool

The submission process for authors can often be ar-
duous and time-consuming. With strict timelines

Rishikesan Nair T, Apu V, Hàn Th´̂e Thành, Jan Vaněk



TUGboat, Volume 44 (2023), No. 2 259

Figure 3: Math content rendering.

Primo—A new sustainable solution for publishing



260 TUGboat, Volume 44 (2023), No. 2

Figure 4: The Primo drive.

and numerous procedures to navigate, authors often
find it challenging and frustrating. Primo seeks to
alleviate these difficulties. In its initial stage, this
authoring tool assists authors in crafting their man-
uscripts in compliance with the specific style require-
ments of publishers and journals, as described above.
The subsequent step involves a seamless transfer of
the source files to the submission system employed
by publishers.

4.1 Salient features

1. Source files: Since the source files were already
prepared as per the specification using the au-
thoring tool, there should be no surprises in the
submission system.

2. Proper submission: Transferring files directly
from author tool to submission tool and finally
to the publishers’ submission system helps elim-
inate chances of missing files or materials.

3. File category: In the commonly-used submis-
sion systems, the file type of each source file up-
loaded has to be specified. For example, “Man-
uscript”, “Revised Manuscript”, “Figure”, etc.
Primo helps to sort this out easily and helps
authors to identify which is which.

4. Usability check: Depending on the compliance
of the submission system to which finally the
source files are uploaded for the publisher, the

Primo submission tool runs a custom usability
check on the source files and reports problems
any problems with the source files. This will
help those authors who prepare manuscripts in
their system or any other interface and directly
upload source files to the Primo submission tool.

5 Proofing tool

The proofing tool plays a crucial role in Primo. Once
the typesetting process is complete, the typesetter
uploads or imports a dataset that includes the ar-
ticle’s XML/MathML, figures, supplementary ma-
terials such as audio, video, program codes, and
alternative images for MathML, among others.

The format of the dataset is simple and looks
like this:

Archive: ENDEND_99996.zip

Name

----

ENDEND_99996.pdf

main.assets/

main.assets/fx1006.jpg

main.assets/gr1.jpg

main.assets/fx999.jpg

main.assets/gr2b.jpg

main.assets/mmc1.pdf

main.assets/fx1001.jpg

main.assets/fx1004.jpg

main.assets/fx1.jpg

Rishikesan Nair T, Apu V, Hàn Th´̂e Thành, Jan Vaněk



TUGboat, Volume 44 (2023), No. 2 261

main.assets/fx1005.jpg

main.assets/fx1002.jpg

main.assets/gr2a.jpg

main.assets/fx1003.jpg

main.assets/fx1007.jpg

main.pdf

main.stripin/

main.stripin/si33.svg

main.stripin/si121.svg

main.stripin/si165.svg

...

5.1 Salient features

1. Track changes: This facility helps the authors
to understand the changes made by the typeset-
ters in their document. The accept and reject
buttons can be used to accept or reject the
changes made by the typesetters. The visual-
ize mode in the track changes has two further
features: to visualize the changes made by the
authors and to visualize the changes made by
the copy-editors or co-authors.

2. Comment: If authors are unsure about how a
change is to be done, then the comment facility
can be used.

3. Queries: Queries raised by the typesetters or
copy-editors are available in the query panel.
Authors can provide replies below the queries.

4. DTD compliant: All and only the features
allowed by the DTD can be used. For example,
a figure cannot be inserted in the author field
since the DTD does not support that.

5. Changing the order: Order of author names
or position of given and surname or just the
content can be swapped.

6. Lists: Changing the format of the list counters,
or defining the format for new lists, is easy via
a drop-down menu facility.

7. Intelligent insertions: Since the tool faith-
fully follows the DTD, the insert menu will show
the items according to the content model only.
So if you are in a paragraph, the drop-down
list will show sections, math (both inline and
display), list, display quote, etc. However, if
you are in the reference section, the insert menu
will show bib-entry, bibliography section, etc.

6 Technologies behind Primo

Primo is written mostly in Scala, both server-side and
client-side. The client-side is compiled using Scala-JS
to JavaScript. On the server-side, Scala is compiled
to Java byte-code and runs in the JVM. It can
seamlessly interoperate with existing Java libraries.
The development environment is Intellij IDEA, the

build-tool is SBT. Primo uses its own widget library
called VDL, part of the Primo code base.

Primo doesn’t have many external dependencies.
We use following major libraries:

• the JDK, of course

• undertow—the web server, like Tomcat, but
smaller

• sqlite—for the database

• lucene—full-text index of the documents

And some relatively minor libraries:

• xpp3—XML parser

• scala-js—DOM, Java time support, logging
support, etc.

• boopickle, scala-css, and others

References

[1] Ithal. ithal.io/main.html

[2] Rishikesan Nair T., Rajagopal C.V., and
Radhakrishnan C.V. TEXFolio—a framework
to typeset XML documents using TEX.
TUGboat 40(2), 2019, 147–149.
tug.org/TUGboat/tb40-2/

tb125rishi-texfolio.pdf

[3] Aravind Rajendran, Rishikesan Nair T., and
Rajagopal C.V. NEPTUNE—a proofing
framework for LATEX authors. TUGboat 40(2),
2019, 150–152.
tug.org/TUGboat/tb40-2/

tb125rajendran-neptune.pdf

⋄ Rishikesan Nair T, Apu V

STM Document Engineering Pvt Ltd.

River Valley Campus,

Mepukada, Malayinkizh,

Trivandrum 695571

India

rishi (at) stmdocs dot in

apu.v (at) stmdocs dot in

https://stmdocs.org

⋄ Hàn Th´̂e Thành, Jan Vaněk

Trivic s.ro.

Družstevni 161, 763 15 Slušovice

Czech Republic

thanh (at) trivic dot io

jan (at) trivic dot io

https://trivic.io

Primo—A new sustainable solution for publishing

https://ithal.io/main.html
https://tug.org/TUGboat/tb40-2/tb125rishi-texfolio.pdf
https://tug.org/TUGboat/tb40-2/tb125rishi-texfolio.pdf
https://tug.org/TUGboat/tb40-2/tb125rajendran-neptune.pdf
https://tug.org/TUGboat/tb40-2/tb125rajendran-neptune.pdf


262 TUGboat, Volume 44 (2023), No. 2

Automated tagging of LATEX documents—

what is possible today, in 2023?

Ulrike Fischer, Frank Mittelbach

Abstract

The LATEX Tagged PDF project was started in spring
2020 and announced to the TEX community by the
LATEX Team at the Online TUG Conference 2020 [9].
This short report describes the progress and status
of this multi-year project achieved with the LATEX
summer release 2023.

Contents

1 Introduction 262

2 Goals of the Tagged PDF project 263

3 Some problems we faced 263
3.1 Tags are not visible . . . . . . . . . . 263
3.2 Missing PDF 2.0 support . . . . . . . 263
3.3 Parent-Child rules . . . . . . . . . . 263

4 What is possible today:
Tagging of “Leslie Lamport Documents” 263
4.1 Links . . . . . . . . . . . . . . . . . . 264
4.2 Paragraphs . . . . . . . . . . . . . . 264
4.3 Footnotes . . . . . . . . . . . . . . . 264
4.4 Sectioning . . . . . . . . . . . . . . . 264
4.5 Tables of contents and similar lists . 264
4.6 Display environments and lists . . . 264
4.7 Citations and bibliographies . . . . . 265
4.8 Graphics . . . . . . . . . . . . . . . . 265
4.9 Floats . . . . . . . . . . . . . . . . . 265
4.10 minipage and \parbox . . . . . . . . 265
4.11 Text commands . . . . . . . . . . . . 265
4.12 Math . . . . . . . . . . . . . . . . . . 265
4.13 Firstaid . . . . . . . . . . . . . . . . 265

5 What is missing 265

6 Summary 266

1 Introduction

A tagged PDF is a PDF with an additional semantic
structure. The purpose of tagging and the technical
background have been described in earlier articles [3,
4] and in the documentation of the tagpdf package
[2] and won’t be repeated here.

As a short motivation for how tagging improves
the accessibility and the reuse of data, let’s look at
bank statements as an example. For a few months
Ulrike gets them as tagged PDF1 and can compare
them with earlier untagged versions. The tagging of
the PDF is quite basic: apart from a few tags around
paragraphs it contains only a large table with three

1 Their tagging is not done with LATEX.

Figure 1: A tagged bank statement

Figure 2: Copy & paste of a tagged table into a
spreadsheet

columns (the date, a multiline description and the
amount). As shown in figure 1, the tagging adds TR
(Table Row) tags around rows and TD (Table Data)
around the cells.

If such a bank statement is read with a screen
reader, then with an untagged PDF the reading order
is messy: the amount is read somewhere in the middle
of the multiline description, text surrounding the
table can leak into the reading, and there are no
options to navigate in the table. With a tagged PDF

the experience is quite different: the reading order is
correct, the screen reader announces row and column
numbers and it is possible to navigate by rows and
cells. Copy & paste from a tagging aware PDF reader
improves too: while with an untagged PDF the table
content is dumped into one column of a spreadsheet,
the content of a tagged PDF is correctly split into
single cells, as can be seen in figure 2.

doi.org/10.47397/tb/44-2/tb137fischer-tagging23

Ulrike Fischer, Frank Mittelbach

https://doi.org/10.47397/tb/44-2/tb137fischer-tagging23


TUGboat, Volume 44 (2023), No. 2 263

2 Goals of the Tagged PDF project

The example hopefully shows why tagging is gen-
erally important and the LATEX team embarked on
the task to support tagging. To address a common
misunderstanding: The main goal of the Tagged
PDF project is not to make tagging possible —this
is already the case today: if you want to produce
a tagged PDF with LATEX you can do it. The main
goal is to make tagging automated and easy to use.
It should be possible for the average user to create
a tagged PDF with only minimal changes to their
sources.

3 Some problems we faced

The Tagged PDF project has to redefine many LATEX
commands but this is in some sense an expected task.
Before we describe the current state of the project
we want to discuss some problems, outside of the
Project Team’s control, that we identified in the last
year.

3.1 Tags are not visible

The screenshot in Figure 1 was made with Acro-
bat Pro, and that costs money. Free viewers and
browser plug-ins normally don’t show tags even if (as
with Adobe Reader) they use them to improve, for
example, the copy & paste heuristic. This missing
visibility makes it difficult to convince users that tags
are important. It also makes development in LATEX
difficult as package maintainers can’t easily check
the tagging. Fortunately, the situation is starting to
change and some free PDF viewers like PDF-XChange
and PDFix Desktop Lite now can be used to check
the tags.

3.2 Missing PDF 2.0 support

The ISO spec for PDF 2.0 [5] is more than 6 years
old. PDF 2.0 added various new features that are
crucial for tagging. For example, it extends the tag
set with tags like Title, Aside and FEnote. It also
adds two new features, both needed for the tagging
of math: 1) it declares the MathML namespace, and
2) it supports attaching embedded files to structure
objects; then they are called “associated files”. Such
associated files can contain the source code or the
MathML representation. With PDF 2.0 it is also
possible to link to a structure instead of to a location
on a page. LATEX is able to produce PDF 2.0 and
can make use of the new features.

But sadly PDF 2.0 also has a problem: it is not
well supported by PDF viewers and consumers. Even
Acrobat Pro is, at the time of writing, not able to
handle tag namespaces and doesn’t pass associated

Figure 3: Part of the Parent-Child rules for the P tag

files attached to a structure through its accessibility
API. PAC3 crashes if a PDF 2.0 files is loaded.

We have here a clear chicken-and-egg problem:
As there are only few tagged PDF 2.0 files in the
wild, no viewer correctly processes them, and be-
cause no viewer handles tagged PDF 2.0 files prop-
erly there is no incentive for applications to produce
tagged PDF 2.0 files. However, there is some hope
for changes: The PDF 2.0 reference is now available
at no cost; ISO 32005, which handles the combined
PDF 1.7 and PDF 2.0 tag set, has been released [6]
and PDF/UA-2 will be released shortly too.

3.3 Parent-Child rules

Structure elements defined by the PDF spec can’t
be used freely: The PDF format defines containment
rules and describes which standard tag is allowed as
a child or parent of other elements. If you declare
your own tag names you have to also declare a role
mapping to the standard tags and your tags then
have to obey the containment rules of the standard
tags they map to. In PDF 1.7 the rules were only
described in a rather vague way. PDF 2.0 introduced
a large matrix for the PDF 2.0 tags and the new
ISO 32005 [6] extends this matrix to combine the
PDF 1.7 and 2.0 tags. Figure 3 shows an excerpt of
the rules.

Until last year the tagpdf package didn’t check
such rules, so authors had to look up the lists manu-
ally to decide if a tagging structure is valid or not.
With more automated tagging, this became prob-
lematic: it became too easy to create a structure
that violates the rules, so a data structure to store
and automatically check the parent-child relation has
been implemented. This isn’t trivial, as the checks
have to take role mapping and slight differences be-
tween PDF 1.7 and PDF 2.0 into account, and handle
special tags (Part, Div and NonStruct) that don’t
have their own rules but inherit the containment rule
from their parent in the structures.

4 What is possible today:

Tagging of “Leslie Lamport Documents”

The next milestone in the project is to enable the
automated tagging of what we call “Leslie Lamport

Automated tagging of LATEX documents —what is possible today, in 2023?



264 TUGboat, Volume 44 (2023), No. 2

Documents”. These are documents which use envi-
ronments and commands as described in the LATEX
manual [7]. They are based on the standard classes
article, report and book and load only a restricted
set of compatible packages.

The code is being developed in various modules
in the latex-lab bundle, and can be loaded in the
\DocumentMetadata command with the testphase

key. The supported values for the key are described
in documentmetadata-support-doc.pdf. In LATEX
2023-06-01, phase-III is the most comprehensive
value that loads almost all available modules, and
also activates tagging.

\DocumentMetadata{testphase=phase-III}

\documentclass{article}

Please refer to the documentation for details of the
different modules.

The following sections describe what is tagged
in this phase. For engines, pdfLATEX or LuaLATEX
are recommended; other engines may work but are
not much tested and do not offer support for real
space characters and so give less accessible PDFs.

4.1 Links

The hyperref package is fully supported and links
(both internal and external) are automatically tagged.

4.2 Paragraphs

Paragraphs are tagged with the help of the para
hooks. Page breaks in paragraphs are handled auto-
matically [8] through patches of the output routine.

This mechanism usually works well, but there
can be problems if paragraphs are directly nested
(the parent-child rules do not allow that), if the para
hooks are not balanced (e.g., if a low-level \vbox
is not properly ended with a \par), or if a package
operates with low-level paragraph commands such
as \everypar in an unexpected way.

4.3 Footnotes

The latex-lab module for footnotes is a full reim-
plementation of the footnote code and adds hooks
and configuration points needed both for tagging and
for the configuration of footnote layouts.

This code is not compatible with classes like
memoir or KOMA, or with packages such as bigfoot,
manyfoot or footnote that redefine internals related
to footnotes. A replacement for the footmisc pack-
age has been written, so this package is already
supported.

4.4 Sectioning

The changes to sectioning commands are currently
rather lightweight; only a few internal commands

Figure 4: Tagging of sectioning commands

like \@startsection and \@sect are redefined. The
tagging not only surrounds the titles with a struc-
ture but also adds a Sect structure around heading
and body of every section (see figure 4). Classes
like memoir or KOMA and packages like titlesec are
incompatible.

This implementation will not stay; the long-term
plan is to reimplement the sectioning commands to
offer more configuration options.

4.5 Tables of contents and similar lists

The implementation of the tagging support is rather
lightweight and redefines, for example, \@starttoc,
\addcontentsline, \@dottedtocline, \l@part, etc.
Classes and packages like memoir, KOMA, titletoc
and etoc are incompatible. Classes and documents
that (re)define \l@part, \l@chapter or \l@section
must adapt these definitions to add the hooks needed
for tagging. An example of such a redefinition can
be found in ltugboat.cls.

4.6 Display environments and lists

The list implementation in standard LATEX serves
a dual purpose: it implements true lists such as
itemize and enumerate, and is also used as the basis
for vertical blocks such as center, quote, verbatim,
and for the theorem environments. These are all
implemented as “trivial” lists with a single (hidden)
item.

While this was convenient to get a consistent lay-
out, it is not adequate when it comes to interpreting
the structure of a document, because environments
based on trivlist should not advertise themselves
as being a “list” — after all, from a semantic point of
view they aren’t lists.

Ulrike Fischer, Frank Mittelbach



TUGboat, Volume 44 (2023), No. 2 265

These environments have therefore been fully
reimplemented and extended based on templates
(from the xtemplate package). The code is currently
incompatible with important packages like enumitem,
enumerate, fancyvrb, listings, and also with the-
orem packages. Replacements or adaptations will be
provided at a later stage.

4.7 Citations and bibliographies

Bibliographies are typically lists and so tagged by the
list code of the previous section. Citations are tagged
as Reference and point to the relevant bibliography
entry. The natbib package is supported. biblatex
is supported if hyperref is used.

4.8 Graphics

Graphics cannot be tagged automatically: For ac-
cessibility the author has to provide an alterna-
tive text. As an interface the new code adds2 to
\includegraphics and the picture environment
an alt key that an author can use for this purpose.
TikZ is not yet supported, but should follow soon.

\includegraphics

  [alt={This  shows  a  duck}]{duck}

\begin{picture}

  [alt={This  shows  a  duck  too}](100,100)
   ...

\end{picture}

4.9 Floats

Floats (currently only figure and table) are tagged
as “endfloats”. That means the structures are moved
to the end of the structure tree.3 An example tree
is shown in figure 5. The code also changes the
placement of the hyperref anchor: it is now moved
to the beginning of the float. If a float contains two
captions, the author has to manually mark how the
float should be split into two float structures.

Also missing, at the moment, is support for the
float package, [H] (“here”) floats (they will need a
different structure), subcaptions and \marginpar.

4.10 minipage and \parbox

Initial support for minipage and \parbox has been
added. But the content of such boxes can be arbi-
trarily complex, and it is unclear if the current code
works as desired in all cases.

2 The alt key was added to \includegraphics in LATEX

2021-11-15 but does nothing if tagging is not used.
3 Only the structures in the structure tree! This does not

affect the typesetting!

Figure 5: Example structure tree with figure

4.11 Text commands

The LATEX logo and \emph are tagged. To the logo
an alternative text is added, and \emph is tagged
as EM. \textbf is not tagged by default as it is too
often used without a semantic meaning.

4.12 Math

There is also an early prototype for tagging formulas.
It is not yet included in phase-III but can be loaded
as an additional module:

\DocumentMetadata

  {testphase={phase-III,math}}

The code grabs the content of the math and repro-
cesses it. The code is compatible with amsmath (that
package is explicitly loaded) but not compatible with
packages defining their own math environments. Be-
cause of the missing PDF 2.0 support it is currently
not possible to test if the provided tagging is in fact
adequate.

The module can have side-effects on “fake math”,
for example urls from the url package, which inter-
nally use math mode for technical reasons, and are
tagged as Formula at the time of this writing. Such
places must be found and handled separately.

4.13 Firstaid

latex-lab contains also a small module firstaid

which contains small temporary corrections to ex-
ternal packages to improve their compatibility with
the tagging code. Like the math module it must be
loaded explicitly:

\DocumentMetadata

  {testphase={phase-III,firstaid}}

5 What is missing

We are not yet at the point where we can state that
all elements described in Leslie Lamport’s manual on
LATEX are supported. One open point is \savebox

and \usebox (and the TEX counterparts). Reusing

Automated tagging of LATEX documents —what is possible today, in 2023?



266 TUGboat, Volume 44 (2023), No. 2

boxes still needs some research to decide how to
handle boxes with and without internal structure.

Indexes, glossaries and similar lists are currently
not properly handled either. They will not gen-
erate errors, but an index created with the stan-
dard theindex environment will tag every item and
subitem and subsubitem as a paragraph of its own,
so important semantic information about the nesting
is lost.

And last, there is the structure with which this
article started: tables. It is not very difficult to sur-
round table rows and cells with TR and TD structures.
But a properly tagged table should surround header
cells with TH and complex tables need to reference
the header from the data cells. The standard LATEX
input doesn’t mark up the headers of the table and
it is not yet clear how the syntax can be extended
to detect headers reliably.

This was one of the three topics in the “tag-
ging workshop” we ran a day before the 2023 TUG

conference in Bonn, Germany. A report from this
workshop is given elsewhere in this issue [1].

6 Summary

Starting with LATEX 2023-06-01, quite a large set of
standard documents can be tagged in an automated
way—as an example this (TUGboat) article itself
has been tagged with the code.

There is still much to do. We are grateful for
everyone who tests the code and gives feedback. For
this we have opened a dedicated Github repository
for the tagging project where issues can be reported
and discussions can be opened:

https://github.com/latex3/tagging-project

References

[1] D. Carlisle, U. Fischer, F. Mittelbach.
Report on the LATEX Tagged PDF Workshop,
TUG 2023. TUGboat 44(2):267–269,
2023. doi.org/10.47397/tb/44-2/

carlisle-taggedpdfworkshop23

[2] U. Fischer. The tagpdf package.
ctan.org/pkg/tagpdf

[3] U. Fischer. Creating accessible pdfs with LATEX.
TUGboat 41(1):26–28, 2020. tug.org/TUGboat/
tb41-1/tb127fischer-accessible.pdf

[4] U. Fischer. On the road to Tagged PDF:
About StructElem, marked content, PDF/A
and squeezed bärs. TUGboat 42(2):170–173,
2021. doi.org/10.47397/tb/42-2/

tb131fischer-tagpdf

[5] ISO. ISO 32000-2:2020(en), 2nd ed., 2020.
PDF 2.0. iso.org/en/contents/data/

standard/07/58/75839.html

[6] ISO. ISO/TS 32005:2023 , 1st ed., 2023.
PDF 1.7 and 2.0 structure namespace inclusion.
iso.org/en/contents/data/standard/04/58/

45878.html

[7] L. Lamport. LATEX: A Document Preparation
System: User’s Guide and Reference Manual .
Addison Wesley, 2nd ed., 1994.

[8] F. Mittelbach. Taming the beast — advances
in paragraph tagging with pdfTEX and X ETEX
(2021): Automatic paragraph tagging with the
pdfTEX and X ETEX engine[s] now possible.
latex-project.org/news/2022/09/06/

TUG-online-talks-21-22/

[9] F. Mittelbach, the LATEX Project Team.
Quo vadis LATEX(3) Team—a look back
and at the upcoming years. TUGboat
41(2):201–207, 2020. tug.org/TUGboat/

tb41-2/tb128mitt-quovadis.pdf

⋄ Ulrike Fischer
LATEX project team
Bonn
Germany
ulrike.fischer (at) latex-project.org

⋄ Frank Mittelbach
LATEX project team
Mainz
Germany
frank.mittelbach (at) latex-project.org

ORCID 0000-0001-6318-1230

Ulrike Fischer, Frank Mittelbach

https://github.com/latex3/tagging-project
https://doi.org/10.47397/tb/44-2/carlisle-taggedpdfworkshop23
https://doi.org/10.47397/tb/44-2/carlisle-taggedpdfworkshop23
https://ctan.org/pkg/tagpdf
https://tug.org/TUGboat/tb41-1/tb127fischer-accessible.pdf
https://tug.org/TUGboat/tb41-1/tb127fischer-accessible.pdf
https://doi.org/10.47397/tb/42-2/tb131fischer-tagpdf
https://doi.org/10.47397/tb/42-2/tb131fischer-tagpdf
https://iso.org/en/contents/data/standard/07/58/75839.html
https://iso.org/en/contents/data/standard/07/58/75839.html
https://iso.org/en/contents/data/standard/04/58/45878.html
https://iso.org/en/contents/data/standard/04/58/45878.html
https://latex-project.org/news/2022/09/06/TUG-online-talks-21-22/
https://latex-project.org/news/2022/09/06/TUG-online-talks-21-22/
https://tug.org/TUGboat/tb41-2/tb128mitt-quovadis.pdf
https://tug.org/TUGboat/tb41-2/tb128mitt-quovadis.pdf


TUGboat, Volume 44 (2023), No. 2 267

Report on the LATEX Tagged PDF workshop,

TUG 2023

David Carlisle, Ulrike Fischer,
Frank Mittelbach

Contents

1 Tagged PDF 267
1.1 Engine considerations . . . . . . . . 267
1.2 Tagging commands and Tagging acti-

vation . . . . . . . . . . . . . . . . . 267
1.3 Compatibility with older formats and

legacy code . . . . . . . . . . . . . . 267
1.4 Tools . . . . . . . . . . . . . . . . . . 268

2 Updating a LATEX class 268
2.1 Adapting packages and classes . . . . 268
2.2 acmart . . . . . . . . . . . . . . . . . 268

2.2.1 Review of packages and com-
mands . . . . . . . . . . . . . 268

3 Tables 269

Introduction

On the afternoon before the formal conference pro-
gram, the LATEX project held a workshop, led by Ul-
rike Fischer, on generating tagged PDF from LATEX.
The workshop was well attended with more than
thirty people participating—a good mix of package
developers and end users. We thank DANTE e.V. for
very generous financial support.

The workshop was split into three parts. Firstly,
a general introduction to tagging in PDF. Secondly, a
demonstration of the process that a class or package
maintainer should take to modify the code to produce
well-tagged PDF. The acmart class was used for the
example as its author, Boris Veytsman, was attending
the workshop. Finally, we had a more open discussion
on issues and desired syntax for structured tables.

1 Tagged PDF

Ulrike gave a brief overview of how PDF tagging
encodes the structure of a document in a PDF file
and why with is important not “just” for accessibility
requirements. Readers are encouraged to read the
introduction to the tagpdf package for a similar, more
detailed exposition.

1.1 Engine considerations

The recommended engine for tagging is luaLATEX.
For legacy documents pdfLATEX is supported, but it
has some small problems, for example, it sometimes
doesn’t insert real space characters in places where

they are needed. It also requires more compilations
to build the correct tagging structure.

Other workflows such X ELATEX or LATEX–dvips
are not recommended as real space characters can’t
be inserted in these cases. In order for accessibility
tools to distinguish inter-word spaces from inter-
letter kerns and other spacing adjustments, words
need to be separated by space characters (U+0020)
even if the spacing is further adjusted. It is not feasi-
ble to add these space characters just using the macro
layer, and currently only pdfLATEX and luaLATEX have
engine-level support to add them.

When developing or updating packages or classes
for tagging, one always needs to test tagging with
at least pdfLATEX and luaLATEX. They use differ-
ent methods to create the basic MC-chunks (called
“marked-content sequences” in PDF reference man-
uals) and create the structure tree (namely, PDF

literals in pdfTEX and luaTEX node attributes in
luaTEX).

1.2 Tagging commands and Tagging
activation

The tagpdf-base package provides dummy versions
of all important tagging commands. It is loaded
automatically by \DocumentMetadata but can also
be loaded by other packages.

The tagpdf package is loaded (and tagging is
then automatically activated) by using a phase key:

\DocumentMetadata{testphase=phase-III}

It is possible to produce untagged PDFs with the
new code in latex-lab (both for the final version
or in draft mode to speed up compilation), but a
suitable interface is currently missing. It will be
added later.

1.3 Compatibility with older formats and
legacy code

The latex-lab code and tagging in general require
a current LATEX or even latex-dev. If necessary, a
class or package can test the format version with
\IfFormatAtLeastTF or \@ifl@t@r\fmtversion to
provide fallbacks for older formats.

Whether a document uses \DocumentMetadata
can be tested with \IfDocumentMetadataTF. With
\tag_if_active:TF it is possible to test if tagging
is active.

At the moment tagging can only be activated
through the testphase keys in \DocumentMetadata,
which cannot be used in a class because this com-
mand must come before \documentclass. This
means that at this point in time a class cannot trigger
tagging—during the test phase this is the decision of

doi.org/10.47397/tb/44-2/tb137carlisle-taggedpdfworkshop23

Report on the LATEX Tagged PDF workshop, TUG 2023

https://ctan.org/pkg/tagpdf
https://doi.org/10.47397/tb/44-2/tb137carlisle-taggedpdfworkshop23


268 TUGboat, Volume 44 (2023), No. 2

the author of the document. A class can only check
the state and issue an error or a warning if tagging
is not activated.

1.4 Tools

To check the tagging structure you need a tool, or
several. Some possible options:

• Adobe Acrobat Pro (non-free, adobe.com)

• PDF XChange Editor (a free version is
available, pdf-xchange.eu)

• PDFix (free Desktop Lite version is enough,
www.pdfix.net)

• PAC 2021 (a checker, pdfua.foundation/
de/pac-2021-der-kostenlose-pdf-

accessibility-checker). Currently it
doesn’t work with PDF 2.0.

• Big Faceless PDF Library (free trial version,
bfo.com/download). A Java library that can
also be used to dump information into text
files.

• RUPS (itextpdf.com/products/rups)

• An online service you can try: ngpdf.com

2 Updating a LATEX class

In the second part of the workshop the general prin-
ciples of how to update a package to be compatible
with PDF tagging were discussed, illustrated with
specific examples from acmart class.

2.1 Adapting packages and classes

Broadly, packages and classes have to handle two
problems:

• They often redefine internal LATEX commands
and environments (directly or through a package
or class they load) and this breaks the tagging
support provided by latex-lab.

• Any new commands and environments defined
by the package need to be adjusted to add or
correct the tagging.

Some general recommendations on strategies to
address these issues:

• For all existing redefinitions of LATEX’s core com-
mands, check their purpose and consider if the
redefinition can be avoided, e.g., by making us-
ing of the recently-introduced hooks in various
core commands of LATEX for precisely this rea-
son, or by making a feature request to enhance
the LATEX command to support your use case
directly or via new hooks.

• New commands and environments built on top
of existing commands can inherit the tagging

support from the kernel. For example, bibliogra-
phies are typically simply lists. Check if the
resulting structure is ok.

• Paragraphs are automatically tagged through
the paragraph hooks. Not every structure is al-
lowed inside a paragraph. It is therefore impor-
tant to check how your own commands behave
both in horizontal and vertical modes.

• Complex commands can be difficult to tag cor-
rectly. For a first draft it is possible to put
a minimal structure around them and then to
stop tagging. As an example, a complicated
\maketitle command could be handled as fol-
lows, i.e., by disabling tagging for the title:

\AddToHook{cmd/maketitle/before}

  {\tagstructbegin{tag=Title}%
   \tagmcbegin{}\tagstop  }

\AddToHook{cmd/maketitle/after}

  {\tagstart\tagmcend\tagstructend}

Participants were, and readers of this report are,
encouraged to give feedback. The tagging support is
still in development. If something doesn’t work as
expected or is too complicated we need to know about
it. Comments can be added as issues or discussions
at github.com/latex3/tagging-project.

2.2 acmart

The acmart class is used to typeset articles for the
Association for Computing Machinery. It is around
3500 lines of code, based on amsart, and supports
various journal styles.

The aim of the workshop was not to fully up-
date the entire class to be tagging-aware, but to
show the steps needed for this, and to show how
relatively simple changes can already significantly
improve the automatic tagging in documents, even
when generated by large production journal code.

2.2.1 Review of packages and commands

The initial step was to generate a list of all pack-
ages used by the class, around 40 packages in this
case. Some are known not to affect tagging, some
(notably those affecting footnotes such as manyfoot
and nccfoots) may affect footnote tagging. They
would need to be checked in a final version; specif-
ically, whether newer versions of the packages are
tagging-aware or whether there is “first-aid” support
for the package in the latex-lab code.

The main issue addressed in this session was
classes that copy “original” definitions of standard
LATEX commands, but often they copy older ver-
sions and so are missing updates, in particular the
(relatively) recent changes to add LATEX hooks and
tagging support.

David Carlisle, Ulrike Fischer, Frank Mittelbach

https://adobe.com
https://pdf-xchange.eu
https://www.pdfix.net
https://pdfua.foundation/de/pac-2021-der-kostenlose-pdf-accessibility-checker
https://pdfua.foundation/de/pac-2021-der-kostenlose-pdf-accessibility-checker
https://pdfua.foundation/de/pac-2021-der-kostenlose-pdf-accessibility-checker
https://bfo.com/download
https://itextpdf.com/products/rups
https://ngpdf.com
https://github.com/latex3/tagging-project


TUGboat, Volume 44 (2023), No. 2 269

For example, in the case of acmart, it intends
to simply restore standard LATEX section headings
(undoing the changes made by the underlying amsart

class). It does this by redefining \@startsection

and related commands using copies from an older
LATEX format. This has the effect of undoing the
additions to support tagging section headings added
by the tagging code.

In this case, a simple fix would be to modify
the class to save the definitions (for example with
\DeclareCommandCopy) before loading amsart and re-
store them afterwards. This has the effect of restoring
the tagging-aware section commands, if they were
activated by \DocumentMetadata.

Pointers were given to changes that would be
required in other parts of the class. Tables of con-
tents would need changes equivalent to the changes
made for tagging to the standard \@dottedtocline

and \@starttoc commands. The class has quite
extensive code modifying footnotes and this must
be checked for tagging. Perhaps in initial versions,
tagging would be disabled for footnotes.

As noted above, the title page handling (as is
common in journal classes) is rather complicated and
would need some custom tagging support, but can
in initial versions be easily customized not to tag, so
that no invalid tag structures are generated.

Similarly, the class has redefinitions of minipage
that would conflict with minipage tagging and need
to be checked.

In the workshop there was only time to look at
the redefinitions of standard commands made by the
class, and how to recover tagging support based on
the support implemented for the standard definitions.
What was not addressed in the session—but would
be needed for a fully tagging aware class file—would
be to add appropriate tagging support to any new
commands and environments defined by the class.
This requires understanding of not only the TEX
coding details but also, and more importantly, an
understanding of the intended structure implied by
the commands; that is, what tagged structure would
be desirable in each case.

Going forward, this raises an important point
for class and package maintainers. To produce well-
tagged documents it is not only important to produce
a pleasing visual layout for new constructs, it is
equally important to think about what structures
are represented, and how that structure should be
tagged. For example, “misusing” other elements for
purely visual effects is likely to produce completely
inadequate structural results.

3 Tables

The final part of the workshop involved a lively dis-
cussion of markup for tables. It is already possible to
use the low-level tagging commands from tagpdf to
tag tables and individual cells, although the current
test phase does not have code to automatically infer
table structure.

The main problem is that classic LATEX tabular

markup does not distinguish table headers or any
other structural features, it is purely concerned with
the visual layout.

This leads to two related issues:

1. What would be a good table markup for new
documents?

2. What heuristics could or should be used to infer
table structure for the existing corpus of LATEX
documents?

For the first issue, markup used by LATEX ta-
ble packages were considered, also ConTEXt table
markup, and the table markup in HTML (which is
very close to the final required structured tagging in
PDF).

For the second issue, various possibilities were
discussed ranging from a view that it is better never
to “guess” and that no table headings should be
inferred, through a simple heuristic such as always
assuming the first row is a heading, to more de-
tailed heuristics looking at fonts and/or position of
\toprule from booktabs or \endhead from longtable.

This is still very much an area of ongoing activity
for the LATEX team, and people are invited to con-
tribute to the discussion which is now online in the
GitHub discussion site set up for the tagging project
mentioned earlier: github.com/latex3/tagging-

project/discussions/1 has some thoughts from
workshop participants on the table syntax. Feel free
to join the party with further ideas.

⋄ David Carlisle
LATEX project team
Oxford, UK

david.carlisle (at) latex-project.org

⋄ Ulrike Fischer
LATEX project team
Bonn, Germany

ulrike.fischer (at) latex-project.org

⋄ Frank Mittelbach

LATEX project team
Mainz, Germany

frank.mittelbach (at) latex-project.org

Report on the LATEX Tagged PDF workshop, TUG 2023

https://github.com/latex3/tagging-project/discussions/1
https://github.com/latex3/tagging-project/discussions/1


270 TUGboat, Volume 44 (2023), No. 2

Enhancing accessibility of structured

information via ‘Tagged PDF’

Ross Moore

It is common practice in LATEX to use coding such
as in the following listing, resulting in a layout as
shown in Figure 1. (Names are smeared for privacy.)

The \AOP\ consisted of:

<-1st member->\footnote{<-affil->} (chair),

<-2nd member->\footnote{<-affil->},

<-3rd member->\footnote{<-affil->}, ...

When reading the names one ‘glances’ down the
page to check the affiliation, or in some PDF readers,
hovers over the footnote marker link to induce the
pop-up, as shown in Figure 1.

Figure 1: sequence of names/authors and affiliations

However, what if ‘glancing’ is not possible? For
example, the reader is visually-impaired, for whom
a pop-up also is not appropriate. Even the concept
of ‘page’ need not be relevant or useful.

Figure 2: capturing structure, using ‘Tagged PDF’

In several countries there are now anti-discrim-
ination laws or policies1 which for the most part
embody the principle that “. . . agencies must give
disabled employees and members of the public access

1 https://www.section508.gov/manage/laws-and-policies/

to information comparable to the access available to
others.”

To achieve a result, as in Figure 2, the first step
is to rearrange coding as in this next listing.

The \AOP\ consisted of:

\begin{AOPpanel}

\AOPchair{<-1st ...->\footnote{<-affil->}}

\AOPmember{<-2nd ...->\footnote{<-affil->}}

...

\AOPlastmember{<-5th ...->\footnote{<-affil->}}

\end{AOPpanel}

using definitions in a preamble or package, such as:

\newenvironment{AOPpanel}{\ignorespaces}{}

\newcommand{\AOPchair}[1]{\PRPpanel{#1} (chair)}

\newcommand{\AOPmember}[1]{, \PRPpanel{#1}}

\newcommand{\AOPlastmember}[1]{ and \PRPpanel{#1}.}

\newcommand{\PRPpanel}[1]{#1}

One can see on the right in Figure 2 that
the visual layout is the same as in Fig-
ure 1. However tagging in the left panel
of Figure 2 shows how the punctuation is
separated out from the panelist informa-
tion; with a separate structure element
for each. Each use of a macro \AOPchair,
. . . , corresponds to a detail in how the in-
formation fits into the single paragraph.
\PRPpanel handles the real information,
combining both the name with the af-
filiation in a footnote; Figure 3 shows
this in greater detail. This is all enclosed
in a structure for the {AOPpanel} as a
whole.

The way the user-defined macros and environment
are used, provides a way to capture the ‘semantics’
of this sequence of panelist names and affiliations.

The reason for using a separate
\PRPpanel macro, rather than one
named \AOP... is because there are
other similar structures in this same doc-
ument. Differences in the tagging, and
hence the semantics being captured, can
be associated with the surrounding envi-
ronment, whilst \PRPpanel can be com-
mon to all such situations. In Figure 3 we
see part of an earlier page in the same
document. The footnote numbers are
earlier, and there is no existing para-
graph surrounding the {PRPauthors}

structure.

\newenvironment{PRPauthors}%

{\ignorespaces}{\bigskip\bigskip}

\newcommand{\PRPchair}[1]{\PRPpanel{#1} (chair)}

\newcommand{\PRPauthor}[1]{, \PRPpanel{#1}}

\newcommand{\PRPlastauthor}[1]{ and \PRPpanel{#1}}

doi.org/10.47397/tb/44-2/tb137moore-pdf-html

Ross Moore

https://www.section508.gov/manage/laws-and-policies/
https://doi.org/10.47397/tb/44-2/tb137moore-pdf-html


TUGboat, Volume 44 (2023), No. 2 271

Figure 3: tagging of the PRP authors

Figure 3 shows the result from \PRPpanel, as
tagging a <PRPpanelist> structure, numbered in
sequence. Firstly the name is placed, followed by
a <Reference> structure, consisting of the super-
scripted \footnotemark as anchor for an active hy-
perlink. This is followed immediately by the <Note>
structure coming from the \footnotetext, repeat-
ing the mark as a <Lbl> then placing the text.

For a person reading with Assistive Technology
(AT) navigating via structure, the analog of ‘glancing
down the page’ is to simply move by a single element
from the <Reference> to its following <Note>, or to
use the hyperlink to get to the same location.

While the first \footnotemark uses a custom
<SupScript> structure, which is ‘Role-mapped’ to a
standard <Span>, the second usage does not. There
the <Lbl> structure has an attribute dictionary:

<< /O /Layout /TextPosition /Sup >>

For deriving to HTML (see below) this attribute
cannot be applied to the <Link> structure; hence
the extra <SupScript> is used.

Constructing a ‘Tagged PDF’ document which
is structured as shown in Figures 2 and 3 requires a
highly sophisticated LATEX macro system to produce
the tagging of both structure and content. The
tagpdf LATEX package is under development, but
not yet ready for real-world documents such as the
one shown here. Instead this author and colleagues
use coding developed by the author, under the name
tpdf. A full description of tpdf is beyond the scope
of this article.

However, it should be clear that part of any
such system must include extending or re-defining
the expansions of the macros used for user input;
that is, the \AOP... and \PRP... macros, the envi-
ronments {AOPpanel} and {PRPauthors} as well as
LATEX internal commands (e.g., for processing foot-
notes and hyperlinks) and environments generally.
With environments there are ‘hooks’ which allow for
additional coding to be executed in 4 different places
via \AddToHook{⟨hook⟩}; so env/AOPpanel/before

and env/AOPpanel/after allow coding
to be added before and after the en-
vironment itself is processed. These
can be used to control how the en-
vironment’s structure fits into that
of the surrounding document. Simi-
larly, hooks env/AOPpanel/begin and
env/AOPpanel/end can place more cod-
ing inside the environment, affecting how
information is handled within the envi-
ronment itself, without affecting outside.
Both pairs of hooks are useful.

Furthermore, one can modify \AOPpanel and
\endAOPpanel from the expansions provided when
the environment was set up using \newenvironment.
There is a \patchcmd macro in the etoolbox pack-
age, but often it is easier to redefine the expansions
directly, whilst keeping a copy of the original expan-
sion in case needed within the redefined version.

\NewCommandCopy\LTX@AOPpanel\AOPpanel

\newcommand\TPDF@AOPpanel[1]{....}

\NewCommandCopy\AOPpanel\TPDF@AOPpanel

Use similar coding for adjusting \endAOPpanel.

For example, the \TPDF@PRPpanel replacement
for \PRPpanel must implement the following tasks:

• close off any preceding text, leaving the <Para>
open;

• increment the counter for the kind of panelist;

• start the next <PRPpanelist> structure, num-
bered appropriately;

• process the argument #1; that is, place the name
as tagged text, then allow a \footnote{...}

command to be processed with its argument.

It is a modified version of internal commands called
by \footnote that handles tagging of the footnote
markers and text, resulting in the tagging seen in
Figure 3. After that is all done, structure is closed to
the level of the original <Para>, to allow any further
panelists to be included, as seen in Figure 2.

PDF reuse as HTML and XML, attributes

and classes

Typically visually impaired people prefer to read
documents via HTML, using Assistive Technology
(AT) such as screen-readers, Braille keyboards, and
more. Previously PDF files have been regarded as
inaccessible, compared with HTML. Standards such
as PDF/UA are intended to redress this situation;
but old habits and preferences cannot be expected
to be altered until AT software updates sufficiently
to better handle Tagged PDFs built to conform to
newer standards.

Enhancing accessibility of structured information via ‘Tagged PDF’



272 TUGboat, Volume 44 (2023), No. 2

Figure 4: HTML coding derived from \PRPpanel usage

<span> </span>

<div class="PRPanelist" data-pdf-se-type-original="PRPanelist" data-pdf-se-type="Div" id="PRPanelist.6">

(-- 2nd author --)<a href="#Note.15" class="Xlink" data-pdf-se-type="Link"

aria-details="Note.15" aria-label="AOP panelist 2 affiliation" id="Link.0994">

<sup data-pdf-se-type-original="SUPScript" data-pdf-se-type="Span" id="SUPScript.06">6</sup></a>

<p class="PRPaffil" data-pdf-se-type="Note" name="Hfootnote.6" id="Note.15">

<sup data-pdf-se-type="Lbl" id="Lbl.242"><span>6&#xa0;</span></sup>

Atlantic States Marine Fisheries Commission, Massachusetts Division of Marine Fisheries. (5/23, 5/24, 8/3)

<span class="Access" data-pdf-se-type-original="access" data-pdf-se-type="Span" id="access.242"><span>

</span></span></p></div>

Fortunately there is good online software2 that
‘derives’ a well-structured single HTML file from a
valid PDF/UA document. Figure 5 shows the result
of using this with our real-world example PDF, for a
sequence of panelists, viewed in the Firefox browser.
Being a single HTML file, there is no concept of ‘page’
to determine where to place footnotes. Instead, the
<Note> structure is floated to the right using CSS

rules, explained below.

Figure 5: HTML version of the PRP authors

To better understand Figure 5, one needs to look
at part of the raw HTML coding, as shown above in
Figure 4. One sees that each HTML tag (<div, <sup,
<p, <span) has a unique id="..." attribute, inher-
iting the corresponding structure’s unique name from
the PDF. Namely, the paragraph with id="Note.15",
which comes from the <Note> structure having the
footnote text as can be seen in Figure 1, becomes the
target for the hyperlink from <a href="#Note.15".

Also shown, as lighter colored attributes and
values, are the PDF structure-element names, with
-original indicating a ‘Custom’ structure name.
This maps to a ‘Standard’ name as shown in the
attribute which follows. Such user-defined HTML

attributes would be ignored by web browsers, unless
specially set up to handle them.

For layout on the HTML page, the important
attributes are class="...". The specified names
and affiliations are subject to CSS style rules:

.PRPanelist { clear:right; }

.PRPaffil { float:right; font-size:small;

margin:0 0 0 5px; width:60%; }

2 ngPDF: https://ngpdf.com/

This use of float and clear is what turns an
otherwise horizontal sequence into what appears to
be a 2-column vertical listing.

For Accessibility, having anchor text being just
a single digit, say ‘2’, is not very informative. Hence
the aria-label="..." tells what kind of informa-
tion is found at the link target. A longer description,
via aria-details="...", is at the target location it-
self. With such attributes for all internal hyperlinks,
WCAG Level A Success Criterion 2.4.43 is fulfilled
for this document. This uses the concept of ‘Acces-
sible Name’,4 here built from the anchor-text and
aria-label value.

Figure 6: link attributes

Figure 6 shows the array of attribute dictionaries
specified for the hyperlink within the PDF document,
as shown in figures 2 and 5. These control how
the link works when exported into either HTML or
XML formats. Notice how the XML version uses a
target of Hfootnote.6, which is the name of the PDF

‘Destination’. On the other hand, HTML requires
the ‘Structure Destination’ of Note.15.

Within the PDF, the hyperlink is implemented
as an ‘Annotation’ of subtype ‘Link’, as shown in

3 Web Content Accessibility Guidelines: https://www.w3.

org/TR/WCAG21/#link-purpose-in-context
4 https://www.w3.org/WAI/ARIA/apg/practices/

names-and-descriptions/

Ross Moore

https://ngpdf.com/
https://www.w3.org/TR/WCAG21/#link-purpose-in-context
https://www.w3.org/TR/WCAG21/#link-purpose-in-context
https://www.w3.org/WAI/ARIA/apg/practices/names-and-descriptions/
https://www.w3.org/WAI/ARIA/apg/practices/names-and-descriptions/


TUGboat, Volume 44 (2023), No. 2 273

Figure 7: Link annotation dictionary

Figure 7. This dictionary includes a clickable ‘Rect-
angle’ on the specific page, as well as specifying the
‘Action’ to be taken when clicked. The D field value
of Hfootnote.6 names the target within the PDF,
while SD provides a reference to the structure, having
object number 4533 and named as Note.15, found
at that location; that is, a ‘Structure Destination’.
Notice how this object also provides its name for
export to both XML and HTML formats, specifying
the respective ‘Attribute’ type (either id or name).
Also there is the ‘Class’ name of PRPaffil, used for
CSS styling as discussed earlier.

One further detail, seen in Figure 5, is that the
punctuation has been suppressed to become simply
<span> </span>. This is achieved in the PDF con-

tent stream as shown in Figure 8. Appearing as
a comma within the PDF using the ‘show string’
of [(,)]TJ, the /Alt(...) and /ActualText(...)

provide alternatives that can be spoken by a screen-
reader or used with text extraction.

Figure 8: handling variants for punctuation

Access tags

A special kind of structure and content is provided by
so-called ‘Access’ tags, whose presence can be seen
by the <access> in Figure 3, and near the bottom
of the HTML listing in Figure 5. These use /Alt

and /ActualText similarly to the above, having a
‘show string’ of [( )]TJ (see Figure 9) which places
a space character, but using the ‘dummy font’ having
width 0.001 pt, as obtained with the \pdffakespace
primitive. This space is imperceptible within the
typeset PDF, yet is still selectable. With an empty
string for /ActualText it adds no content to the
HTML and XML exports.

Figure 9: ‘Access Tag’ after footnote

However, a non-empty /Alt(...) string, as in
Figure 9, affects what is spoken by some (but not all)
screen-reading software, including Adobe Reader’s
‘Read Out Loud’ facility. With ‘ ; ’ creating a slight
pause, the descriptive markup conveyed via these
‘Access’ tags is separated from actual content being
read. Furthermore, the complete stream that is read
can be exported as ‘Text (Accessible)’ from Adobe
software. In Figure 10 we see how the sequence of
names shown in Figures 1 and 2 will be spoken or
exported. The judicious use of \n\n inserts line-
breaks to help break up the text stream nicely upon
export.

Conclusions

Here we have attempted to show, using a ‘real-world’
example document, how with a relatively simple

Enhancing accessibility of structured information via ‘Tagged PDF’



274 TUGboat, Volume 44 (2023), No. 2

Figure 10: Accessible Text for screen-reading

The A O P consisted of: ; start of AOPauthors block ; (-- 1st author --) , Ph.D.

; refer to footnote 5 ;

; start of footnote 5 ; Northeast Fisheries Science Center, Woods Hole, Massachusetts. (5/23, 5/24, 8/3)

; end of footnote ; (chair)

; and ; (-- 2nd author --), Ph.D.

; refer to footnote 6 ;

; start of footnote 6 ; Atlantic States Marine Fisheries Commission, Massachusetts Division of Marine

Fisheries. (5/23, 5/24, 8/3)

; end of footnote ;

; and ; (-- 3rd author --), Ph.D.

...

adjustment of source coding, the semantics of struc-
tured information can be captured explicitly within a
‘Tagged PDF’ document. Each use of a user-defined
macro or environment provides a place where extra
meaning can be captured for presentation, not just
visually on a page, but preserved for export into
other formats. The various figures show how and
where this information can be stored inside the PDF,
and also where it then appears within derived HTML

and Text-only export formats.
By giving consideration also to CSS styling for

the exported HTML, and WCAG recommendations
for enhancing Accessibility, one can indeed provide
“disabled . . . access . . . comparable to . . . others”.
Even the tiniest details, such as punctuation, can
be handled so as to enhance each alternative view,
without compromising the high-quality visual layout
that is (LA)TEX’s hallmark.

Technical notes

All the images and figures used in this article origi-
nate from a ‘real-world’ document intended for pub-
lication and release into the public domain.5 Re-
searchers’ names have been deliberately blurred, so
as not to be easily extractable. Similarly, names have
been replaced by generic place-holder strings in the
textual outputs of Figures 5 and 10. Those authors
and panel members have nothing whatsoever to do
with the techniques of ‘Tagged PDF’ production and
the export into other formats being discussed here.

Figure 1 is a (doctored) view using Apple’s ‘Pre-
view’ application, using ‘TEXshop’6 on a MacBook;
most of the page’s content was removed and the rest
compacted to better display the relevant parts. Fig-
ures 2, 3 and 6–9 are views using Adobe’s ‘Acrobat
Pro’ application,7 involving various panels to display

5 at http://www.science.mq.edu.au/~ross/TaggedPDF/

FallMT2022/ as FallMT2022.html and FallMT2022.pdf.
6 TEXshop: https://pages.uoregon.edu/koch/texshop/
7 Acrobat Pro: https://www.adobe.com/products/

acrobat-pro-cc.html

visual content, ‘Tags’ tree, an ‘Attribute’ array, an
internal view of a portion of the ‘Structure Tree’,
and internal parts of a ‘Page Content’ stream in raw
PDF. All graphic editing of screen-shots was done
using ‘GraphicConverter’8 for macOS.

Figure 4 is a screenshot, taken while using the
‘Firefox’ browser, of the HTML webpage derived by
‘ngPDF’ at the website2 stated earlier. Figure 5 is
from a text-editor application (‘Erbele’9 for macOS)
which was used to work with the HTML document
source. With Figure 10 Apple’s ‘TextEdit’10 was
used to present the Text (Accessible), exported from
‘Acrobat Pro’; but any text-editing software would
be sufficient for this. Other textual code-listings were
done using either ‘Erbele’ or the default editor for
‘TEXshop’, which was the application for composing
this article. It was also the application used to build
the “real-world” 185-page ‘Tagged PDF’ document
that has supplied the examples, built using LATEX.
All software used was running on an Apple ‘MacBook
Pro’11 device.

⋄ Ross Moore
School of Mathematical and Physical

Sciences
Macquarie University
Sydney, Australia
ross.moore (at) mq dot edu dot au

https://researchers.mq.edu.au/en/

persons/ross-moore

8 GraphicConverter: https://www.lemkesoft.de/en/

products/graphicconverter/
9 Erbele text editor: https://apps.apple.com/de/app/

erbele/id1595456360
10 TextEdit: https://support.apple.com/en-au/guide/

textedit/welcome/mac
11 MacBook Pro: https://www.apple.com/macbook-pro/

Ross Moore

http://www.science.mq.edu.au/withtilde%20ross/TaggedPDF/FallMT2022/
http://www.science.mq.edu.au/~ross/TaggedPDF/FallMT2022/
https://pages.uoregon.edu/koch/texshop/
https://www.adobe.com/products/acrobat-pro-cc.html
https://www.adobe.com/products/acrobat-pro-cc.html
https://www.lemkesoft.de/en/products/graphicconverter/
https://www.lemkesoft.de/en/products/graphicconverter/
https://apps.apple.com/de/app/erbele/id1595456360
https://apps.apple.com/de/app/erbele/id1595456360
https://support.apple.com/en-au/guide/textedit/welcome/mac
https://support.apple.com/en-au/guide/textedit/welcome/mac
https://www.apple.com/macbook-pro/


TUGboat, Volume 44 (2023), No. 2 275

An HTML/CSS schema for TEX primitives—
generating high-quality responsive HTML

from generic TEX

Dennis Müller

This paper uses STEX3. The semantically anno-

tated HTML version of this paper is available at

url.mathhub.info/tug23css.

Abstract

I present a schema for translating TEX primitives to
HTML/CSS. This translation can serve as a basis
for (very) low-level TEX-to-HTML converters, and is
in fact used by the RUSTEX system—a (somewhat
experimental) implementation of a TEX engine in
Rust, used to convert LATEX documents to HTML —
for that purpose.

Notably, the schema is accurate enough to yield
surprisingly decent (and surprisingly often “the ex-
actly right”) results on surprisingly many “high-level”
LATEX macros, which makes it adequate to use in lieu
of (and often even instead of) dedicated support for
macros and packages.

1 Introduction

Translating LATEX documents (partially or fully) to
HTML is a difficult problem, primarily because the
two document formats address very different needs:
TEX is intended to produce statically laid out docu-
ments with fixed dimensions, ultimately representing
ink on paper. HTML, on the other hand, assumes a
variety of differently sized and scaled screens and con-
sequently prefers to express layouts in more abstract
terms, the typesetting of which are ultimately left to
the browser to interpret, ideally responsively— i.e.
we want the document layout to adapt to different
screen sizes, ranging from 8K desktop monitors to
cell phone screens.

This means that there is no one “correct” way
to convert TEX to HTML —rather there are many
choices to be made; most notably, which aspects of
the static layout with fixed dimensions described by
TEX code to preserve, and which to discard in favour
of leaving them up to the rendering engine, thus
explaining the plurality of existing converters.

Naturally, many LATEX macros are somewhat
aligned with tags in HTML; for example, sectioning
macros (\chapter, \section, etc.) correspond to
<h1>, <h2>, etc.; the {itemize} and {enumerate}

environments and the \item macro correspond to
<ul>, <ol> and <li>, respectively; and so on. Most
converters therefore opt for the reasonable strategy
of mapping common LATEX macros directly to their
closest HTML relatives, with no or minimal usage

of (simple) CSS, effectively focusing on preserving
the document semantics of the used constructs (e.g.
“paragraph”, “section heading”, “unordered list”). In
many situations, this is the natural approach to
pursue, especially if we can reasonably assume that
the document sources to be converted are sufficiently
“uniform”, so that we can provide a similarly uniform
CSS style sheet to style them, and this is largely the
way existing converters work. To name just a few:

• LATEXML [7] focuses strongly on the semantics,
using XML as the primary output format and
heuristically determining an author’s intended
semantics of everything from text paragraphs
(definitions, examples, theorems, etc.) down to
the meaning of individual symbols in mathe-
matical formulae; achieving great success with
ar5iv.org, hosting HTML documents generated
from TEX sources available on arxiv.org.

• TEX4ht [12] focuses on plain HTML as output
with minimal styling, going as far as to (op-
tionally) replace the \LaTeX macro by the plain
ASCII string “LaTeX”.

• Pandoc [5] largely focuses on the most important
macros and environments with analogues in all
of its supported document format to convert
between any two of them, e.g. TEX, Markdown,
HTML, or docx.

• Mathjax [6] focuses exclusively on macros for
mathematical formulae and symbols, allowing
to use TEX syntax in HTML documents directly,
which are subsequently replaced via JavaScript
by the intended presentation.

However, the approach described above has no-
table drawbacks: Firstly, it requires special treatment
of LATEX macros that plain TEX would expand into
primitives, and the number of LATEX macros is virtu-
ally unlimited — CTAN has (currently) a collection of
6399 packages, tendency growing, which get updated
regularly, and authors can add their own macros at
any point. Supporting only the former is a never-
ending task, and providing direct HTML translations
for the latter is impossible. This is made worse by
the very real and ubiquitous practice among LATEX
users of copy-pasting and reusing various macro defi-
nitions and preambles assembled from stackoverflow,
friends and colleagues, and handed down for (by now
literally) generations, even in situations where (un-
beknownst to them) “official” packages with better
solutions (possibly supported by HTML converters)
exist.

For example, I myself have happily reused the
following macro definition for years:

doi.org/10.47397/tb/44-2/tb137mueller-primitives

An HTML/CSS schema for TEX primitives

https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX3
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://url.mathhub.info/tug23css
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Programming/mod/languages?Rust?rust
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?package
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?environment
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?XML?XML
https://ar5iv.org
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://arxiv.org
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?environment
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?package
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://doi.org/10.47397/tb/44-2/tb137mueller-primitives
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX


276 TUGboat, Volume 44 (2023), No. 2

\usepackage{amsmath,amssymb}

\def\forkindep{\mathrel{\raise0.2ex\hbox

{\ooalign{\hidewidth$\vert$\hidewidth

\cr\raise-0.9ex\hbox{$\smile$}}}}}

. . . neither knowing nor caring what it actually does
other than that it allows me to typeset A |⌣C

B
(“A and B are forking-independent (or non-forking)
over C ”; a concept in model theory)1 — despite there
being a Unicode symbol (0x2ADD) and a correspond-
ing LATEX macro \forksnot in the unicode-math

package. If we want to maximise coverage, we there-
fore need a reasonable strategy for arbitrarily elabo-
rate unexpected LATEX macros.

Secondly, by generating rather plain HTML, we
guarantee that the resulting presentation is neutral

and can be easily adapted by users via their own CSS

stylesheets — the “morally correct” thing to do. How-
ever, it also severely clashes with the expectations of
(casual) users that the result look roughly the same
as the PDF. After all, LATEX documents are written
by authors in a way that is inevitably optimized for
a particular layout and arrangement of document
elements. Subsequently discarding them in favor of
as-plain-as-possible HTML that optimizes more for
the “document semantics” of the components than
their (precise) optics yields plain looking HTML that
is immediately perceived as ugly, “not what I want”
and requires lots of massaging to achieve a similar
aesthetic level as the PDF generated by pdfLATEX.
And aesthetics matter — that’s why TEX was created
in the first place.

Thirdly, by focusing on supporting as many
LATEX macros as possible directly, conversion engines
tend to neglect support for primitives in multiple
senses of “support” — indeed, I found it difficult to
find any existing TEX documents of mine that “sur-
vive” any of the existing HTML converters for a
realistic comparison, typically dying with no output
or only initial, badly formatted fragments.

The RUSTEX system is a TEX-to-HTML converter
born out of our needs in the STEX project [4, 10]. The
stex package allows for annotating LATEX documents
(in particular mathematical formulae and statements)
with their (flexi-)formal semantics. These documents
are subsequently converted to HTML, preserving
both the (informal) document layouts as well as
the semantic annotations in such a way that knowl-
edge management services acting on the semantics
can be subsequently integrated via JavaScript. Our

1 Possibly sourced from tex.stackexchange.com/

questions/42093/what-is-the-latex-symbol-for-

forking-independent-model-theory—I needed and found
it some time around 2013.

existing corpora of STEX documents cover a wide
range, from individual fragments (definitions, theo-
rem statements, remarks, . . . ) up to research papers,
lecture slides in beamer, and book-like lecture notes
that usually include the slides between text frag-
ments, all of them using a multitude of (typical and
untypical, official and custom) packages, preambles
and stylings.

We consequently want to translate the sources
for all these heterogeneous documents to HTML such
that 1) the results look as similar to their PDF coun-
terparts as possible, 2) the semantic annotations are
preserved as XML attributes, and 3) (most impor-
tantly) conversion succeeds for any error-free docu-
ment, regardless of packages and macros used, so that
at least the semantic annotations can be extracted,
even if the presentation is occasionally (somewhat)
broken.

Contribution Motivated by the above, this paper
describes RUSTEX’s rather extremal point in the de-
sign space of LATEX-to-HTML converters: The goal
is to mimic the core TEX expansion mechanism (i.e.
pdfLATEX) as closely as possible and map the result-
ing sequence of TEX primitives to (primarily) <div>s
with CSS attributes, while avoiding the neverending
amount of work required for the special treatment
for non-primitive TEX macros. Ideally, this allows
for achieving full error-free coverage with respect to
converting full documents, and yielding HTML that
looks reasonably close to what a user would expect.

Of course, if we only care about aesthetics,
we might as well render the generated PDF in the
browser directly. So as an addendum to the above,
we should add the desideratum that the HTML re-
main “reasonably recognizable as HTML”: for exam-
ple, plain text in paragraphs (or horizontal boxes)
should actually be represented as plain text in the
resulting HTML —in fact, we want to leave to the
browser as much as possible of what a browser does
best: break lines in paragraphs, size boxes based on
their contents (where we want them to be), and ar-
range components based on available (screen) space,
according to constraints imposed by our CSS schema.

RUSTEX’s git repository [9] contains a .tex file
with test cases for (and beyond) all the following, and
the HTML generated from them for direct compari-
son. Additionally it contains the PDF and HTML pro-
duced from my Ph.D. dissertation [8], which serves
as a particularly good test case for several reasons:

1. I was a typical LATEX user when I wrote it, with
no particular knowledge of TEX’s internal work-
ings, and hence unbiased by what I would nowa-
days do to avoid problems.

Dennis Müller

https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?package
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?PDF?PDF
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?PDF?PDF
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://tex.stackexchange.com/questions/42093/what-is-the-latex-symbol-for-forking-independent-model-theory
https://tex.stackexchange.com/questions/42093/what-is-the-latex-symbol-for-forking-independent-model-theory
https://tex.stackexchange.com/questions/42093/what-is-the-latex-symbol-for-forking-independent-model-theory
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?package
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?PDF?PDF
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?XML?XML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?package
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?PDF?PDF
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?PDF?PDF
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX


TUGboat, Volume 44 (2023), No. 2 277

2. I spent a lot of effort on making it look nice by
the usual means — copy-pasting from elsewhere
and using whatever package google tells me to
use to achieve the desired effect.

3. It is a 215 page document using everything from
elaborate formulas, syntax-highlighted code list-
ings, various figures and tables, and color-coded
environments (using tcolorboxes) for remarks,
theorems, examples, definitions, etc.

The HTML generated from our STEX corpora can be
found at url.mathhub.info/stex, including this pa-
per (see link above), which thus additionally serves as
a demonstration of the examples below (notably, with
two column mode deactivated). They also power our
course portal at courses.voll-ki.fau.de, where
students at our university can access semantically
annotated course materials and various didactic ser-
vices generated from them. The full CSS schema is
also available.2

Disclaimer I am not arguing to eschew dedicated
support for LATEX and package macros entirely — doc-
ument semantics can be important, for example for
accessibility reasons. Additionally, while the trans-
lation presented here is surprisingly effective, it has
clear limitations, especially on the scale of individual

characters (see section 9).
Hence, the ideas of this paper should be seen as

a reasonable fallback strategy usable in conjunction

with dedicated support for macros. Indeed, RUSTEX
too currently implements (a few) package macros,
namely \url, \not and \cancel, \underbrace and
\overbrace, \marginpar, the {wrapfig} environ-
ment, and (somewhat embarrassingly) \LaTeX.

In fact, if this paper has a purpose beyond re-
porting on what I consider to be an interesting ex-
periment, it should be the following: Taking TEX

primitives seriously pays off aesthetically, can save a
lot of work and effort, and where possible, I encour-
age developers of TEX-to-HTML converters to take
them seriously in addition to dedicated support for
macros.

Furthermore, many of the techniques described
below are the result of more-or-less informed experi-
mentation; in many cases, better ways to represent
TEX primitives in HTML might exist. I appreciate
feedback and suggestions for improvements.

2 General architecture

As mentioned, RUSTEX attempts to mimic the be-
haviour of pdfLATEX as closely as possible. As such,
it implements the behaviour of the primitive com-

2 github.com/slatex/RusTeX/blob/master/rustex/src/

resources/html.css

mands available in plain TEX, ε-TEX and pdfTEX,
amounting to 293 + 47 commands, excluding prim-
itive “register-like” commands such as \everyhbox,
\baselineskip, \linepenalty, etc. Their precise
behaviour has been determined from (obviously) the
bible [3] and the manuals for ε-TEX and pdfTEX, but
also often reverse engineered via extensive experi-
mentation.

The program starts by locating, via kpsewhich,
a user’s pdftexconfig.tex and latex.ltx and pro-
cessing them first. This requires that the user have
a LATEX distribution set up, but subsequently makes
sure that RUSTEX behaves as close to the local LATEX
setup as possible.

Tokens are expanded in the expected manner
down to the primitives, which cause state changes,
impact expansion, or ultimately end up fully pro-
cessed in RUSTEX’s stomach waiting to be output as
HTML. The latter primitives are the subject of this
paper.

pgf (and thus tikz) is handled via an adapted
version of the existing SVG driver and thus omitted
here. Images are inserted directly in the HTML in
base64 encoding.

In lieu of a shipout routine, box registers for
floats (as well as \inserts such as footnotes) are
occasionally heuristically inspected and inserted, but
this mechanism is due for a more adequate treatment
and hence also omitted.

2.1 Trees and fonts

Naturally, HTML is a tree structure of nested nodes.
Somewhat counter-intuitively, so are TEX’s stomach
elements, but unfortunately at the cost of attaching
information such as the current font, font size, color,
etc., directly to the individual “character boxes”. If
we wanted to introduce a <span> node for every
individual character, we could mimic this directly
in HTML —however, this approach is too extreme
even for my taste. Luckily, in almost every situation
where colors and fonts are changed, the changes are
achieved via LATEX macros that align with TEX’s
“stomach tree”. For example,

\textbf{\textcolor{blue}{some} \emph{text}}

clearly entails a tree of font and color changes, which
ideally should be represented as a corresponding
HTML tree:

<span style="font-weight:bold">

<span style="text-color:blue">some</span>

<span style="font-style:italic">text</span>

</span>

An HTML/CSS schema for TEX primitives

https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://url.mathhub.info/stex
https://courses.voll-ki.fau.de
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?package
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?package
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://github.com/slatex/RusTeX/blob/master/rustex/src/resources/html.css
https://github.com/slatex/RusTeX/blob/master/rustex/src/resources/html.css
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?SVG?SVG
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX


278 TUGboat, Volume 44 (2023), No. 2

And indeed, all three macros (\textbf, \textcolor,
\emph) introduce TEX groups for their arguments,
assuring that these changes reflect a tree structure.

Consequently, RUSTEX can (somewhat) safely
add special nodes to the stomach on font changes,
changes to the color stack, or links (as produced
by \pdfstartlink). As these are (usually) local to
the current TEX group, the stomach consequently
also keeps track of when TEX groups are opened
and closed. If such changes (i.e. their start and
end points) conflict with other stomach elements’
delimiters, such as boxes or paragraphs, they are
appropriately closed and subsequently reopened, e.g.:

Some paragraph \begingroup \itshape

this is italic \par

New paragraph, still italic \endgroup not

italic anymore

typesets as:

Some paragraph this is italic

New paragraph, still italic not italic any-
more

and would yield HTML similar to:

<div class="paragraph">

Some paragraph

<span style="font-style:italic">

this is italic

</span>

</div>

<div class="paragraph">

<span style="font-style:italic">

New paragraph, still italic

</span>

not italic anymore

</div>

In general, the nodes produced by font changes
and similar commands are considered “annotations”:
If these nodes have no children, or a single child that
modifies the same CSS property, they are discarded
or replaced by their only child. If they have a single
child or are the only child of their parent node, the
corresponding style-attribute is attached to the rel-
evant node directly. Only in the remaining case is an
actual <span> node produced in the output HTML.

To deal with fonts in general, it should be noted
that most TEX fonts are freely available in a web-
compatible format (e.g. otf) online; we could con-
sequently use the actual fonts used by TEX in the
output PDF. In practice, we prefer to have adequate
Unicode characters in the HTML output, rather than
ASCII characters representing a position in a font
table. Consequently, RUSTEX instead hardcodes fonts
as pairs of 1) a map from ASCII codes to Unicode

strings and, 2) a sequence of font modifiers (e.g. bold,
italic). The former is used to produce actual charac-
ters, the latter to choose appropriate CSS attributes
as above.

Currently, RUSTEX fixes Latin Modern as the
font family used, but somewhat nonsensically obtains
font metrics the same way as TEX, by processing
the tfm files on demand [2], providing only rough
approximations of the actual values (in HTML).

2.2 Global document setup

At \begin{document}, RUSTEX determines 1) the
current font and its size, 2) the page width (as deter-
mined by \pdfpagewidth) and 3) the text width (as
determined by \hsize), and attaches them as corre-
sponding CSS attributes to the <body> node—the
page width determining the max-width and the calcu-
lation (⟨page width⟩−⟨text width⟩)/2 determining the
padding-left and padding-right properties. The
latter is important to accommodate e.g. \marginpar
and related mechanisms, and is discussed more pre-
cisely in section 5.

3 Boxes and dimensions

Clearly, the most important primitives to get “right”
are (horizontal or vertical) boxes, produced by \hbox,
\vbox and variants (\vtop, \vcenter), as they are
the primary means that more elaborate macros use
to achieve their aims. They also serve as good exam-
ples of the complexities involved when translating to
HTML.

Boxes have five important numerical values that
matter with respect to how they are typeset: width,
height, depth, spread and to, which we will discuss
shortly.

Horizontal boxes (as produced by \hbox)—as
the name suggests—have their contents arranged
horizontally, and vertical ones vertically. This is
nicely analogous to the CSS flex model, so naturally,
we can associate boxes with CSS flex display values.
An entire document can be thought of as a single
top-level vertical box. Hence:

.hbox, .vbox, .body {

display: inline-flex;

}

.vbox, .body { flex-direction: column; }

.hbox { flex-direction: row; }

An important distinction that matters here is
that between the actual contents of the box and its
boundary. Usually, the dimensions of a box are com-
puted from the dimensions of its children—which,
conveniently, is analogous to HTML/CSS, so in the

Dennis Müller

https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?PDF?PDF
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS


TUGboat, Volume 44 (2023), No. 2 279

typical case we do not need to bother with them at
all and leave those up to the rendering engine:

.hbox, .vbox, .body {

width: min-content;

height: min-content;

}

Whenever possible, we avoid precisely assigning
dimensional values in HTML and defer to the ones
computed by the rendering engine. This is important
to account for discrepancies between HTML and TEX,
e.g. regarding the precise heights of characters, lines,
paragraphs, etc.

However, the dimensions of a box can be changed
after the fact, using the \wd, \ht and \dp commands
(corresponding to width, height and depth, respec-
tively). If these dimensions are changed, the contents

and how they are laid out are not changed at all,
but the typesetting algorithm, when putting “ink to
paper”, will proceed as if the box had the provided
dimensions. This allows macros to layer boxes on top

of each other; in the (very common) most extreme
case by making boxes take up no space at all. For
example:

\setbox\myregister\hbox{some content}

\wd\myregister=0pt \ht\myregister=0pt

\dp\myregister=0pt

\box\myregister other content

This will produce a horizontal box with the content
“some content” with all dimensions being 0 from the
point of view of the output algorithm, meaning the
“other content” following the box will be put directly
on top of the box, like so:

some contentother content

Hence, we do have to occasionally consider the actual
(computed or assigned) dimensions of TEX boxes and
other elements.

Regarding boxes, we attach actual values for
width/height to their HTML nodes if and only if

they have been assigned fixed values, and let

.hbox, .vbox { overflow: visible; }

We can then achieve the same effect in HTML via:

<div class="hbox" style="width:0;height:0;">

some content

</div> other content

3.1 width/height vs. to

Things get more interesting if the assigned values for
the dimensions of the box are larger than the actual
box contents — this tells us how we need to align the
contents of boxes vertically and horizontally. This,

however, is also where the to-value of a box comes
into play:

Setting \wd=⟨val⟩, for any ⟨val⟩, for a horizontal
box, as mentioned, does not impact the way the box
content is laid out. However, using \hbox to=⟨to-
val⟩{...} does, while also setting the width of the
box: The to-attribute instructs TEX to arrange the
contents of the box “in line with” the box being
⟨to-val⟩ wide. For example:

\hbox{some box content}

\hbox to \textwidth{some box content}

some box content
some box content

This example is deceptive in that it suggests the box
contents were evenly spread out across the ⟨to-val⟩
of the box, but this is not so. Consider:

\hbox to \textwidth{

\hbox{some}\hbox{box}\hbox{content}

}

\hbox to \textwidth{%

\hbox{some}\hbox{box}\hbox{content}%

}

someboxcontent
someboxcontent

It’s not that the individual content elements in the
box are spread out evenly; instead, they are left-
aligned and glue items (e.g. from space, newline, and
tab characters) behave approximately as if they were
\hfil— i.e. they take up as much space as they can
in the containing \hbox. And while subsequently the
box has a width of ⟨to-val⟩, it can be changed with
\wd like any other box:

\setbox\myregister\hbox to \textwidth{%

\hbox{some}\hbox{box}\hbox{content}%

}\wd\myregister=0pt \box\myregister

\setbox\myregister\hbox to \textwidth{%

\it some box content%

}\wd\myregister=0pt \box\myregister

someboxcontentsome box content

This distinction between the three values width,
to, and “total width of the box’s children” forces
us to distinguish between a) the box itself (i.e. its
contents) with its (potential) to value, and b) its
“boundary box”, i.e. subsequently assigned widths
and heights. The same holds analogously for the
to value and height of a vertical box:

.hbox { text-align: left; }

.vbox { justify-content: flex-start; }

.hbox-container, .vbox-container {}

An HTML/CSS schema for TEX primitives

https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX


280 TUGboat, Volume 44 (2023), No. 2

where the .hbox-container-class is used for as-

signed widths and heights, and to translates to
the width of the .hbox itself. Making spaces behave
as they should in an \hbox forces us to style them
accordingly:

.space-in-hbox {

display: inline-block;

margin-left: auto;

margin-right: auto;

}

Using this class for spaces (directly) in \hboxes makes
the remaining content stretched across the full width
of the box, as in the examples above.

Notably, TEX allows for negative values in dimen-
sions, which CSS does not. To capture the resulting
behaviour, whenever a dimension (e.g. width) is < 0,
we set the width CSS property to 0, and attach (in
this case) margin-right:⟨width⟩ to the HTML node
(analogously margin-top for height).

Finally, the spread parameter can be used in-

stead of to and adds the provided dimension to the
computed width/height of the box; e.g. if \hbox{foo}
has width 15pt, then \hbox spread 15pt{foo} has
width 15 + 15 = 30pt:

Lorem ipsum dolor sit amet, consectetur adip-
iscing elit pellentesque.foo Lorem ipsum do-
lor sit amet, consectetur adipiscing elit pellen-
tesque.

Annoyingly, the only way to accommodate this
seems to be to compute the “original” value, add the
spread value, and attach that as the final width/
height to the <div> node.

3.2 Depth and rules

So far, we have considered width and height, but
TEX has an additional dimension for boxes that CSS

does not: depth, which measures the extent to which
a given box extends below the baseline of the parent
box. Depth is rarely important, or rather, matters
primarily when manipulating individual characters,
which CSS is currently not capable of for reasons ex-
plained later. However, notable, and not uncommon,
exceptions are explicitly assigned depth values, in
particular for \vtop boxes.

To better understand depth, let’s turn our at-
tention to the \vrule primitive, which produces a
colored box of the provided dimensions:3

Lorem ...

\vrule width 10pt height 10pt depth 10pt

Lorem ...

3 \hrule is implemented analogously, except for using
display:block instead of inline-block.

Lorem ipsum dolor sit amet, consectetur adip-
iscing elit pellentesque. Lorem ipsum dolor sit

amet, consectetur adipiscing elit pellentesque.

This creates a black box with 10pt width and
a total 20pt height, centered at the baseline of the
current line: extending 10pt above the baseline (the
height) and 10pt below (the depth).4

Such a box with the right dimensions can be
easily produced using CSS:

.vrule {

display: inline-block;

}

The individual <div>s are then provided background,
width and height (=height+depth) properties cor-
responding to the color and the dimensions of the
\vrule— in the above example:5

style="background:#000000;height:20pt"

The tricky part is ensuring that the box is cor-
rectly positioned with respect to the surrounding
text (or other elements). As above, the solution is
to wrap the .vrule <div> in a .vrule-container

with the same height as the inner <div>, and adding
margin-bottom:-⟨depth⟩ to the inner .vrule. This
not only allows for moving the box the specified
amount below the baseline, but also makes sure that
the “boundary” that the rendering engine computes
for positioning elements has the relevant dimensions
as well.

If a rule has no explicitly provided width/height,
TEX gives it a thickness of 0.4pt, and other dimen-
sions fitting the current box:

\hbox{ \vrule

\vbox{ \hbox{some} \hrule \hbox{text}}

\vrule }

some
text

We can easily set the width of the \hrule with
width:100% to achieve the same effect. Unfortu-
nately, the same does not work with \vrule and
its height in HTML, as an artifact of when and how
the heights of boxes are computed by the rendering
engine. In those situations, we have to distinguish
between paragraphs and \hboxes: In the former case
we heuristically set the height to the current font
size; in the latter (since we are in a flex box), we

4 Note the gap between the second and third line of text,
caused by the depth of the \vrule.

5 For simplicity’s sake, we will use the same dimensions
(in pt) in both TEX code and CSS; in practice, we scale 1pt

in TEX to a value in px units.

Dennis Müller

https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX


TUGboat, Volume 44 (2023), No. 2 281

can set align-self:stretch to make the rule fit
the containing box.

3.3 \vbox vs. \vtop vs. \vcenter

\vtop behaves like \vbox, except that where a \vbox

is vertically aligned at the bottom of the parent box’s
baseline, a \vtop is vertically aligned at the top
with the surrounding text, extending downwards.
\vcenter is vertically aligned at the center and is
only allowed in math mode:

some text \vbox{\hbox{some}\hbox{vbox}}

text \vtop{\hbox{some}\hbox{vtop}}

text $\vcenter{\hbox{some}\hbox{vcenter}}$

text

some text
some
vbox text some

vtop
text

some
vcenter

text

Internally, the three types of vertical boxes differ pre-
cisely in their a priori depths and heights. As long
as these are not subsequently reassigned (using \ht

and \dp), we can achieve the same effect much more
accurately by using the vertical-align property,
that covers the same primary intent of the three
types of vertical boxes:

.vbox{ vertical-align: bottom }

.vtop{ vertical-align: baseline }

.vcenter{ vertical-align: middle }

We now need to be careful with changing the height

of a \vtop box, however: Since the primary verti-
cal dimension of a \vtop corresponds to its depth

(below the baseline), increasing its height actually
corresponds to moving the box contents upwards
without changing the amount of space it takes up
below the baseline:6

Lorem ...

\setbox\myregister\vtop{\hbox{some}\hbox{vtop}}

\ht\myregister=20pt\box\myregister

Lorem ...

Lorem ipsum dolor sit amet, consectetur adipisc-

ing elit pellentesque.

some
vtop Lorem ipsum dolor sit

amet, consectetur adipiscing elit pellentesque.

This can be approximated in HTML by setting
both the margin-top and bottom CSS properties of
the .vbox-container to the value ⟨height⟩−⟨current

line height⟩: The bottom property moves the box

6 Again, note how the three lines in the paragraph are
pushed apart by the unchanged depth and new height of the
box.

upwards, while the margin-top property makes sure
that the boundary box grows accordingly, instead of
the moved box overlapping with other elements.7

Conversely, if we manipulate the depth of a
\vtop, we can set the height of the .vtop HTML

node itself to ⟨depth⟩+⟨current line height⟩.
Annoyingly, it turns out that height/depth ma-

nipulations on \vboxes and \vtops (respectively)
do not play well with vertical-align CSS proper-
ties within paragraphs — the boxes are not correctly
aligned vertically. When explicitly setting these di-
mensions, it is therefore necessary to, as with \vrule,
introduce an intermediate HTML node with class
.vbox-height-container to achieve the effect.

4 Paragraphs

At a first glance, paragraphs in TEX seem largely
straightforward:

.paragraph {

text-align:justify;

display: inline-block;

margin-top: auto;

}

The margin-top:auto assures that paragraphs are
vertically aligned at the bottom of \vboxes.

Any horizontal material (e.g. text, \noindent,
\unhbox) outside of a paragraph, or an \hbox (and
similar constructions) opens a new paragraph, and
\par closes it again.

If we were primarily interested in document se-
mantics without caring about the page layout dic-
tated by TEX, we could be done at this point. How-
ever, in TEX, paragraphs have fixed widths dictated
by several parameters and commands, including
\hsize, \leftskip, \rightskip, \hangindent and
\hangafter, and \parshape. This matters when a
paragraph is opened inside a \vbox. Consider, for
instance

Lorem ipsum \vbox{Some Text} Lorem ipsum

Lorem ipsum Some Text Lorem
ipsum

The Some Text in the \vbox opens a new paragraph,
including indentation, and that paragraph has width
\hsize, regardless of its contents. The \vbox it-
self then inherits the full width of the containing
paragraph.8

Approximating this behaviour (in the absence
of dedicated macro support) matters, for example to

7 The same idea is used for \raise/\lower.
8 Here, we’ve set \hsize to a smaller value to attempt to

demonstrate the effect without breaking the layout of this
article too much.

An HTML/CSS schema for TEX primitives

https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX


282 TUGboat, Volume 44 (2023), No. 2

accommodate {minipage}s, tcolorbox and similar
packages. This is also one case where TEX is signifi-
cantly more flexible than HTML/CSS: \hangindent
and \parshape do not have CSS equivalents. While
in principle it might be possible to “emulate” them
using empty <div> nodes with float attributes, we
currently ignore them and proceed as if the whole
paragraph were typeset according to the rules ap-
plying to the last line; e.g. the last entry in the
\parshape list.

The relevant parameters can subsequently be
condensed into three attributes, in the simplest case
computed thusly: 1) the actual width of the text
(\hspace−(\leftskip+\rightskip)), and 2) left
and right margins (\leftskip and \rightskip),
which we translate to the CSS attributes min-width,
margin-left and margin-right, respectively.

Notably, to accommodate macros that make use
of computed dimensions of various boxes, we need to
approximate TEX’s line breaking algorithm to make
sure that the computed heights of paragraphs are
reasonably accurate.

5 Responsiveness and relative widths

The above suggests that we need to hardcode the
absolute widths of both the document as a whole
(in the sense of \textwidth/\pagewidth) as well
as the widths of paragraphs and \hboxes. This is
of course undesirable in that it destroys responsive
layout in HTML. Ideally, we would prefer to use
relative widths in terms of percentages.

Regarding the document width, this is easily
resolved: Instead of letting width:⟨text width⟩, we
set max-width:⟨text width⟩. This way, the page
accommodates smaller screens, but if enough screen
space is available will default to the size for which
the document was originally designed.

Relative widths in general however only work
as expected if the direct parent of a node has a fixed
assigned width, and as previously mentioned, insofar
as possible we want to defer the precise dimensions of
HTML nodes to the rendering engine. Moreover, once
we have a box with width:0, no percentage will get
us back to a non-zero value. Both problems would
be solvable if CSS allowed for inheriting attribute
values from arbitrary ancestors, but since it does not,
we need to be more creative:

Instead of directly inheriting, we can use a cus-

tom CSS property --current-width and initialize it
as --current-width:min(100vw,⟨text width⟩);
width:var(--current-width) in the body. (The
vw unit is 1% of the width of the “viewport”, i.e.,
browser windows.) This achieves the same effect as
the more naive approach above, but now allows for

stating other widths in the body of the HTML node
as values relative to the --current-width attribute.

Using this approach, all relative widths in a doc-
ument are now relative to the current document’s

initial \textwidth. This is problematic in the con-
text of STEX, where the \inputref macro largely
replaces TEX’s \input: Besides allowing for refer-
encing source files relative to a math archive (i.e. a
“library” of document snippets), which is important
for building modular libraries, when converting to
HTML \inputref simply inserts a reference to the
file, which can subsequently be dynamically inserted
into the referencing document. This obviates both
the need to reprocess the same file for every context
in which it occurs, as well as to rebuild all referencing
files every time any of the \inputrefed files change.
Notably, such \inputrefs often occur deeply nested,
e.g. a file with a short individual definition might
be \inputrefed in an {itemize} environment in
a definition block in a framed beamer slide within
lecture notes.

This entails that we would like to inherit widths
from the closest ancestor with a fixed assigned width

> 0 (e.g. the innermost \item in the example above)
rather than the <body>, and update the value of
--current-width accordingly, to accommodate any
document context in which the HTML node might
(dynamically) occur.

For example, given a top-level \vbox with width
0.5\textwidth (e.g. a {minipage}), we would like
to do:

<div class="vbox" style="--current-width:calc(

0.5 * var(--current-width));

width:var(--current-width)">...</div>

Unfortunately, CSS does not allow for self-referential
attribute updates; so we have to use an intermediary
custom attribute --temp-width and an inner <span>
to do the following:

<div class="vbox" style="--temp-width:calc(

0.5 * var(--current-width));

width:var(--temp-width)">

<span style="display:contents;

--current-width:var(--temp-width)

">...</span></div>

to achieve the desired effect. While this is ugly
from an implementation point of view, it allows for
variable viewport widths and solves the problem with
inheriting widths through boxes of size 0.

6 Skips and text alignment

In section 4, \leftskip and \rightskip were con-
sidered as simple dimensions, but skips have three

Dennis Müller

https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?math%20archive
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS


TUGboat, Volume 44 (2023), No. 2 283

components: A base dimension, an (optional) stretch

factor, and an (optional) shrink factor. A skip rep-
resents a (horizontal or vertical) space that is ide-
ally ⟨base dimension⟩ wide/high, but can stretch or
shrink according to the other two components to
fit the current page layout. Stretch and shrink fac-
tors have one of four units pt (or any fixed unit),
fil, fill or filll, the latter three representing
“increasingly infinite” stretch/shrink factors.

Skips are used to introduce vertical or horizon-
tal space, using (most commonly) the \hskip and
\vskip commands. Focusing solely on their base di-
mensions for now, both can be represented as empty
<div> nodes with corresponding margin-left or
margin-bottom values, respectively. Conveniently,
this works with both positive and negative base di-
mensions, and we can use the same mechanism for
\kern, which for all practical purposes behaves like
\hskip or \vskip with zero stretch/shrink. This
allows us to cover both of the following cases:

\noindent some text \hskip20pt some text\par

\noindent some text \hskip-20pt some text

some text some text
some textsome text

If we add a stretch factor, we can produce the
following:

\noindent some text \hskip20pt plus 1filll

some text\par

some text some text

Unfortunately, CSS has no analogue for stretch
and shrink factors. For shrink, this largely causes no
serious issues. Stretch factors however are primar-
ily used to achieve (primarily horizontal) alignment.
Left-aligned, centered, or right-aligned content is
achieved in TEX by inserting corresponding skips; so
the best we can do is to represent skips as the CSS

text-align property:
If \leftskip or \rightskip have stretch fac-

tors, we compare them and set the alignment for
the paragraph accordingly. For \hbox, we need to
inspect the contents of the box for initial and termi-
nal occurrences of relevant skips, compare them, and
derive the intended alignment depending on which
is “bigger”.

Additionally, we can add margin-left:auto to
the <div>s corresponding to skips iff they have a
stretch factor of (at least) 1fil; however, this only
works in \hboxes (not in paragraphs), and does not
necessarily behave correctly in conjunction with other
skips.

Thankfully, text alignment seems to be the pri-
mary regularly occurring situation where skips are
noticeable and important to represent accurately in
the HTML, which this heuristic approach seems to
cover reasonably well. While discrepancies between
PDF and HTML can be easily found, they are usually
not severe.

7 Math mode

For stomach elements in math mode, we naturally
use Presentation MathML. Translating the relevant
primitives to MathML is largely straightforward and
covered elsewhere [11], with the slight “moderniza-
tion” that we prefer CSS over MathML attributes.
Since the font used for MathML depends on the
rendering engine, and some of these are rather un-
satisfactory (e.g. vanilla Firefox under Ubuntu), we
can explicitly set the font to Latin Modern Math

for a more unified look. Skips and kerns are imple-
mented as above, but using <mspace> nodes instead
of <div>.

Regarding font sizes, we can either defer to the
rendering engine or use the sizes from TEX — in which
case we need to make sure that we override the CSS

rules imposed by the rendering engine via:

msub > :nth-child(2), msup > :nth-child(2),

mfrac > * , mover > :not(:first-child),

munder > :not(:first-child) {font-size:inherit}

More pressingly however, occurrences of \hbox
or \vbox in math mode require us to “escape” back to
HTML in <math> elements. While not officially sup-
ported, using <mtext> nodes for that works well in
both Firefox and Chromium (and with some hacking
with MathJax). However, when doing so, various CSS

properties are inherited from the default stylesheet
for MathML. Hence, whenever we escape back to
horizontal or vertical mode, we explicitly insert the
parameters of the current text font, and set:

mtext {

letter-spacing: initial;

word-spacing: initial;

display: inline-flex;

}

As mentioned in [11], spacing around opera-
tors (i.e. <mo> nodes) is governed by an operator
dictionary. The spacing rules are in principle well-
chosen and best left to the rendering engine. TEX can
change these however, using the commands \mathop,
\mathbin, etc. To accommodate this functionality,
we can explicitly set left and right padding based on
TEX’s math character class, and set:

mo {padding-left: 0;padding-right: 0}

An HTML/CSS schema for TEX primitives

https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?PDF?PDF
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?MathML?Presentation%20MathML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?MathML?MathML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?MathML?MathML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?MathML?MathML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?MathML?MathML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?MathML?MathML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX


284 TUGboat, Volume 44 (2023), No. 2

Notably, this works (as of May 2023) in Fire-
fox, but not in Chromium-based browsers,9 where
the spacing determined by the operator dictionaries
is effectively a minimum that cannot be reduced
further.

Changing these spacing factors can occasionally
be important when composing symbols from more
primitive ones. For example, the \Longrightarrow

macro =⇒ concatenates the symbols = and ⇒ with
a negative \kern between them — in which case un-
intended spacing between the two symbols can break
the intended result.

8 \halign

The \halign command is the primitive which most
LATEX commands and packages use to lay out ta-

bles, and not surprisingly, its closest correspondent
in HTML is <table> nodes. However, as with text
alignment, effects that in HTML are achieved via at-
tributes of the parent node (<table>, <tr> or <td>)
are achieved in TEX via content elements in the in-
dividual cells—or between them: Where a table in
HTML is exactly a sequence of rows consisting of cells,
in TEX, the \noalign command allows for inserting
vertical material between rows, which is used to in-
sert horizontal lines (e.g. \hline) or determine the
spacing between rows. Borders and spacing between
cells are achieved via \vrules and skips.

Hence, we have to face two major problems when
translating \haligns to <table>s:

1. If we want to accommodate spacing, text align-
ments and borders, we need to “parse” the con-
tents of cells and \noalign blocks to determine
which CSS attributes to attach to the <table>,
<tr> and <td> nodes. This is made worse by
the fact that the margin attributes on <td> and
<tr> nodes have no actual effect.

2. The height of a <tr> is computed from the actual

height of its children, and even enclosing a whole
cell in a <div> with height:0 does not change
the actual height of the relevant <tr>.

While the former problem is inconvenient but solv-
able, the latter becomes severe when we consider
some less obvious situations for which \halign is
used: For example, the \forkindep macro men-
tioned above uses \ooalign to combine the two
characters | and ⌣, which in turn uses an \halign

to superimpose them, forcing us to make the rows
narrower than <tr>s allow for.

Therefore we use the CSS grid model for \halign
rather than the (seemingly more adequate) <table>:

9 Conversely, scaling brackets properly with
stretchy="true" seems to not work in Firefox as yet.

.halign {

display:inline-grid;

width: fit-content;

grid-auto-rows: auto;

}

with cells being styled like .hbox with the addi-
tional attributes height:100%;width:100%, and any
\halign with n columns being given the additional
CSS attribute grid-template-columns:repeat(n,
1fr). This aligns the individual cells almost exactly
like <table> would, but gives us the more control
over their intended heights.

\noalign vertical material can now be inserted
in a .vbox <div> with grid-column:span n. This
entirely obviates the need to implement special rules
for visible borders or spacing between rows/columns:
The existing treatment for \vrule/\hrule and skips
produces (almost universally) the desired output out
of the box.

Notably, empty cells in \halign are not actually
empty. Consider:

\halign{#&#\cr a&b\cr c&d\cr&\cr e&f\cr}

ab
cd

ef

The third row has no content, but we still get a row
that has roughly the same height as the other three.
We can remedy this effect via:

\baselineskip=0pt\relax

\halign{#&#\cr a&b\cr c&d\cr&\cr e&f\cr}

ab
cd
ef

or do even more ridiculous things:

\baselineskip=0pt\relax

\lineskiplimit=-100pt\relax

\halign{#&#\cr a&b\cr c&d\cr&\cr e&f\cr}

abcdef

This entails that we need to take \baselineskip
and \lineskiplimit into account, using them to
compute min-height (for normal \baselineskip)
or height values (in case of sufficiently negative
\lineskiplimit values) for the cell’s HTML node.

9 Limitations

This brings us to the first insurmountable difference
between TEX and CSS: lines. A line of text in TEX

Dennis Müller

https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX


TUGboat, Volume 44 (2023), No. 2 285

consists of individual character boxes with individ-
ual heights, widths and depths, and the spacing
between lines is governed by the three parameters
\baselineskip (the “default” distance between two
baselines), \lineskiplimit (the minimally allowed
distance between the bottom of a line and the top of
the subsequent one), and \lineskip (the minimal
skip to insert between two lines, if their distance is
below \lineskiplimit). In particular, the height of
a horizontal box containing e.g. a single character is
entirely determined by the height of that particular
character.

In contrast, a line of text in HTML/CSS has a
fixed height of the current line-height value regard-
less of the occurring characters—and every single
character counts as a “line”: for every character, a
leading space is inserted on top of it to make the
containing box adhere to the line-height. This
makes box manipulation on the level of individual
characters currently (almost) impossible.10

One striking example for this is the \LaTeX

macro, where the A is enclosed in a \vbox. RUSTEX
replaces its expansion by a simple \raise\hbox to
achieve the (almost) same effect.

Situations where the layout critically depends on
very precise positioning and sizing of boxes remains
tricky. This is the case, for example, with the tikzcd
package, where the nodes are laid out as tables, with
pgf arrows between the individual cells.

On another front, various macros make use of
LATEX floats in non-trivial ways, such as \marginpar
and the {wrapfig} environment, making special
treatment for them (as of yet) unavoidable.

Finally, the xy package is a clear example of
where, due to its usage of custom fonts, there is cur-
rently no feasible way to achieve support in terms of
TEX primitives alone; anecdotally, I have been told
that a pgf driver for xy is in the works, which, if com-
pleted, would likely immediately work for RUSTEX as
well.

10 Conclusion

Despite the limitations mentioned above, the schema
presented here works surprisingly well in a variety of
cases. For example, list environments ({itemize},
{enumerate}, etc.), {lstlisting}, {algorithmic},
tcolorbox, figures, various environments for defini-
tions, theorems and examples, bibtex and biblatex,
and many other macros, environments and packages,
often with intricate options and configurations, work

10 A proposal to the W3C CSS working group regarding lead-
ing space, which would presumably help here, has been open
since 2018: github.com/w3c/csswg-drafts/issues/3240.

out of the box without special treatment and with
the expected presentation in the HTML.

Indeed, it is certainly surprising how much can
be achieved without providing dedicated implemen-
tations for non-primitive macros, to the point where
I am nowadays more surprised if the schema fails

than when it succeeds.
To mention one particular highlight: A tongue-

in-cheek paper was published in May 2023 on arxiv.

org that argued for solving the order-of-authors prob-
lem in scientific publishing by overlaying all the au-

thor names on top of each other, including instruc-
tions how to achieve that in both TEX and HTML [1].

Running RUSTEX over the LATEX sources for the
paper produced the right layout directly (Figure 1).

PDF:

HTML:

Figure 1: Screenshots from [1] in PDF and RUSTEX
generated HTML

An HTML/CSS schema for TEX primitives

https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?environment
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?environment
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?environment
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?package
https://github.com/w3c/csswg-drafts/issues/3240
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://arxiv.org
https://arxiv.org
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?PDF?PDF
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?PDF?PDF
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX


286 TUGboat, Volume 44 (2023), No. 2

The most important aspects for generating ad-
equate (and often great) HTML seem to be the
“proper” treatment of \hbox/\vbox, \hrule/\vrule
and skips/kerns, which RUSTEX implements as de-
scribed here. Their treatment should be relatively
easily adaptable to, and usable by, other HTML con-
verters, where “PDF-like” HTML output is desirable.

The most dire limitations are often related to
intrinsic limitations of CSS — presumably, any exten-
sion of CSS that allows for more fine-grained control,
especially on the character level, would allow for even
better translations from TEX.

One more important limitation is the lack of
accessibility features in the generated HTML, as a
result of RUSTEX operating on TEX primitives. With
the adoption of the tagpdf package,11 this can likely
be easily remedied by providing primitive support
for the annotations generated by it and translating
them to corresponding HTML attributes.

Future work. Naturally, some of the techniques
described here have been slightly simplified and are
augmented in practice via various heuristics that
are still subject to experimentation and improve-
ments. Other discrepancies or problems are usually
addressed (if possible) as we become aware of them
(which still happens regularly).

It should be noted that RUSTEX itself grew out
of a hobby project, in the course of which I had to
learn both Rust and TEX. As a result, the code base
is, in hindsight, not well-structured and incompatible
with various extensions that would be desirable; one
example being support for X ETEX, which operates
on Unicode rather than bytes for its basic character
tokens. For that reason, I am currently working on
refactoring the project into a modular library generic
in as many aspects as possible, to allow for easily
exchanging and adapting components of both the
core engine and the output.12 In the course of that,
I am also experimenting with retaining the precise
fonts used in a document, replacing them with their
publicly available Unicode fonts where those exist.

Acknowledgements

The presented research is part of the VoLL-KI project,
supported by the Bundesministerium für Bildung
und Forschung (BMBF) under grant 16DHBKI089.

11 github.com/u-fischer/tagpdf
12 Published here: crates.io/crates/tex_engine

References

[1] E.D. Demaine, M.L. Demaine. Every author as
first author, 2023.
arxiv.org/abs/2304.01393.

[2] D. Fuchs. TEX font metric files. TUGboat

2(1):53–61, 1981. tug.org/TUGboat/tb02-1/

tb02fuchstfm.pdf

[3] D.E. Knuth. The TEXbook. Addison-Wesley,
1984.

[4] M. Kohlhase, D. Müller. The sTEX3 package
collection. github.com/slatex/sTeX/blob/

main/doc/stex-doc.pdf

[5] J. MacFarlane. Pandoc — a universal document
converter. pandoc.org, 2023.

[6] MathJax: Beautiful math in all browsers.
mathjax.org

[7] B. Miller. LATEXML: A LATEX to XML
converter. dlmf.nist.gov/LaTeXML

[8] D. Müller. Mathematical Knowledge

Management Across Formal Libraries. Ph.D.
thesis, Informatics, FAU Erlangen-Nürnberg,
Dec. 2019. opus4.kobv.de/opus4-fau/

files/12359/thesis.pdf

[9] D. Müller, et al. slatex/RusTeX.
github.com/sLaTeX/RusTeX

[10] D. Müller, M. Kohlhase. STEX3—a
LATEX-based ecosystem for semantic/active
mathematical documents. TUGboat

43(2):197–201, 2022. tug.org/TUGboat/

tb43-2/tb134mueller-stex3.pdf.
kwarc.info/people/dmueller/pubs/tug22.

pdf

[11] L. Padovani. MathML formatting with TEX
rules, TEX fonts, and TEX quality. TUGboat

24(1):53–61, 2003.
tug.org/tugboat/tb24-1/padovani.pdf

[12] TEX4ht. tug.org/tex4ht/

⋄ Dennis Müller
Friedrich-Alexander University,

Erlangen-Nürnberg, DE
dennis.mueller (at) fau.de

ORCID 0000-0002-4482-4912

Dennis Müller

https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?PDF?PDF
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?CSS?CSS
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?package
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Programming/mod/languages?Rust?rust
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://github.com/u-fischer/tagpdf
https://crates.io/crates/tex_engine
https://arxiv.org/abs/2304.01393
https://tug.org/TUGboat/tb02-1/tb02fuchstfm.pdf
https://tug.org/TUGboat/tb02-1/tb02fuchstfm.pdf
https://github.com/slatex/sTeX/blob/main/doc/stex-doc.pdf
https://github.com/slatex/sTeX/blob/main/doc/stex-doc.pdf
https://pandoc.org
https://mathjax.org
https://dlmf.nist.gov/LaTeXML
https://opus4.kobv.de/opus4-fau/files/12359/thesis.pdf
https://opus4.kobv.de/opus4-fau/files/12359/thesis.pdf
https://github.com/sLaTeX/RusTeX
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX3
https://tug.org/TUGboat/tb43-2/tb134mueller-stex3.pdf
https://tug.org/TUGboat/tb43-2/tb134mueller-stex3.pdf
https://kwarc.info/people/dmueller/pubs/tug22.pdf
https://kwarc.info/people/dmueller/pubs/tug22.pdf
https://stexmmt.mathhub.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?MathML?MathML
https://tug.org/tugboat/tb24-1/padovani.pdf
https://tug.org/tex4ht/


TUGboat, Volume 44 (2023), No. 2 287

Cheats (or not): When \prevdepth = -1000pt

Hans Hagen

There are numerous quantities that a user can set in
TEX, for example \parskip and \parindent. These
are internal registers, and being registers they can be
manipulated with for instance \advance. The more
curious \prevdepth and \prevgraf are not registers
but are properties of the current list. They are set
by the engine but users can also set them in order
to control or even fool the machinery. Here we focus
on \prevdepth.

The depth of a box is normally positive but rules
can have a negative depth in order to get a rule above
the baseline. When TEX was written the assumption
was that a negative depth of more than 1000 points
made no sense at all. The last depth on a vertical
list is registered in the \prevdepth variable. This is
essentially a reference into the current list.

In order to illustrate some interesting side effects
of setting this \prevdepth, and especially when we
set it to −1000pt, this special sentinel value can be
changed in LuaMetaTEX. However, as dealing with
the property is somewhat special in the engine, you
should not set it unless you know that the macro
package is aware of it.

line 1\par line 2\par\nointerlineskip line 3\par

Assuming that we haven’t set any inter-para-
graph spacing this gives:

line 1L__

line 2L__line 3L__

Here \nointerlineskip is (normally) defined as:

\def\nointerlineskip{\prevdepth-1000pt }

TEX also internally sets \prevdepth to −1000pt
at the beginning of a vertical list, or just after a rule,
to automatically suppress the next interline glue at
those places.

In LuaMetaTEX we made all these hard-coded
numbers configurable and this −1000pt is one of
them. One reason for this is that it makes it easier
to explain some of the side effects. When I tried to
explain this to a curious user it was no fun to show
pages spanning thousands of points. The variable
that we can set is named \ignoredepthcriterion;
in LMTX, that variable is used when we need to
check for the magical value of \prevdepth.

We are now ready to give a more extensive ex-
ample (\ruledhbox is a ConTEXt command):

\ruledhbox \bgroup

\PrevTest{-10.0pt}\quad

\PrevTest{-20.0pt}\quad

\PrevTest{-49.9pt}\quad

\PrevTest{-50.0pt}\quad

\PrevTest{-50.1pt}\quad

\PrevTest{-60.0pt}\quad

\PrevTest{-80.0pt}%

\egroup

The \PrevTest helper, to construct a box of a
given depth (negative in our cases here), is defined
as (first example):

\def\PrevTest#1%

{\setbox0\ruledhbox{\strut$\tf#1$}%

\dp0=#1

\vbox\bgroup\hsize4em

FIRST\par

\unhbox0\par

LAST\par

\egroup}

or (second example)

\def\PrevTest#1%

{\setbox0\ruledhbox{\strut$\tf#1$}%

\dp0=#1

\vbox\bgroup

\ruledhbox{FIRST}\par

\box0\par

\ruledhbox{LAST}\par

\egroup}

In this example we set \ignoredepthcriterion
to−50.0pt instead of the normal−1000pt. The result
is shown in figures 1 and 2. The first case is what
we normally have in text; we haven’t set prevdepth
explicitly between lines, so TEX just looks at the
depth of the lines. In the second case, where we
typeset boxes instead of their contents, the depth
is ignored when it is less than the criterion value
which is why, when we set the depth of the box to a
negative value, we get somewhat interesting skips.

FIRSTL__−10.0ptL__

LASTL__

FIRSTL__−20.0ptL__

LASTL__

FIRSTL__−49.9ptL__

LASTL__

FIRSTL__−50.0ptL__

LASTL__

FIRSTL__−50.1ptL__

LASTL__

FIRSTL__−60.0ptL__

LASTL__

FIRSTL__−80.0ptL__

LASTL__

Figure 1: Showing explicitly-set depths of lines.

FIRST−10.0pt
LAST

FIRST−20.0pt
LAST

FIRST−49.9pt
LAST

FIRST−50.0ptLAST

FIRST−50.1ptLAST

FIRST−60.0pt
LAST

FIRST−80.0pt
LAST

Figure 2: Depths above and below the magic

\prevdepth value.

doi.org/10.47397/tb/44-2/tb137hagen-prevdepth

Cheats (or not): When \prevdepth = -1000pt

https://doi.org/10.47397/tb/44-2/tb137hagen-prevdepth


288 TUGboat, Volume 44 (2023), No. 2

I’m sure one can use this effect in ways other
than intended, but I doubt is any user is interested
in doing so. Still, the fact that we can lower the
criterion makes for nice experiments. For the record,
in figure 3 you see what we get with positive values:

\ruledhbox \bgroup

\PrevTest{10.0pt}\quad

\PrevTest{20.0pt}\quad

\PrevTest{49.9pt}\quad

\PrevTest{50.0pt}\quad

\PrevTest{50.1pt}\quad

\PrevTest{60.0pt}\quad

\PrevTest{80.0pt}%

\egroup

Watch the interline skip kick in when we make
the depth larger than \ignoredepthcriterion, set
here to (positive) 50pt. The (extremely) small addi-
tional space at 50.1pt is generated from \lineskip,
while the full \baselineskip shows up at 60pt.

FIRST10.0pt
LAST

FIRST20.0pt
LAST

FIRST49.9pt
LAST

FIRST50.0pt
LAST

FIRST50.1pt
LAST

FIRST60.0pt
LAST

FIRST80.0pt
LAST

Figure 3: Positive depths.

So why don’t we run into these side effects in
regular documents? Simply because no one uses these
excessive depths in box production, and also because
hardly any user will work with such large paper sizes
so for most users 1000pt (let alone −1000pt) is not
something that they will naturally encounter.

This is true for many more mechanisms: sane
usage is expected, so extreme cases can be ignored
deep down in the engine. For instance, this is also
why (due to old-times’ performance reasons) wrap
around of integers (and dimensions are just integers)
is not that harmful and sometimes even useful, for
instance when collecting content in boxes, where only
when a user manipulates a related dimension some
checking for overflow happens. Let’s call them handy
side effects.

Appendix: Implementation

For the record, here is the relevant snippet from
original TEX:

@d ignore_depth==-65536000

{|prev_depth| value that is ignored}

...

if prev_depth > ignore_depth then begin

d := width(baseline_skip) - prev_depth

- height(b);

if d < line_skip_limit then

p := new_param_glue(line_skip_code)

else begin

p := new_skip_param(baseline_skip_code);

width(temp_ptr) := d;

end;

link(tail) := p;

tail := p;

end;

link(tail) := b;

tail := b;

prev_depth := depth(b);

What we did was to make the ignore_depth

constant into something like
int_par(ignore_depth_criterion_code).

If you look at the LuaMetaTEX code you will
find something similar to the above, but there we
split into functions. We also interface to a bit more
granular paragraph (property) management, as well
as adding callbacks.

⋄ Hans Hagen

Pragma ADE

Hans Hagen



TUGboat, Volume 44 (2023), No. 2 289

A roadmap for universal syllabic

segmentation

Ondřej Sojka, Petr Sojka, Jakub Máca

Abstract

Space- and time-effective segmentation (word hy-
phenation) of natural languages remains at the core
of every document rendering system, be it TEX, web
browser, or mobile operating system. In most lan-
guages, segmentation mimicking syllabic pronuncia-
tion is a pragmatic preference today.

As language switching is often not marked in
rendered texts, the typesetting engine needs univer-
sal syllabic segmentation. In this article, we show
the feasibility of this idea by offering a prototype
solution to two main problems:

A) Using Patgen to generate patterns for several
languages at once; and

B) no wide character support in tools like Patgen or
TEX hyphenation, e.g. internal Unicode support
is missing.

For A), we have applied it to generating univer-
sal syllabic patterns from wordlists of nine syllabic,
as opposed to etymology-based, languages (namely,
Czech, Slovak, Georgian, Greek, Polish, Russian,
Turkish, Turkmen, and Ukrainian). For B), we have
created a version of Patgen that uses the Judy array
data structure and compared its effectiveness with
the trie implementation.

With the data from these nine languages, we
show that:

A) developing universal, up-to-date, high-coverage,
and highly generalized universal syllabic segmen-
tation patterns is possible, with high impact on
virtually all typesetting engines, including web
page renderers; and

B) bringing wide character support into the hy-
phenation part of the TEX suite of programs is
possible by using Judy arrays.

1 Motivation

Justified alignment achieved with a quality hyphen-
ation algorithm is both optically pleasing and saves
time to read, in addition to saving trees. Only quality
hyphenation allows interword spaces to be as uni-
form as possible, close to Gutenberg’s ideal of spaces
of fixed width. A high coverage, space- and time-
effective hyphenation (segmentation) algorithm of
all natural languages is badly needed1 as it remains
at the core of every document rendering system, be
it TEX, web browsers supporting HTML with CSS3,

1 bugzilla.mozilla.org/show_bug.cgi?id=672320

or an operating system providing text rendering for
mobile applications.

In most languages, segmentation mimicking syl-
labic pronunciation is pragmatically preferred today.
As language switching is often not marked in texts,
and cannot be safely guessed from the words them-
selves, language-agnostic orthographic syllabification,
is needed. We call this task universal syllabic seg-
mentation, or in short, the syllabification problem.

The syllabification problem has been tackled
by several finite state [2] or, more recently, ma-
chine learning techniques [1, 11, 14, 22]. Bartlett
et al. [1] uses structured support vector machines
(SVM) to solve syllabification as a tagging problem.
Krantz et al. [6] leverage modern neural network
techniques with long short-term memory (LSTM)
cells, a convolutional component, and a conditional
random field (CRF) output layer, and demonstrated
cross-linguistic generalizability, syllabifying English,
Dutch, Italian, French, Manipuri, and Basque data-
sets together.

From an orthographic viewpoint (hyphenation),
universal language solutions today should reflect the
Unicode standard [21]. Internal support for full Uni-
code, a must in today’s operating systems and appli-
cations, is missing in the TEX family of programs,
e.g. in Patgen and TEX itself. The internal processing
is thus limited by the internal one-byte representa-
tion of language characters and is hardwired into
the optimized code of these programs. Therefore,
processing languages with huge character repertoires
(Chinese, Japanese, Korean) and sets of languages
whose character representations need wide character
support is close to impossible. Special “hacks” are
needed for character and font encodings both on
the input side (package inputenc) and output side
(packages fontenc or fontspec) are not backed by
internal wide character support.

Since both TEX and Patgen have hardwired
8-bit character representations, to develop practically
useable universal syllabic hyphenation, one needs to
overcome these constraints.

In this paper we a) constructively show the fea-
sibility of preparation of universal syllabic patterns,
b) demonstrate a version of Patgen with wide charac-
ter support, and c) discuss further steps to do in the
TEX program suite to make language hyphenation
Unicode-compliant.

The paper is structured as follows. In Section 2
we define the terminology and describe the language
data we have used in our experiments. Section 3 re-
minds the reader about the principles of the hyphen-
ation algorithm in TEX and of Patgen-based pattern
generation and pattern representation possibilities.

doi.org/10.47397/tb/44-2/tb137sojka-syllabic

A roadmap for universal syllabic segmentation

https://en.wikipedia.org/wiki/Wide_character
https://en.wikipedia.org/wiki/Judy_array
https://bugzilla.mozilla.org/show_bug.cgi?id=672320
https://en.wikipedia.org/wiki/Wide_character
https://doi.org/10.47397/tb/44-2/tb137sojka-syllabic


290 TUGboat, Volume 44 (2023), No. 2

Table 1: Language resources and patterns used in pattern development experiments.
All data was converted to UTF-8 and contains lowercase alphabetic characters
only. Alphabet size (# chars) counts characters appearing in the language wordlist
collected. Languages were chosen for diversity of size of patterns and syllables.

Language # words # chars # patterns # syllables pattern source, alphabet

Czech+Slovak (cz+sk) 606,499 47 8,231 2,288,413 [19] correct optimized parameters, Latin
Georgian (ka) 50,644 33 2,110 224,799 [13] tex-hyphen repo, Georgian
Greek (el-monoton) 10,432 48 1,208 37,736 [13] tex-hyphen repo, Greek
Panjabi (pa) 892 52 60 2,579 [13] tex-hyphen repo, Gurmukhi
Polish (pl) 20,490 34 4,053 65,510 [13] tex-hyphen repo, Latin
Russian (ru) 19,698 33 4,808 75,532 [13] tex-hyphen repo, Russian
Tamil (ta) 46,526 48 71 209,380 [13] tex-hyphen repo, Tamil
Telugu (te) 28,849 66 72 125,508 [13] tex-hyphen repo, Telugu
Thai (th) 757 64 4,342 1,185 [13] tex-hyphen repo, Thai
Turkish (tr) 24,634 32 597 103,989 [13] tex-hyphen repo, Latin
Turkmen (tk) 9,262 30 2,371 33,080 [13] tex-hyphen repo, Latin
Ukrainian (ua) 17,007 33 1,990 65,099 [13] tex-hyphen repo, Cyrillic

Section 4 evaluates the experiments with universal
pattern generation. In Section 5 we elaborate on
possible routes towards wide character support in
the typesetting engines and Patgen. As usual, we
sum up and conclude in the final Section 6.

“The concept of the syllable is cross-linguistic, though
formal definitions are rarely agreed upon, even within

a language. In response, data-driven syllabification
methods have been developed to learn from syllabified

examples. . . . Syllabification can be considered a
sequence labeling task where each label delineates

the existence or absence of a syllable boundary.” [6]

2 Syllabification

Human beings convey meaning by pronouncing words
as sequences of phonemes. Phonology studies the
structure of phonemes we are able to pronounce as
syllables [10]. Etymologically, a syllable is an Anglo-
Norman variation of Old French sillabe, from Latin
syllaba, from Greek συλλαβή (syllabē), “that which
is held together; a syllable, several sounds or letters
taken together” to make a single sound. [3]

When we delineate boundaries in the ortho-
graphic representation of words, we speak about
hyphenation of words as sequences of characters.

2.1 Hyphenation as syllabification

There are subtle differences between syllabification
and hyphenation, though. Let us take the Czech
word sestra. The Czech language authorities [23]
allow hyphenations as se-s-t-ra, while agreeing that
there are only two syllables based on Consonant
and Vowel sequencing: either se-stra (CV-CCCV),

or ses-tra (CVC-CCV), or sest-ra (CVCC-CV). As
with hyphenation, defining segments for syllabifica-
tion is full of exceptions. The Czech sentence Strč
prst skrz krk or word scvrnkls (CCCCCCCC) contain
consonants-only syllables.

There are also rare cases where word segmen-
tation should differ in different contexts. It may
be necessary within one language (different hyphen-
ation re-cord and rec-ord depending on its part of
speech), or between different languages. When devel-
oping universal syllabic patterns, these theoretically
possible segmentations should not be allowed in the
input hyphenated wordlist used for training. But
this should not matter, as e.g. Liang’s hyphen.tex
patterns do not cover more than 10% of positions [8]
and few complain about this coverage.

2.2 Data preparation

To show the feasibility of universal pattern gener-
ation, we have collected wordlists for a dozen lan-
guages, as shown in Table 1. The chosen languages
a) have a wide diversity in alphabets and syllables
and b) have existing hyphenation patterns as an
approximation for syllable segments. The wordlists
were collected from public sources or provided for
our research as stratified dictionaries from TenTen
corpora [4] by Lexical Computing. We used wordlists
sorted by frequency and cut at below 5% of word
occurrences, to eliminate typos appearing in docu-
ments. Each tenth word was taken into a wordlist —
a stratified sampling technique inspired by Knuth [5]
that was already used successfully in pattern gen-
eration [20]. Wordlists were hyphenated by legacy
patterns, mostly taken from [13].

Ondřej Sojka, Petr Sojka, Jakub Máca



TUGboat, Volume 44 (2023), No. 2 291

Table 2: Language alphabet overlaps. Cells contain the number of lowercase letters
that overlap between languages. In total, 13 languages contain in total 412 different
lowercase letters, more than Patgen is capable of digesting.

Language cz+sk ka el pa pl ru ta te th tr tk ua

Czech+Slovak (cz+sk) 47 0 0 0 26 0 0 0 0 25 28 0
Georgian (ka) 0 33 0 0 0 0 0 0 0 0 0 0
Greek (el-monoton) 0 0 48 0 0 0 0 0 0 0 0 0
Panjabi (pa) 0 0 0 52 0 0 0 0 0 0 0 0
Polish (pl) 26 0 0 0 34 0 0 0 0 23 22 0
Russian (ru) 0 0 0 0 0 33 0 0 0 0 0 29
Tamil (ta) 0 0 0 0 0 0 48 0 0 0 0 0
Telugu (te) 0 0 0 0 0 0 0 66 0 0 0 0
Thai (th) 0 0 0 0 0 0 0 0 64 0 0 0
Turkish (tr) 25 0 0 0 23 0 0 0 0 32 25 0
Turkmen (tk) 28 0 0 0 22 0 0 0 0 25 30 0
Ukrainian (ua) 0 0 0 0 0 29 0 0 0 0 0 33

Alphabet analysis and statistics are shown in
Table 2. The total number of characters appearing in
all languages exceeds 245, the maximum number of
characters that current Patgen can support. This is
why wide-character representation (Unicode UCS-2)
support in Patgen (and then in the hyphenator li-
brary in a typesetting engine) would be needed to
extend our generation to more languages.

3 Pattern development

The idea of squeezing the hyphenated wordlist into
the set of patterns was originated in the dissertation
of Frank Liang [8], supervised by Donald Knuth. For
the automated generation of patterns from a wordlist,
Liang wrote the Patgen program. Patgen was one of
the very first programs that harnessed the power of
data with supervised machine learning. Programmed
originally to support English and ASCII, it was later
extended to be usable for 8-bit characters and for
wordlists that contain at most 245 characters [9]. It
is capable of efficient lossy or lossless compression of
hyphenated dictionaries, with several orders of mag-
nitude compression ratio. Generated patterns have
minimal length, e.g., the shortest context possible,
which results in their generalization properties.

In general, exact lossless pattern minimization
is non-polynomial by reduction to the minimum set
cover problem [16]. For Czech, exact lossless pattern
generation is feasible [17], while reaching 100% cov-
erage and simultaneously no errors. Strict pattern
minimality (size) is not an issue nowadays.

This idea and its realization is a programming
pearl. Motivated by space and time constraints,
instead of the classical solution of dictionary problem
in the logarithmic time of dictionary size, the word

hyphenation is computed from patterns in constant
time, where the constant is given by word length.

Space needed for patterns in the packed trie data
structure is typically in tens of kB, which is several
orders of magnitude smaller than the wordlist size.
With fine-tuned parameters of pattern generation in
the so-called levels, one can prepare patterns with
zero errors and almost full coverage of hyphenation
points from the input dictionary.

For practical use, patterns are collected in the
repository maintained by the TEX community [13]. It
is no surprise that most if not all leading typesetting
engines deploy this “competing pattern engineering
technology” [15].

3.1 Patterns

The patterns “compete” with each other whether to
split the word at a position, given varying characters
in both side contexts; see Figure 1.

We have shown how effective and powerful the
technique is, and that its power depends on the
parameters of pattern generation [17]. The key is
the proper setting of Patgen parameters for pattern
generation. The idea of universal segmentation with
Patgen has been proposed already in [18]. There,
we demonstrated the techniques for the development
of two languages together, Czech and Slovak, and
developed a joint wordlist and patterns [19].

We wanted to extend the technique to other
Slavic and syllabic languages. The bottleneck for
adding new languages was Patgen and TEX’s con-
straint of one-byte character support only for storing
patterns in tries. We thought of using a modern
data structure that would allow wide character trie

A roadmap for universal syllabic segmentation



292 TUGboat, Volume 44 (2023), No. 2

h y p h e n a t i o n

p1 1n a

p1 1t i o n

p2 n2a t

p2 2i o

p2 h e2n

p3 h y3p h

p4 h e n a4

p5 h e n5a t

h0y3p0h0e2n5a4t2i0o0n

hy-phen-ation → 2 6
. . .→ . . .
. . .→ . . .
key → data

Solution to the dictionary problem:
For key part (the word) to store
the data part (its division)

Figure 1: Eight patterns “compete” how to hyphenate hyphenation. Winners are
patterns hy3ph and hen5at generated at the highest covering level (odd numbers)
generation. The level hierarchy allows for storing exceptions, exceptions to exceptions,
exceptions to exceptions to exceptions, . . . , with character contexts as parameters. [8]

representation. That was the task for a bachelor’s
thesis: use a Judy array [12].

3.2 Judy arrays

The Judy array, also known as simply Judy, is a data
structure that implements a sparse dynamic array, al-
lowing for versatile applications such as dynamically-
sized arrays and associative arrays. Judy is inter-
nally implemented as a tree structure, where every
internal node has 256 ancestor nodes. The most
interesting thing about this structure is that it tries
to be as memory-efficient as possible by effectively
using available cache, avoiding unnecessary access
to main memory. As a result, Judy is both fast and
memory-efficient.

The feasibility of utilizing the Judy structure for
storing hyphenation patterns is demonstrated in the
thesis [12]. In Chapter 4, it is shown that Judy has
the potential to be faster and more memory-efficient
compared to the original trie when working with
patterns. Further, Chapter 5 explores the potential
integration of Judy into Patgen and the consequent
impact on Patgen’s generation process. The results
from this chapter indicate that rewriting Patgen with
Judy is possible but would require an almost com-
plete overhaul of Patgen’s code and algorithms. This
redevelopment would yield a Patgen version capable
of handling input of any kind, enabling the gener-
ation of patterns composed of arbitrary alphabets.
However, it is important to note that the generation
process would be approximately four times slower
than the current implementation. This is due to the
hiding of access to the inner nodes of stored tries in
Judy. As this access is not needed in TEX for the
hyphenation of individual words, using some variant
of Judy in a TEX successor would make hyphenation
faster.

3.3 Universal pattern generation

To pursue the idea of universal syllabic pattern gen-
eration, we have checked whether the legacy patterns
hyphenate the same valid word in different languages
differently. The result with a short discussion is in
Table 3. The expectation that syllable-forming prin-
ciples are universal, as phonology theory suggests,
is confirmed. The errors we have found were due to
the difference between hyphenation and syllabifica-
tion caused by inconsistent markup rather than a
principled difference in word morphology, e.g. a com-
pound word segmented in one language, and given
as a single word in the other.2

We removed all colliding words when joining
wordlists into the wordlist universal pattern gener-
ation. As mentioned earlier, we collected words for
nine languages (cz, sk, ka, el, pl, ru, tr, tk, ua).

We generated universal patterns with the same
three sets of Patgen parameters (custom, correct
optimized, and size optimized) as when generating
Czechoslovak patterns. The results are shown in
Tables 4 (custom), 5 (correct optimized) and 6 (size
optimized). The results are comparable with genera-
tion for two languages and confirm the feasibility of
universal pattern development.

We did not pursue 100% coverage at all costs
because the source data is noisy, and we do not want
the patterns to learn all the typos and inconsistencies.
Also, the size of the new languages was rather small,
compared to Czechoslovak.

4 Evaluation

We evaluated the quality of developed patterns by
two metrics. Coverage of hyphenation points in the
training wordlist tells how the patterns correctly

2 Compound words can evolve in perception into single

words even within one language. Examples are the evolution

of e-mail into email or roz-um into syllabic ro-zum in Czech.

Ondřej Sojka, Petr Sojka, Jakub Máca



TUGboat, Volume 44 (2023), No. 2 293

Table 3: Different word hyphenation overlaps. Cells contain the number of same
words that are segmented differently between languages. Differences are caused
typically by suboptimal coverage patterns used to hyphenate the wordlist (vi-bram
vs. vib-ram, up-gra-de vs. upg-ra-de). We remove the differently hyphenated words
when joining wordlists for the final syllabic generation.

Language cz+sk ka el pa pl ru ta te th tr tk ua

Czech+Slovak (cz+sk) 9 0 0 0 388 0 0 0 0 640 69 0
Georgian (ka) 0 0 0 0 0 0 0 0 0 0 0 0
Greek (el-monoton) 0 0 0 0 0 0 0 0 0 0 0 0
Panjabi (pa) 0 0 0 0 0 0 0 0 0 0 0 0
Polish (pl) 388 0 0 0 0 0 0 0 0 187 9 0
Russian (ru) 0 0 0 0 0 0 0 0 0 0 0 125
Tamil (ta) 0 0 0 0 0 0 0 0 0 0 0 0
Telugu (te) 0 0 0 0 0 0 0 0 0 0 0 0
Thai (th) 0 0 0 0 0 0 0 0 0 0 0 0
Turkish (tr) 640 0 0 0 187 0 0 0 0 0 80 0
Turkmen (tk) 69 0 0 0 9 0 0 0 0 80 0 0
Ukrainian (ua) 0 0 0 0 0 125 0 0 0 0 0 0

predicted hyphenation points used in training. Gen-
eralization means how the patterns behave on unseen
data, on words not available in the data used dur-
ing Patgen training. The methodology is the same
as we used in the development of Czechoslovak pat-
terns [19].

In Table 7, we compare the efficiency of dif-
ferent approaches to hyphenating 2 languages and
9 languages from one pattern set. We see that the
performance of universal patterns is comparable in
size and quality to double- or single-language ones —
there is only a negligible difference. Table 8 shows
that generalization qualities, given the small input
size wordlists, are very good, and comparable to
the fine-tuned Czechoslovak results. Investing in the
purification and consistency of input wordlists (as
we did for Czech and Slovak) would result in near-
perfect syllabic patterns with almost 100% coverage
and no errors.

5 Future work

A natural further step is to merge further languages
where the syllabic principle is used for hyphenation.
For that, one would need a version of Patgen we
provisionally call UniPatgen. This version would
support Unicode not only in I/O but also internally
as a wide character (UCS-2) character encoded in
the pattern representation in either a packed trie
or Judy array. This would allow merging more lan-
guages without increasing the computational com-
plexity of hyphenation, and only a sublinear increase
of pattern size. We believe that coverage may differ

from 100% only by words that should be hyphenated
differently in different languages—our estimate is
in small, single-digit percents, while, as mentioned
above, the widely-used hyphen.tex patterns do not
cover 10+%!

Another possible extension in pattern develop-
ment is the support of a specific hyphenation penalty
for compound word borders. This extension, dis-
cussed already 30 years ago [20], would generate
patterns first for compound words, and only after
fixing them continue with pattern generation for all
other hyphenation points. The TEX engine would
then set the hyphenation penalties depending on
level ranges in patterns found for the hyphenated
word. This extension is orthogonal with support for
universal patterns but might require increasing the
maximal number of levels allowed in patterns to two
digits.

There are several open questions for the TEX
development community:

1. Should the universal syllabic patterns ever be
developed?

2. If so, should the needed internal wide character
representations be added to the TEX suite of
programs? That is, to TEX-based engines not
yet supporting it3 and Patgen or UniPatgen.

3. If not, should it be handled by external seg-
menters on TEX’s input, based on Patgen’s pro-
posed successor, UniPatgen?

3 cs.overleaf.com/learn/latex/TeX_primitives_

listed_by_TeX_engine

A roadmap for universal syllabic segmentation

https://cs.overleaf.com/learn/latex/TeX_primitives_listed_by_TeX_engine
https://cs.overleaf.com/learn/latex/TeX_primitives_listed_by_TeX_engine


294 TUGboat, Volume 44 (2023), No. 2

Table 4: Statistics from the generation of universal patterns for cz+sk, ka, el, pl,
ru, tr, tk, ua with custom parameters and \lefthyphenmin=2, \righthyphenmin=2.
Generation took 33.23 seconds, 11,238 patterns, 77 kB.

Level Patterns Good Bad Missed Lengths Params

1 2,407 2,066,410 280,020 70,588 1 3 1 3 12
2 2,375 2,025,245 8,866 111,753 2 4 1 1 5
3 4,626 2,118,063 19,213 18,935 3 6 1 2 4
4 2,993 2,117,739 5,920 19,259 3 7 1 4 2

Table 5: Statistics from the generation of universal patterns for cz+sk, ka,
el, pl, ru, tr, tk, ua with correct optimized parameters and \lefthyphenmin=2,
\righthyphenmin=2. Generation took 35.43 seconds, 29,742 patterns, 219 kB.

Level Patterns Good Bad Missed Lengths Params

1 7,188 2,049,375 164,224 87,623 1 3 1 5 1
2 4,108 2,042,249 14,094 94,749 1 3 1 5 1
3 15,010 2,134,692 20,544 2,306 2 6 1 3 1
4 6,920 2,133,458 815 3,540 2 7 1 3 1

Table 6: Statistics from the generation of universal patterns for cz+sk, ka, el, pl, ru,
tr, tk, ua with size optimized parameters and \lefthyphenmin=2, \righthyphenmin=2.
Generation took 29.75 seconds, 14,321 patterns, 101 kB.

Level Patterns Good Bad Missed Lengths Params

1 1,201 2,092,928 598,321 44,070 1 3 1 2 20
2 2,695 1,736,372 5,274 400,626 2 4 2 1 8
3 4,835 2,102,803 20,094 34,195 3 5 1 4 7
4 6,508 2,099,607 210 37,391 4 7 3 2 1

4. If UniPatgen was developed, should it be added
to the distribution, together with Unicode pat-
terns included and supported in repositories
like [13]?

5. Should UniPatgen, and LuaTEX, add a depen-
dency on a Judy library, or should a more con-
servative solution be sought and implemented?
With a conservative solution, which data struc-
ture to use for storing patterns? Should the
memory be allocated dynamically, to overcome
the abundant explosion of format size that stores
the patterns, as output by iniTEX?

6. Should UniPatgen (and TEX engines) addition-
ally and orthogonally support patterns and dif-
ferent hyphenation penalty for compound word
borders, currently available in e.g. the German
wordlist [7]?

We would appreciate qualified opinions on these de-
cisions being sent to authors.

“All we are saying, give patterns a chance.”
Our paraphrase of John Lennon’s protest song refrain

6 Conclusion

Preparation of language-agnostic, i.e. universal, syl-
labic segmentation patterns could be done! We have
demonstrated this possibility by generating patterns
based on the wordlists of nine languages with current
Patgen. They have superb generalization qualities,
high coverage of hyphenation points (more than most
legacy patterns), and virtually no errors. Their use
could have a high impact on virtually all typesetting
engines including web page renderers.

Supporting wide characters in Patgen is a criti-
cal requirement for adding more languages. We have
shown that bringing wide character support into the
hyphenation part of the TEX suite of programs is
possible by using the Judy array. It will allow gener-
ating and deploying patterns for the whole Unicode
character set. We have discussed a possible roadmap

Ondřej Sojka, Petr Sojka, Jakub Máca

https://en.wikipedia.org/wiki/Wide_character
https://en.wikipedia.org/wiki/Judy_array


TUGboat, Volume 44 (2023), No. 2 295

Table 7: Comparison of the efficiency of different approaches to pattern generation of
Czechoslovak and of universal patterns. Note that the size of universal patterns grows
sublinearly with the number of languages. The generalization ability of universal
patterns is only slightly worse than that of Czechoslovak ones. The experience from
the development of Czechoslovak patterns shows that performance could be improved
by consistent markup of wordlist data.

Wordlist Parameters Good Bad Missed Size Patterns

Czechoslovak custom 99.87% 0.03% 0.13% 32 kB 5,907
Czechoslovak correctopt 99.99% 0.00% 0.01% 45 kB 8,231
Czechoslovak sizeopt 99.67% 0.00% 0.33% 40 kB 7,417
Universal custom 99.10% 0.28% 0.90% 77 kB 11,238
Universal correctopt 99.83% 0.04% 0.17% 219 kB 29,742
Universal sizeopt 98.25% 0.01% 1.75% 101 kB 14,321

Table 8: Results of 10-fold cross-validation (learning on 90%, and testing on
remaining 10%). Generalization properties (performance on words not seen during
training) are compared with Czechoslovak patterns. By adding 7 languages, the
generalization abilities of universal patterns are only slightly worse.

Wordlist Parameters Good Bad Missed

Czechoslovak custom 99.64% 0.22% 0.14%
Czechoslovak correctopt 99.81% 0.15% 0.04%
Czechoslovak sizeopt 99.41% 0.18% 0.40%
Universal custom 97.99% 1.06% 0.95%
Universal correctopt 98.10% 1.28% 0.62%
Universal sizeopt 97.50% 0.94% 1.56%

to make this a reality in typesetting engines including
TEX successors.

Acknowledgments

We are indebted to Don Knuth for questioning the
common properties of Czech and Slovak hyphen-
ation during our presentation of [17] at TUG 2019,
which has led us in this research direction. We also
thank everyone on whose shoulders we build our
work, e.g. for wordlists by Lexical Computing, and
to all who commented on our work at TUG 2021 [19]
and TUG 2023.

References

[1] S. Bartlett, G. Kondrak, C. Cherry. Automatic
Syllabification with Structured SVMs for
Letter-to-Phoneme Conversion. In Proceedings
of ACL-08: HLT, pp. 568–576, Columbus,
Ohio, June 2008. Assoc. for Computational
Linguistics.
aclweb.org/anthology/P08-1065

[2] Y. Haralambous. New hyphenation
techniques in Ω2. TUGboat 27(1):98–103,
2006. tug.org/TUGboat/tb27-1/

tb86haralambous-hyph.pdf

[3] Online etymology dictionary. "syllable".
www.etymonline.com/word/syllable

[4] M. Jakubíček, A. Kilgarriff, et al. The TenTen
Corpus Family. In Proc. of the 7th
International Corpus Linguistics Conference
(CL), pp. 125–127, Lancaster, July 2013.

[5] D.E. Knuth. 3 : 16 Bible Texts Illuminated.
A-R Editions, Inc., 1991.

[6] J. Krantz, M. Dulin, P.D. Palma.
Language-agnostic syllabification with neural
sequence labeling. CoRR abs/1909.13362, 2019.
arxiv.org/abs/1909.13362

[7] W. Lemberg. A database of German
words with hyphenation information, 2023.
repo.or.cz/wortliste.git

A roadmap for universal syllabic segmentation

https://aclweb.org/anthology/P08-1065
https://tug.org/TUGboat/tb27-1/tb86haralambous-hyph.pdf
https://tug.org/TUGboat/tb27-1/tb86haralambous-hyph.pdf
https://www.etymonline.com/word/syllable
https://arxiv.org/abs/1909.13362
https://repo.or.cz/wortliste.git


296 TUGboat, Volume 44 (2023), No. 2

[8] F.M. Liang. Word Hy-phen-a-tion by
Com-put-er. Ph.D. thesis, Dept. of Computer
Science, Stanford University, Aug. 1983.
tug.org/docs/liang/liang-thesis.pdf

[9] F.M. Liang, P. Breitenlohner. PATtern
GENeration program for the TEX82
hyphenator. Electronic documentation
of PATGEN program version 2.4 on CTAN.
ctan.org/pkg/patgen, 1999.

[10] I. Maddieson. Syllable Structure. In The
World Atlas of Language Structures Online,
M.S. Dryer, M. Haspelmath, eds. Max Planck
Institute for Evolutionary Anthropology,
Leipzig, 2013. wals.info/chapter/12

[11] Y. Marchand, C.R. Adsett, R.I. Damper.
Automatic Syllabification in English:
A Comparison of Different Algorithms.
Language and Speech 52(1):1–27, 2009.
doi.org/10.1177/0023830908099881

[12] J. Máca. Judy, May 2023. Bachelor Thesis
supervised by Petr Sojka and defended at
Masaryk University, Faculty of Informatics.
is.muni.cz/th/kru3j

[13] A. Rosendahl, M. Miklavec. TEX hyphenation
patterns, 2023. Accessed 2023-07-05.
http://hyphenation.org/tex

[14] Y. Shao, C. Hardmeier, J. Nivre. Universal
Word Segmentation: Implementation and
Interpretation. Transactions of the Association
for Computational Linguistics 6:421–435, 2018.
doi.org/10.1162/tacl_a_00033

[15] P. Sojka. Competing Patterns for Language
Engineering. In Proceedings of the Third
International Workshop on Text, Speech and
Dialogue—TSD 2000, P. Sojka, I. Kopeček,
K. Pala, eds., LNAI 1902, pp. 157–162, Brno,
Czech Republic, Sept. 2000. Springer-Verlag.
doi.org/10.1007/3-540-45323-7_27

[16] P. Sojka. Competing Patterns in Language
Engineering and Computer Typesetting. Ph.D.
thesis, Masaryk University, Brno, Jan. 2005.
researchgate.net/publication/265246931_

Competing_Patterns_in_Language_

Engineering_and_Computer_Typesetting/

[17] P. Sojka, O. Sojka. The Unreasonable
Effectiveness of Pattern Generation.
TUGboat 40(2):187–193, 2019. tug.org/

TUGboat/tb40-2/tb125sojka-patgen.pdf

[18] P. Sojka, O. Sojka. Towards Universal
Hyphenation Patterns. In Proceedings of
Recent Advances in Slavonic Natural Language
Processing—RASLAN 2019, A. Horák,
P. Rychlý, A. Rambousek, eds., pp. 63–68,
Karlova Studánka, Czech Republic, 2019.
Tribun EU. is.muni.cz/publication/

1585259/?lang=en. nlp.fi.muni.cz/

raslan/2019/paper13-sojka.pdf

[19] P. Sojka, O. Sojka. New Czechoslovak
Hyphenation Patterns, Word Lists, and
Workflow. TUGboat 42(2), 2021.
doi.org/10.47397/tb/42-2/

tb131sojka-czech

[20] P. Sojka, P. Ševeček. Hyphenation in TEX—
Quo Vadis? TUGboat 16(3):280–289, 1995.
tug.org/TUGboat/tb16-3/tb48soj1.pdf

[21] The Unicode Consortium. The Unicode
Standard: Worldwide Character Encoding.
Version 15.0. Unicode, Inc., Mountain View,
CA, USA, 2022.
unicode.org/versions/Unicode15.0.0

[22] N. Trogkanis, C. Elkan. Conditional Random
Fields for Word Hyphenation. In Proceedings
of the 48th Annual Meeting of the ACL,
pp. 366–374, Uppsala, Sweden, July 2010.
ACL. aclweb.org/anthology/P10-1038

[23] Internetová jazyková příručka (Internet
Language Reference Book), 2023.
prirucka.ujc.cas.cz/?id=135

⋄ Ondřej Sojka,
Petr Sojka,
Jakub Máca

Faculty of Informatics, Masaryk University,
Brno, Czech Republic

454904 (at) mail dot muni dot cz ,
sojka (at) fi dot muni dot cz ,
514024 (at) mail dot muni dot cz

ORCID 0000-0003-2048-9977 ,
0000-0002-5768-4007 ,
0009-0008-1583-3183

Ondřej Sojka, Petr Sojka, Jakub Máca

https://tug.org/docs/liang/liang-thesis.pdf
https://ctan.org/pkg/patgen
https://wals.info/chapter/12
https://doi.org/10.1177/0023830908099881
https://is.muni.cz/th/kru3j
http://hyphenation.org/tex
https://doi.org/10.1162/tacl_a_00033
https://doi.org/10.1007/3-540-45323-7_27
https://researchgate.net/publication/265246931_Competing_Patterns_in_Language_Engineering_and_Computer_Typesetting/
https://researchgate.net/publication/265246931_Competing_Patterns_in_Language_Engineering_and_Computer_Typesetting/
https://researchgate.net/publication/265246931_Competing_Patterns_in_Language_Engineering_and_Computer_Typesetting/
https://tug.org/TUGboat/tb40-2/tb125sojka-patgen.pdf
https://tug.org/TUGboat/tb40-2/tb125sojka-patgen.pdf
https://is.muni.cz/publication/1585259/?lang=en
https://is.muni.cz/publication/1585259/?lang=en
https://nlp.fi.muni.cz/raslan/2019/paper13-sojka.pdf
https://nlp.fi.muni.cz/raslan/2019/paper13-sojka.pdf
https://doi.org/10.47397/tb/42-2/tb131sojka-czech
https://doi.org/10.47397/tb/42-2/tb131sojka-czech
https://tug.org/TUGboat/tb16-3/tb48soj1.pdf
https://unicode.org/versions/Unicode15.0.0
https://aclweb.org/anthology/P10-1038
https://prirucka.ujc.cas.cz/?id=135


TUGboat, Volume 44 (2023), No. 2 297

METAFONT/METAPOST and a complex Indic
script: Malayalam

C. V. Radhakrishnan, K. V. Rajeesh,
K. H. Hussain

Abstract
Malayalam is an Indic script with numerous
shape-shifting characters. We explore a reusable
component-based design for Malayalam fonts, and
develop them using METAFONT/METAPOST [6, 1]
to assemble the characters. We discuss the para-
digm shift from GUI design tools to ‘code-based’
design of shapes and glyphs, even by non-coders,
and the advantages and challenges of using META-
FONT/METAPOST to develop an OpenType font
for a complex script. Finally, the progress made by
our small team is shared.

1 Indic scripts and Malayalam
The Union of India has 23 languages [11], each one
being the official language of one or more states. For
convenience of governance, the Union was divided
into states comprising areas with people speaking
the same language. Thus, Kerala is the state of
people speaking Malayalam, the adjacent state of
Tamil Nadu is that of Tamil-speaking people, Kar-
nataka of Kannada-speaking people, and so on. Any
of these 23 languages can be used for official commu-
nication, including deliberations in the Indian Par-
liament. The Indian currency note bears the de-
nomination in all languages (see Figure 1; fewer en-
tries are due to the fact that some of the languages
share the same script, apart from Hindi and English,
which are already on the face of the note).

The Brahmic scripts [10], the family of lan-
guages to which Malayalam belongs, have a few
common properties among most of the members.
Each consonant has an inherent vowel, which is usu-
ally a short ‘a’, and other vowels are written by con-

Figure 1: The picture of the 200 rupees currency note
of India; the denomination is printed in 15 scripts.
(courtesy: Reserve Bank of India)

Figure 2: A few Malayalam characters to show the
generally rounded shape.

ആ ക ജ ഝ ഡ ന ണ ❽

Figure 3: Manuscript leaves of Malayalam text.
(courtesy: Wikipedia)

joining with the character. Each vowel has an inde-
pendent form when not attached to a consonant,
and a dependent form, attached to a consonant, at
times to both on the left and right sides of the conso-
nant. Up to four consonants can be combined in lig-
atures. Special marks are added to denote the com-
bination of ‘r’ with another consonant. Nasalization
and aspiration of a consonant’s dependent vowel are
also denoted by separate signs. The alphabetical
order is: vowels, velar consonants, palatal conso-
nants, retro昀氀ex consonants, dental consonants, bila-
bial consonants, approximants, sibilants, and other
consonants. Each consonant grouping has four stops
(with all four possible values of voicing and aspira-
tion, see Table 3) ending with a nasal consonant [10].

The above properties of the Brahmic family can
be found in the Malayalam script. For instance, the
昀椀rst syllable in the word poppler, written in Malay-
alam, needs a vowel representation on both sides of
the consonant p, which will look like ‘േപാ’ where
the middle character (പ) represents p and those on
the sides represent the vowel o. Thus, a Malayalam
font table can be enormous in size, with over 900
glyphs that constitute basic vowels and consonants
for forming 57 characters, while the rest constitute
the ligatures, vertical and horizontal conjuncts de-
rived from the basic character set. RIT Rachana [3],
a popular font in Malayalam, has over 920 glyphs
derived from a base font table comprising 117 char-
acters in the Unicode font table [9]. The script occu-
pies the code points between 00D0 and 0D7F in the
Unicode table.

doi.org/10.47397/tb/44-2/tb137radhakrishnan-malayalam

METAFONT/METAPOST and a complex Indic script: Malayalam

https://doi.org/10.47397/tb/44-2/tb137radhakrishnan-malayalam


298 TUGboat, Volume 44 (2023), No. 2

Figure 4: Two glyphs showing shape components used
with di昀昀erent colors.

0

0 10 20 30 40 50

0

10

20

0

0 10 20 30 40

0

10

20

2 Rationale
Upon closer examination of the characters in the
Malayalam script (refer to Figure 2), one will no-
tice that the majority of these characters are com-
posed of arcs, semicircles, and circles of varying
sizes. These elements harmoniously come together
to form the distinctive shape of each character. The
origins of the rounded and cursive design of these
letters can often be attributed to the writing mate-
rials that were used in the past.

It is believed that the prevalence of round and
cursive shapes in the letters of Indic languages can
be traced back to the practicality of the writing in-
struments employed during their origin. The tradi-
tional writing instrument was a long, sharp metallic
stylus used for inscribing text on dried and smoked
palm leaves. Angular shapes would have been un-
suitable as they could potentially tear the delicate
leaves as they were being written upon. Hence, it
seems plausible that this practical consideration in-
昀氀uenced the widespread adoption of round and cur-
sive letter forms (see Figure 3 showcasing a manu-
script as an example).

The inherent rounded and cursive nature of the
letters naturally led to the conclusion to create a
set of prede昀椀ned components with speci昀椀c shapes.
These components could then be reused e昀昀ectively
to construct complete characters. As one can eas-
ily deduce, the concept of reusability not only saves
considerable time and e昀昀ort but also ensures a con-
sistent and uniform quality in terms of curves, cut
angles, and similar attributes. Nonetheless, it is es-
sential to acknowledge that this approach does have
its limitations, some of which will be discussed in
the following sections pertaining to reusable compo-
nents and glyphs (Sections 3.3 and 3.4).

These limitations have signi昀椀cantly in昀氀uenced
design decisions, resulting in the development of
methods to manipulate coordinates, adjust widths,
and alter angles in the components as needed to 昀椀t
the overall shape of the character of which they are
part. In Figure 4, which showcases two glyphs, you
can observe the utilization of shape components, dis-
tinguished by di昀昀erent colors to ease comprehension
and analysis.

Figure 5: Four variants of a consonant character (pro-
nounced dja) from the same METAPOST source code.

Another signi昀椀cant factor in our decision to uti-
lize METAFONT/METAPOST was the potential for
reusing the source code to generate variants of the
font family. By employing separate con昀椀gurations
for each variant and requiring only minimal adjust-
ments, we could easily create font variations of re-
markable quality, thereby reducing both develop-
ment time and e昀昀ort. Four variants of a consonant
character (pronounced dja), using the same META-
POST source code with di昀昀erent values for a few
variables can be seen in Figure 5.

In the realm of character description languages,
our choice of the code-based METAFONT/META-
POST can be attributed to our enduring associa-
tion with the illustrious TEX [5] and its companions.
We derive immense pleasure from employing TEX’s
sagacious and programmable markup language to
ful昀椀ll our multifarious text processing requisites, es-
chewing the allure of graphical interface-driven ap-
plications. However, the merits of METAFONT/
METAPOST extend far beyond mere preference.

The selection of METAFONT/METAPOST en-
dows us with an array of supplementary advantages,
including seamless cross-platform compatibility and
the remarkable capability to produce vector outputs
in the form of SVG and PostScript. Furthermore,
the maintenance of our codebase becomes a simpli-
昀椀ed endeavor through the use of text-based source
code, fostering clarity and facilitating future mod-
i昀椀cations. It is a con昀氀uence of these factors that
harmoniously resonate with our intrinsic predilec-
tion for code-driven development, making the adop-
tion of METAFONT/METAPOST an instinctive and
judicious decision.

3 Research and design process
Once the design based on reusable components was
昀椀nalized, the subsequent undertaking entailed iden-
tifying the most suitable curves and shapes to ful昀椀ll
the objective. A comprehensive list of components
was meticulously compiled, along with a correspond-
ing catalog of potential characters and glyphs that
could harness the potential of these components.
To facilitate reader comprehension, a typeset list
containing the components and the characters as-
sociated with them is provided in PDF format at

C. V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain



TUGboat, Volume 44 (2023), No. 2 299

Figure 6: Reusable components and characters that can
use them. The components are shown in red.

ദ ഒ අ രു ങ
ආ ്ᨲ ള തൂ
ർ ൽ ൻ ൾ ൺ ൿ
ത ്ᩌ ്ᩒ ്ᩈ ൽ
്ᩜ ്ᩔ തൃ ്ᩑ

the link in [7]. In Figure 6, you will 昀椀nd three repre-
sentative examples selected from this extensive list,
providing a glimpse into the range of possibilities
that await exploration.

Although the choice to delve into the realm of
METAFONT/METAPOST came naturally to us, none
of us possessed prior familiarity with the language
or its intricacies. Consequently, our initial focus re-
volved around acquiring a 昀椀rm grasp and cultivating
a reasonable pro昀椀ciency in the art of METAFONT/
METAPOST. This endeavor demanded unwavering
dedication and a signi昀椀cant investment of time, but
it granted us the con昀椀dence necessary to embark on
our creative journey.

As we delved deeper into the captivating world
of METAFONT, we soon encountered a crucial turn-
ing point. After careful deliberation, we made the
decision to transition to METAPOST. We recog-
nized that METAPOST held a distinct advantage,
enabling direct generation of vector outputs in the
form of SVG and PostScript. These invaluable fea-
tures seamlessly aligned with our ultimate objective
of crafting fonts using software like FontForge or
fontmake. Thus, our pursuit of perfection urged
us to embrace the versatility and convenience of-
fered by METAPOST, as it emerged as the perfect
companion on our path towards mastering the art
of font creation.

3.1 Initial attempts
Initially, our endeavors centered on creating the
foundational characters in adherence to the Unicode
table [9], employing 昀椀xed coordinates and distinct
penstroke [6, p. 273] and draw [6, p. 271] functions
for serif and sans-serif variants respectively. How-
ever, it wasn’t long before we encountered the inher-
ent limitations of this approach. Firstly, the 昀椀xed
coordinate system presented a signi昀椀cant drawback,
as it required users to manually input all the coor-
dinates, contrasting with the more 昀氀exible algebraic
expressions that would prompt METAFONT to cal-
culate the coordinates through solving these expres-
sions. The design of METAFONT itself encourages

users to adopt the latter method, as it allows for
greater parametrization and versatility.

The sans-serif variants in SVG format, gener-
ated through the draw function with uniform line
thickness, were initially considered viable candi-
dates. However, they exhibited potential 昀氀aws when
it came to removing overlaps during the font cre-
ation process, whether through FontForge or appli-
cations like Inkscape. It became apparent that uti-
lizing stroke commands such as penstroke, which
enables drawing an envelope of speci昀椀ed thickness
and angles around the central line, as dictated by
penpos [6, p. 273] commands for each coordinate,
would ensure seamless overlap removal. This real-
ization prompted us to abandon 昀椀xed coordinates in
favor of a more suitable approach.

3.2 Parametrized approach
Various factors that impact the shape, angle, and
thickness of strokes have been successfully parame-
terized. These encompass a range of essential pa-
rameters, as well as supplementary parameters that
rely on the values of the foundational ones. A
comprehensive listing of these parameters, includ-
ing both the fundamental and dependent ones, can
be found in Tables 1 and 2.

The parameters t and u play a crucial role in
昀椀nely adjusting dimensions, although they di昀昀er in
their impact. While both parameters contribute to
this adjustment process, it’s worth noting that t has
the unique characteristic of having no e昀昀ect on sans-
serif variants. In other words, its in昀氀uence becomes
apparent only when serif variants come into play.

In addition to the aforementioned parametriza-
tion, we have also undertaken another set of param-
eter adjustments concerning the widths and angles
of strokes, tailored to accommodate various variants.
Initially, our focus encompassed four primary vari-
ants: serif, sans-serif, serif thin, and sans-serif thin.
However, it is important to note that we have the
昀氀exibility to incorporate additional variants in the
future, should the need arise.

To facilitate this parametrization process, we
de昀椀ned a numeric variable, width_angle, with val-

Table 1: The essential/foundational parameters used.

Parameter Description Default

mag magni昀椀cation 4
thick width of thick line 17.2bp
thin width of thin line 8.3bp
t unit dimen for adjustments 5.5bp
u unit width/height 5.5bp

METAFONT/METAPOST and a complex Indic script: Malayalam



300 TUGboat, Volume 44 (2023), No. 2

Table 2: Supplementary parameters used.

Parameter Description Default

o_cor overshoot correction .5u
lbearing left bearing 2u
rbearing right bearing 1u
ascent distance from baseline

of character to top edge
10.4u

dscent distance from baseline
of character to bottom edge

0u

ues ranging from 1 to 4, corresponding to the afore-
mentioned variants: serif, sans-serif, serif thin, and
sans-serif thin, respectively. Leveraging the GNU
tools within our work昀氀ow, passing the value of
width_angle to the build process is an e昀昀ortless
task. This approach also has the advantage of easily
observing the successive outputs of di昀昀erent variants
as we construct characters.

We strongly believed that utilizing prede昀椀ned
variables for width and angles relating to di昀昀erent
directions, based on the cardinal directions of north,
north-east, east, south-east, south, south-west, west
and north-west, would greatly enhance comprehen-
sibility and ease of use. These variables would also
have 昀椀xed values assigned to them. To ensure clar-
ity and consistency, width variables will be pre昀椀xed
with w_, followed by one or two characters indicat-
ing the respective direction. Similarly, angle vari-
ables will be pre昀椀xed with a_, followed by the same
characters indicating the direction. It’s worth not-
ing that the east direction deviates slightly from the
expected ‘e’ since using ‘e’ in the penpos command
would result in an error. Therefore, the character
sequence ‘ea’ has been employed in its place.

For a comprehensive list of all the width and
angle variables, along with their suggested values,
please refer to the following code listing. Please bear
in mind that the usage of ‘ea’ instead of ‘e’ is a
unique exception in the provided variables.

For detailed reference, the de昀椀nitions and cor-
responding values of variables pertaining to the
eight cardinal directions, for each value of the
width_angle variable, are presented in the subse-
quent code listings (refer to Listings 1–4). This
comprehensive resource o昀昀ers a valuable point of ref-
erence for accessing precise information.

Listing 1: Width and angle variables for width_angle
value 1 (serif normal).

1 thick:=17.2bp*mag; % width of thick line
2 thin:=8.3bp*mag; % width of thin line
3 w_cor:=(thick-thin);
4 w_w=thin; a_w=180; % west
5 w_nw=thin+.25w_cor; a_nw=135; % north-west

6 w_n=thin+.5w_cor; a_n=90; % north
7 w_ne=thick-.25w_cor; a_ne=45; % north-east
8 w_ea=thick; a_ea=0; % east
9 w_se=thick-.25w_cor; a_se=-45; % south-east
10 w_s=thick-.5w_cor; a_s=-90; % south
11 w_sw=thin+.25w_cor; a_sw=-135;% south-west

Listing 2: Width and angle variables for width_angle
value 2 (sans-serif normal).

1 thick:= 1.5u;
2 thin := 1.5u;
3 w_cor:=(thick-thin);
4 t := 0.0u;
5 w_w := thin+.5t; a_w := 180;
6 w_ea := thick+.2t; a_ea := 0;
7 w_n := thin+.2t; a_n := 90;
8 w_sw := thick-.1t; a_sw := -140;
9 w_nw := w_sw; a_nw := 135;
10 w_ne := w_sw; a_ne := 45;
11 w_se := w_ea-1.2t; a_se := -50;
12 w_s := w_n; a_s := -90;

Listing 3: Width and angle variables for width_angle
value 3 (serif thin).

1 thick:=8.6bp*mag;
2 thin:=4.3bp*mag;
3 w_cor:=(thick-thin);
4 w_ea:=thick+.2t; a_ea:=0;
5 w_w:=thin+.3t; a_w:=180;
6 w_n:=thin+.5t; a_n:=90;
7 w_sw:=thick-.1t; a_sw:=-140;
8 w_nw:=w_sw; a_nw:=135;
9 w_ne:=w_sw; a_ne:=45;
10 w_se:=w_ea-.6t; a_se:=-50;
11 w_s:=w_n; a_s:=-90;

Listing 4: Width and angle variables for width_angle
value 4 (sans-serif thin).

1 thick:= .5u;
2 thin := .5u;
3 w_cor:=(thick-thin);
4 t := 0u;
5 w_w := thin+.5t; a_w := 180;
6 w_sw := thick-.1t; a_sw := -140;
7 w_ea := thick+.2t; a_ea := 0;
8 w_n := thin+.2t; a_n := 90;
9 w_nw := w_sw; a_nw := 135;
10 w_ne := w_sw; a_ne := 45;
11 w_se := w_ea-1.2t; a_se := -50;
12 w_s := w_n; a_s := -90;

3.3 Reusable components
Now let us look into a typical instance, the con-
struction of the consonant character ന, which bears
the phonetic resemblance to the initial syllable of
the word ‘November’. This character is ingeniously

C. V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain



TUGboat, Volume 44 (2023), No. 2 301

brought to life through the deployment of two shape
components. Keen observers will note the presence
of two distinct lobes—an elegant left lobe and an
equally poised right lobe. These lobes 昀椀nd their al-
gebraic expressions in the form of two shapes, known
as c_llobe and c_rlobe, respectively. The nomen-
clature itself displays an inherent clarity, with the
pre昀椀x ‘c’ symbolizing the component.

The algebraic pursuit of shaping this character
involves the harmonious interplay of two fundamen-
tal elements. Firstly, we encounter the precise coor-
dinates of each pivotal point that contribute to the
formation of the character’s curved contours. Sec-
ondly, the width/angle values assigned to each co-
ordinate, accompanied by the stroke command that
gracefully connects them, further embellish the vis-
ual tapestry. In order to gain a better understanding
of this intricate process, the following code unveils
the craftsmanship behind its creation.

Listing 5: Listing of the METAPOST source code in the
character build 昀椀le of ന.
1 input mpost-defs; % MetaPost definitions
2 input ml-shape-lib;% lib. of shape comps.
3 input option; % proofing, width/angle opts
4 input out; % PDF/SVG output options
5

6 beginfig(34);
7 coor_c_llobe (1) (0,0);
8 pstroke_c_llobe (1);
9 coor_c_rlobe (n1.2) (x1f.r-.5wd2b,0);
10 pstroke_c_rlobe (2);
11 endfig;
12 end;

The 昀椀les that are evident inputs within the
build source, as enumerated in Listing 5, mani-
fest a diverse array of categories. The 昀椀rst 昀椀le,
mpost-defs.mp, consists of a select assortment of
de昀椀nitions derived from plain.mp, albeit rede昀椀ned
or customized to align with our objectives. The
second 昀椀le, ml-shape-lib.mp, is an extensive com-
pendium of shape components with their affili-
ated macros. Notably, this 昀椀le internally invokes
ml-glyphs-lib.mp, which in turn houses the es-
sential de昀椀nitions of glyphs. The option.mp and
out.mp 昀椀les help in the build process.

Now, let us examine the macro coor_c_llobe,
which encompasses the x and y values representing
the coordinates of the left lobe. This macro accepts
one suffix argument and two expression arguments,
namely, xsh and ysh. These expression arguments
serve as containers for the dimensions that dictate
the horizontal and vertical shifts of the component
when it is positioned within the character construc-
tion process.

Listing 6: Listing of the de昀椀nition of c_llobe.
1 def coor_c_llobe (suffix $)(expr xsh,ysh) =
2 z$a=(xsh+.55b, ysh+0h);
3 z$b=(xsh+.05b, ysh+.5h);
4 z$c=(xsh+.8b, ysh+1h); oc$c(-.5);
5 z$d=(xsh+1.5b, ysh+.63h);
6 z$f=(x$d, ysh+0h);
7 enddef;
8

9 def pstroke_c_llobe (suffix $) =
10 penpos$a(w_w-.5t,a_sw);
11 penpos$b(w_w+.2t, a_w);
12 penpos$c(w_n, a_n);
13 penpos$d(w_ea-.1t,a_ea);
14 penpos$f(w_ea-.1t,a_ea);
15 penstroke subpath (start,stop) of
16 (z$a.e .. z$b.e{up} .. {right}z$c.e
17 .. z$d.e{down} .. z$f.e);
18 penlabels($a,$b,$c,$d,$f);
19 enddef;

In terms of providing the x-coordinate values,
we employ the symbol ‘b’ to represent breadth, while
the y-values are denoted by ‘h’, which stands for
height. By default, the default values assigned to b
and h are 10u and 20u respectively. This 昀氀exibil-
ity empowers us to modify the values of b and h,
thereby generating condensed or extended variants
with ease.

The macro responsible for stroking the paths
is named pstroke_c_llobe. It encompasses all the
penpos commands, specifying the width and angle
of each coordinate as de昀椀ned within the correspond-
ing coor_⟨component⟩ macro. It is worth noting
that the width and angle values are expressed in
terms of the width/angle variables, as outlined in
Listings 1–4, which correspond to the speci昀椀c font
variant being built.

In addition to the penpos commands, the path
stroking macro also includes one or more (in other
cases) penstroke commands. These commands con-
nect each coordinate in a sequential manner, em-
ploying curves or straight lines as required by the
character design. Further, the macro incorporates
one or more penlabels commands, which facilitate
the printing of labels and the left/right edges of the
coordinates when generating proofs. It is important
to mention that if the value of the proofing variable
exceeds 2, the penlabels command will also display
the angle and width values of each coordinate, pro-
viding valuable insights during the debugging phase.

The coordinate and path stroking macros for
c_rlobe are provided in Listing 7, to allow the
reader to examine the implementation.

METAFONT/METAPOST and a complex Indic script: Malayalam



302 TUGboat, Volume 44 (2023), No. 2

1a

1b

1c

1d

1f1a

1b

1c

1d

1f

2a

2b

2c

2d

2f

2a

2b

2c

2d

2f0

0 10 20 30

0

10

20

Figure 7: The proof image of the character ന.

Listing 7: Listing of the de昀椀nition of c_rlobe.
1 def coor_c_rlobe (suffix $)(expr xsh,ysh) =
2 z$a=(xsh+0b, ysh+.5h);
3 z$b=(x$a, .65h);
4 z$c=(xsh+.65b, ysh+1h);
5 z$d=(xsh+1.45b, ysh+.5h);
6 z$f=(xsh+.95b, ysh+0h+.2t);
7 y$c:=y$c-.5wd$c;
8 enddef;
9

10 def pstroke_c_rlobe (suffix $) =
11 penpos$a(w_sw-.5w_cor,a_w);
12 penpos$b(wd$a,a_w);
13 penpos$c(w_n,a_n);
14 penpos$d(w_ea,a_ea);
15 penpos$f(w_s-.1t,a_se+10);
16 penstroke subpath (start,stop) of
17 (z$a.e{up}
18 .. z$b.e{up} .. z$c.e{right}
19 .. z$d.e{down} .. z$f.e);
20 penlabels($a,$b,$c,$d,$f);
21 enddef;

Figure 7 illustrates the character constructed
for the serif normal variant of the font (wa=1), utiliz-
ing the code presented in Listings 5–7. The compo-
nents have been visually distinguished using varying
shades of gray to aid comprehension.

In a prior section (Section 2, Rationale), we
highlighted the fact that the prede昀椀ned component
approach is not exempt from limitations. It is worth
noting that there were instances where we encoun-
tered the need to adjust the position of coordinates
to align with a particular character shape or design.
This task proved to be quite challenging, given that
the x and y values of the coordinates had been prede-
termined. Consequently, in order to overcome this
obstacle, we undertook the task of rede昀椀ning the
z macro [6, p. 277] that assigns values to x and y

coordinates. This revised version of the macro now

includes (refer to Listing 8) a check for any delta val-
ues associated with x or y, to add prior to assigning
the respective original values.

Listing 8: The modi昀椀ed de昀椀nition of z macro.
1 vardef z@#=(x@# - if known dx@#: dx@#
2 else:0 fi,
3 y@# - if known dy@#: dy@# else:0 fi)
4 enddef;

Thus, if there exists a de昀椀nition for dx or dy as-
sociated with a coordinate z, signifying the intended
horizontal and vertical shifts respectively, then these
shifts will duly be applied to their respective coor-
dinate values prior to 昀椀nal assignment within the
pair de昀椀nition. To illustrate this concept, let us
consider the example dx1b = -2u (provided in code
Listing 9). It is worth noting that the delta values
need to be provided just before the occurrence of
coor_c_⟨component⟩.

Listing 9: Example to show the shifting of coordinates.
1 beginfig(32);
2 % dx1b=-2u;
3 coor_g_da (1) (0,0);
4 pstroke_g_da (1);
5 endfig;

This code generates the consonant character ദ
(using di昀昀erent subroutines than the previous ex-
amples). Should we desire a slightly more rounded
contour for the left curve, it becomes necessary to
adjust the position of the coordinate labelled 1b to-
wards the left, aligning it with the desired dimen-
sions. This adjustment can be accomplished by em-
ploying the delta variable, written as dx1b = -2u.
It speci昀椀es the intended shift of 2u to the left. It’s
commented out in line 2 of Listing 9. To gain a vis-
ual understanding of the original design alongside
the modi昀椀ed version, kindly refer to the images pre-
sented in Figure 8.

Similarly, we can utilize the dy⟨coordinate⟩ ap-
proach to shift the vertical position. Nevertheless,
the need for precise adjustments extends beyond
mere shifts in the x and y directions. At times,
it becomes necessary to modify the predetermined
angles and widths using the penpos commands for
individual coordinates. To enable this functionality,
we had to rede昀椀ne the original penpos command [6,
p. 273], as shown in Listing 10.

Listing 10: Rede昀椀ned penpos.
1 vardef xangle@#(expr xd) =
2 (ang@#)=(xd); enddef;
3 vardef xwidth@#(expr xb) =
4 (wd@#)=(xb); enddef;
5 vardef penpos@#(expr b,d) =

C. V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain



TUGboat, Volume 44 (2023), No. 2 303

Figure 8: Example showing horizontal shift of a
coordinate. The 昀椀gure at the top is the original
character, while the one below shows the midpoint of
the left curve shifted by 2u towards the left.

1a

1b

1c

1d

1f1g

1h

1i
1j

1a

1b

1c

1d

1f1g

1h

1i
1j

0

0 10 20

0

10

20

1a

1b

1c

1d

1f1g

1h

1i
1j

1a

1b

1c

1d

1f1g

1h

1i
1j

0

0 10 20

0

10

20

6 if unknown ang@#: xangle@#(d); fi
7 if unknown wd@#: xwidth@#(b); fi
8 (x@#r-x@#l,y@#r-y@#l) =
9 (wd@#,0) rotated ang@#;
10 x@#=.5(x@#l+x@#r);
11 y@#=.5(y@#l+y@#r);
12 enddef;

Let’s examine the impact of utilizing these fea-
tures through a practical example. In the image on
the right side of Figure 8, it appears that the angle
of coordinate 1a (the bottom ending of the left-hand
stroke) isn’t correct as initially set by the command
penpos$a(w_w+.2t, a_sw-20);. However, it was
deemed suitable for the image on the left side of
the same 昀椀gure. To address this, we can make ad-
justments by inserting the code ang1a = a_sw; in

Figure 9: Revised image of the character after changing
the widths and angles.

1a

1b

1c

1d

1f1g

1h

1i
1j

1a

1b

1c

1d

1f1g

1h

1i
1j

0

0 10 20

0

10

20

Listing 11: New source with changed angle and widths.
1 beginfig(32);
2 dx1b=-2u; % change x-pos
3 ang1a=a_sw; % change angle
4 coor_g_da (1) (0,0);
5 wd1d=wd1h=w_ea+1t; % change width
6 pstroke_g_da (1);
7 endfig;

the character code; ang⟨coordinate⟩= followed by the
value is the syntax of the command.

In a similar fashion, we can also modify the
width of any coordinate by using the command
wd⟨coordinate⟩ = ⟨value⟩. Suppose we wish to alter
points 1d and 1h. This can be achieved by incor-
porating the code wd1d = wd1h = w_ea+1t;. Es-
sentially, this means that one unit of width will be
added to the current width (which was initially de-
昀椀ned as w_ea).

Please refer to the updated image of the char-
acter in Figure 9 and take a moment to compare it
with the right image in Figure 8.

There remain a few additional features worthy
of explanation, which we shall defer to a subsequent
section (refer to Section 3.5). These features give
the user additional tools to undertake the task with
utmost ease. Among these capabilities are the abil-
ity to incise a path at any given point, ascertain the
coordinates, angle, and width of said incision point,
the rede昀椀ned penlabels command, as well as the
utilization of the find_outline, pstroke_stem and
overshoot correction commands.

METAFONT/METAPOST and a complex Indic script: Malayalam



304 TUGboat, Volume 44 (2023), No. 2

Figure 10: The consonant character, പ (pa).

.1a

.1b

.1c

.1d

.1f
.1a

.1b

.1c

.1d

.1f

.3a

.3b .3c

.3d

.4a

.4b .4c

.4d

0

0 10 20 30

0

10

20

3.4 Reusable glyphs
The necessity for reusable de昀椀nitions of glyphs,
much like that of reusable components, arose when
encountering certain horizontal conjuncts such as
്ᩦ, ററ, ്ᩜ, and so forth, where characters are re-
peated horizontally. Similarly, the need for reusable
de昀椀nitions arose in the case of vertical conjuncts
like ്ᩆ, ്ᩔ, etc., that involve the repetition of the
same characters vertically. Such requirements also
emerged in cases such as ്ᨽ, ്ᩚ, ❺, and others, where
di昀昀erent characters are stacked vertically.

In such circumstances, it is only natural to har-
ness the programmability of METAPOST as a log-
ical progression. This enables the de昀椀nition of all
the glyphs that might undergo repetition, whether
in the formation of horizontal or vertical conjuncts,
or when glyphs are combined with vowel signs to
form ligatures, such as ്ᩚ, ᩚ, ᩚ (phonetically equiv-
alent to pra, pru, prū), derived from the consonant
‘പ’ (pa). Needless to say, the utilization of these
reusable de昀椀nitions greatly expedites the creation
of conjunct build 昀椀les.

Let us now see the typical composition of a
glyph de昀椀nition by carefully examining the source
code for the consonant character പ (refer to Fig-
ure 10), given in Listing 12. This exploration will
shed light on the intricate details that contribute to
the formation of this particular character.

Listing 12: The glyph de昀椀nition of പ from
ml-glyph-lib.mp.
1 def gl_pa (suffix prx) =
2 coor_c_ra_sm (prx.1)(0,0);
3 % Lift up end point of ra_sm (1f)
4 % and set width relative to its
5 % start point (1a)
6 y.prx.1f := y.prx.1a.l;
7 wd.prx.1f := wd.prx.1a;
8 pstroke_c_ra_sm (prx.1);

9 stroke_stem (prx.3)
10 (x.prx.1f.r+30,0,2.1b,w_w);
11 pstroke_stem (prx.4)
12 (x.prx.3d-thick,y.prx.3c,thick,1h-w_w);
13 pstroke_edge ((x.prx.1f.l,y.prx.3a),
14 z.prx.1f.l,z.prx.3b,z.prx.3a);
15 reset_xst;
16 enddef;

The de昀椀nitions of the routines coor_c_ra_sm
and pstroke_c_ra_sm called by gl_pa are part of
ml-shape-lib.mp and are given in Listing 13.

Listing 13: The de昀椀nition of coordinates, width, angles
and path stroke of പ from ml-shape-lib.mp.
1 def coor_c_ra_sm (suffix $)(expr xsh,ysh) =
2 z$a=(xsh+.35b, ysh+0); oc$a(.1);
3 z$b=(xsh+0b, .5[y$a,y$c]);
4 z$c=(.5[x$b,x$d], ysh+.63h);
5 z$d=(xsh+1.3b,.5[y$a,y$c]);
6 z$f=(xsh+.9b, y$a+.0h);
7 enddef;
8

9 def pstroke_c_ra_sm (suffix $) =
10 penpos$a(w_w-.5t, a_sw+20);
11 penpos$b(w_w, a_w);
12 penpos$c(w_n, a_n);
13 penpos$d(w_ea, a_ea);
14 penpos$f(w_s-.5t, a_se);
15 penstroke subpath (start,stop) of
16 (z$a.e .. z$b.e .. z$c.e ..
17 z$d.e .. z$f.e);
18 penlabels($a,$b,$c,$d,$f);
19 enddef;

The commands pstroke_stem, stroke_stem
and pstroke_edge and their usage are described in
detail in Section 3.5.

The above de昀椀nitions allow building, fairly eas-
ily, a plethora of glyphs (58 in number) listed below,
those where പ is an integral part:

പ, പു, പൂ, പൃ, ്ᩉ, ᩉ, ᩉ, ്ᩎ, മ്, മൎ, മ൏, ്ᩒ, ᩒ, ᩒ, ്ᩔ,
, , , ്ᩕ, ᩕ, ᩕ, ്ᩚ, ᩚ, ᩚ, ്ᩜ, ᩜ, ᩜ, ്ᩢ, ഺ്,

ഺൎ, ഺ൏, ്ᩀ, ᩀ, ᩀ, ്ᩕ, ᩕ, ᩕ, ്ᩙ, യ്, യൎ, യ൏, ്ᩜ, ᩜ,
ᩜ, ്ᩡ, ി്, ിൎ, ി൏, ്ᩢ, ഺ്, ഺൎ, ഺ൏, ➒, ➒⟛, ➒⟜, ്ᩞ,
ᩞ, ᩞ.
The suffix argument, denoted as prx, within

the glyph de昀椀nition of gl_pa may pose a puzzling
query in the minds of readers, warranting a thor-
ough explanation. It is crucial to comprehend that
the suffixes of macros must possess unique identities
within a beginfig ... endfig environment. Fail-
ure to adhere to this requirement will result in an
error, halting the processing by METAPOST.

In instances where we need to invoke the same
shape functions multiple times, as exempli昀椀ed in the
source code in Listing 14 (its output can be seen

C. V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain



TUGboat, Volume 44 (2023), No. 2 305

in Figure 11), it becomes imperative to ensure the
uniqueness of suffixes. To achieve this, we resort to
the practice of pre昀椀xing the suffixes with additional
characters while calling the glyph de昀椀nitions. (The
usage of vconj shall be explained in Section 3.5.7
on vertical conjuncts.)

Listing 14: The source listing of p1p1, a vertical
conjunct ്ᩔ
1 beginfig(00);
2 g1:=image(gl_pa(p)); % first prefix
3 vconj:=true; width_angle(wa_n);
4 g2:=image(gl_pa(pp)); % different prefix
5 g3:=g2 xscaled .6 yscaled .6;
6 currentpicture:=g1;
7 addto currentpicture also g3
8 shifted (xpart (lrcorner g1)
9 -xpart(urcorner g3),-(12u+5));
10 endfig;

Figure 11: The vertical conjunct, ്ᩔ, created by the
code in Listing 14.

0

0 10 20 30

0

10

20

3.4.1 A word about glyph naming
It’s time to provide a brief explanation of the glyph
naming convention utilized in our fonts. Instead of
using Unicode code points as identi昀椀ers for charac-
ters, or Adobe glyph list conventions, we have cho-
sen a specialized abbreviated form for both vowels
and consonants. This methodology was developed
by one of the authors, Hussain, over two decades
ago for simpli昀椀ed glyph naming in the fonts he had
created, including the most popular, “Rachana”.

Vowels are indicated by the pre昀椀x ml_ fol-
lowed by the corresponding vowel sound in the Latin

script. For example, ml_a represents the vowel, അ
(0D05).

Each of the consonant groups, such as velar,
palatal, retro昀氀ex, dental, bilabial, approximants,
sibilants, and others, consist of four stops encom-
passing all possible values of voicing and aspiration.
They are named using one or two representative
characters in Latin script (k for velar, ch for palatal,
t for retro昀氀ex, th for dental, p biblabial; but each
member of the approximants, sibilants and others
has been assigned a unique character depending on
the sound), followed by a numerical index ranging
from 1 to 4. For instance, the 昀椀rst velar consonant
ക (0D15) is designated as k1. As you can infer,
the other three (ഖ, ഗ, ഘ) are named k2, k3, and
k4 respectively. Certain vowel signs and consonants
conjoin with many base characters; these are also
named appropriately. Table 3 provides a detailed
picture of the naming of consonants. It is interest-
ing to note that this naming convention suits most
Indic scripts.

Table 3: Table showing all the consonants, vowel signs
and their glyph names.

Voiceless Voiced

Unasp. Asp. Unasp. Asp. Nasal

velar k1 k2 k3 k4 ng
ക ഖ ഗ ഘ ങ

palatal ch1 ch2 ch3 ch4 nj
ച ഛ ജ ഝ ഞ

retro昀氀ex t1 t2 t3 t4 nh
ട ഠ ഡ ഢ ണ

dental th1 th2 th3 th4 n1
ത ഥ ദ ധ ന

biblabial p1 p2 p3 p4 m1
പ ഫ ബ ഭ മ

approximants y1 r3 l3 v1
യ ര ല വ

sibilants z1 sh s1 h1
ശ ഷ സ ഹ

others lh zh rh
ള ഴ റ

vowel/
consonant
signs

u1 u2 y2 r4 l3
◌ു ◌ൂ ◌്യ ്ⴽ◌ ◌്ⴿ

v2
◌്വ

Unasp. = unaspirated; Asp. = aspirated

This convention allows for convenient usage of
these intuitive consonant names when construct-
ing conjuncts and ligatures, eliminating the need
for lengthy and less user-friendly combinations of

METAFONT/METAPOST and a complex Indic script: Malayalam



306 TUGboat, Volume 44 (2023), No. 2

Listing 15: Source listing of the rede昀椀ned penlabels.
1 vardef penlabels@#(text t) =
2 if proofing > 1:
3 forsuffixes $$=l,r: forsuffixes $=t:
4 if known z$:
5 interim linecap:=rounded;
6 interim ahlength:=8bp;
7 interim ahangle:=60;
8 drawarrow z$.l -- z$.r
9 withcolor red;
10 drawdot (x$,y$) withpen pencircle
11 scaled 5mm withcolor white;
12 defaultscale:=.75;
13 s_len:=length(str$); st_idx:=s_len-3;
14 makelabel@#(substring(st_idx,s_len)of
15 (str$),(x$,y$)) withcolor red;
16 if proofing > 2:
17 label(decimal(wd$),z$-(0,1u))
18 withcolor .5white;
19 label(decimal(ang$),z$-(0,1.5u))
20 withcolor .5white;
21 fi
22 fi
23 endfor
24 endfor
25 fi
26 enddef;

code points. Undoubtedly, the glyph name of
k1th1r3 for ❩ (pronounced like kthra) is much
easier to remember than the cryptic hex sequence
0D05 0D4D 0D24 0D4D 0D31.

3.5 Additional features
The supplementary features elucidated in this sec-
tion are not absolutely imperative for carrying out
the font creation process. Nonetheless, they en-
hance the work昀氀ow by equipping users with addi-
tional tools that contribute to making their lives a
tad more convenient.

3.5.1 Rede昀椀ned penlabels command
The command penlabels [6, pp. 36, 274] has been
rede昀椀ned (see Listing 15):

1. to display no labels if proofing < 2.

2. if proofing = 2, to display the labels in a
white circle (since the path is 昀椀lled with gray
color in proof mode) and display a red arrow,
the head of which points to the right edge which
provides an indication of the angle visually.
This is in lieu of the default method of display-
ing l and r labels in black.

3. to display the widths and angle of the coordi-
nates if proofing > 2, which is handy in cer-
tain debugging situations.

3.5.2 Slicing the path — subpath
The subpath command [6, p. 133] has been exten-
sively utilized in the penstroke macros, as it pro-
vides a convenient means to slice the path at ar-
bitrary locations without a昀昀ecting the path’s 昀氀ow
or curvature, even when the cut point happens
to intersect a curve. Most penstroke commands,
if required, include the subpath command with
(start, stop) variables as its arguments, default-
ing to 0 and infinity respectively. This allows
users to modify these variables in the build 昀椀le as
per the dictates of the shape of the glyph. The code,
as shown in Listing 16, illustrates how the start and
stop points of two consonants, t1 (ട) and th3 (ദ),
have been applied to the cut just after the start of
t1 and towards the end of th3 to create derivative
glyphs of t1r1 (ടൃ) and th3r1 (ദൃ) respectively.

Listing 16: Application of subpath.
1 %%% glyph def of t1 %%%
2 def gl_Ta =
3 coor_g_ta (t1.1) (0,0);
4 reset_cut; start:=xstt; % set start of subpath
5 pstroke_g_ta (t1.1); % strokes from ’start’
6 reset_xst;
7 enddef;
8 %%% glyph def of t1r1 %%%
9 def gl_TR =
10 xstt:=3; gl_Ta; % draw curve from 4th point
11 ang_cor:=-5;
12 coor_c_prkar (t1.5) (x.t1.1f,3u);
13 start:=0;
14 wd.t1.5a=wd.t1.1f;
15 x.t1.5f:=x.t1.1g;
16 x.t1.5a:=x.t1.1d;
17 y.t1.5a:=y.t1.1d;
18 wd.t1.5f:=wd.t1.1g;
19 pstroke_c_prkar (t1.5);
20 reset_cut;
21 enddef;
22 %%% glyph def of th3 %%%
23 def gl_da =
24 coor_g_da (th3.1) (0,0);
25 stop:=xstp; % stop last part of curve at ’xstp’
26 pstroke_g_da (th3.1);
27 reset_xst;
28 enddef;
29 %%% glyph def of th3r1 %%%
30 def gl_dR =
31 dy.th3.1f=-2u;
32 coor_g_da (th3.1) (0,0);
33 stop:=1; % stop curve at 2nd point
34 % of last part

C. V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain



TUGboat, Volume 44 (2023), No. 2 307

Figure 12: Illustration of subpath operation. The
image at left is the consonant ട, the right-hand image
is after slicing at fourth coordinate is applied, and the
one below is after appending the vowel sign to the sliced
character.

.1a

.1b

.1c

.1d.1f

.1g

.1h

.1i

.1a

.1b

.1c

.1d.1f

.1g

.1h

.1i

0

0 10 20

0

10

20

.1a

.1b

.1c

.1d.1f

.1g

.1h

.1i

.1a

.1b

.1c

.1d.1f

.1g

.1h

.1i

0

0 10 20

0

10

20

.1a

.1b

.1c

.1d.1f

.1g

.1h

.1i

.1a

.1b

.1c

.1d.1f

.1g

.1h

.1i

.5a

.5b

.5d

.5f

.5g

.5i

.5a

.5b

.5d

.5f

.5g

.5i
0

0 10 20

0

10

20

35 pstroke_g_da (th3.1);
36 coor_c_krkar (th3.2)
37 (x.th3.1f-1u,0);
38 y.th3.2a:=y.th3.1f;
39 wd.th3.2a=wd.th3.1g;
40 stop:=infinity;
41 pstroke_c_krkar (th3.2);
42 enddef;

The three images in Figure 12 illustrate the
subpath operation with respect to the consonant ട
and the second set in Figure 13 is that of ദ.

3.5.3 Overshoot correction
The overshoot correction was previously done using
a dimension variable oc which has the default value
of 0.5u. Since in serif versions, the characters have
di昀昀erent stroke widths at top or bottom owing to
the di昀昀erent angles of curves, and the oc variable is
insufficient to manage overshoot corrections in this
situation. However, it was felt that addition of a half
stroke width at the bottom and subtraction of a half
stroke width at the top will be the ideal solution
for it. The images in Figures 14 and 15 illustrate
the state of overshoot in pre- and post-application
scenario respectively.

Figure 13: Illustration of subpath operation
(continued). The image at the left is the consonant ദ,
the middle image is sliced at the beginning of last lobe
and the one below is after appending the vowel sign to
the sliced character.

1a

1b

1c

1d

1f1g

1h

1i
1j

1a

1b

1c

1d

1f1g

1h

1i
1j

0

0 10 20

0

10

20

1a

1b

1c

1d

1f1g

1h

1i
1j

1a

1b

1c

1d

1f1g

1h

1i
1j

0

0 10 20

0

10

20

.1a

.1b

.1c

.1d

.1f.1g

.1h

.1i
.1j

.1a

.1b

.1c

.1d

.1f.1g

.1h

.1i
.1j

.2a

.2b

.2d

.2f

.2g

.2i

.2a

.2b

.2d

.2f

.2g

.2i

0

0 10 20

0

10

20

Figure 14: Overshot curves at the top of serif version of
the vowel ആ.

2

3

4

569

10

11

13

14

16

17

2

3

4

569

10

11

13

14

16

17

10

20

The syntax of the command is:

oc⟨coordinate suffix⟩ (⟨corr value⟩)

A few usage examples are provided below, for situa-
tions of both directly coded coordinates like z1, z2,
z3, . . . and $-suffixed situations like z$a, z$b, z$c,
. . . The correction line is provided just after the co-
ordinate de昀椀nition of the point needing correction.

1 oc1 (-0.5);
2 oc5 (0.5);
3 oc$a(-0.5);
4 oc$d(0.5);

Any arbitrary value can be given as the argument.

METAFONT/METAPOST and a complex Indic script: Malayalam



308 TUGboat, Volume 44 (2023), No. 2

Figure 15: Corrected overshot curves at the top of serif
version of the vowel ആ.

2

3

4

569

10

11

13

14

16

17

2

3

4

569

10

11

13

14

16

17

10

20

Listing 17: De昀椀nition and usage of pstroke_stem.
1 %% definition:
2 def pstroke_stem (suffix $)
3 (expr xsh,ysh,width,height) =
4 x$a=x$b=xsh+0b; x$c=x$d=xsh+width;
5 y$a=y$d=ysh+0h; y$b=y$c=ysh+height;
6 filldraw z$a -- z$b --
7 z$c -- z$d --cycle withcolor gcolor;
8 if proofing>0:
9 draw z$a -- z$b -- z$c --
10 z$d --cycle withcolor black; fi
11 labels($a,$b,$c,$d);
12 enddef;
13 %% usage:
14 % pstroke_stem (<suffix>)
15 % (<h-shift>, <v-shift>,
16 % <width>, <height>);

3.5.4 The pstroke_stem macro
The horizontal and vertical stems that form part of
some characters (e.g., വ, ഖ, പ, ഷ, ഥ, ല, ഘ, . . . ) are
drawn using the function pstroke_stem; its usage
is shown in Listing 17.

After one argument for the suffix, the function
requires four expression arguments: horizontal and
vertical shifts, width, and height of the stem. If the
height is greater than the width, the stroke becomes
a vertical stem.

Readers are encouraged to examine lines 9–12
of Listing 12, where the usage of pstroke_stem
is evident. Instead of pstroke_stem, you can see
stroke_stem in line 10. Both have the same func-
tionality, except that the latter invokes outline
mode which is explained later (Section 3.5.10).

The image in Figure 10 demonstrates the e昀昀ect
of the aforementioned code.

3.5.5 The pstroke_edge macro
There exists a typographical nuance of reducing the
height of an edge of a horizontal stem when it joins
with a curved stroke as seen in Figure 16.

The pstroke_edge command draws a cyclic
path connecting the left end coordinates of the hor-

Figure 16: Example of pstroke_edge when the left
edge of a horizontal stem joins with the rounded part
of the character. The path in light green color is the
rounded path; the hstem is colored light blue while the
segment 昀椀lled with yellow color is the pstroke_edge.

.1a

.1b .1d

.1f
.1a

.1b .1d

.1f

.3a

.3b

.1f.1f
left edge of
the hstem.

filled
pstroke
edge

0

izontal stem (points 3a and 3b in the 昀椀gure) with
the left and right edges of end point of the curve
(1f) and 昀椀lls it. The macro de昀椀nition and usage are
provided in Listing 18.

Listing 18: De昀椀nition and usage of pstroke_edge.
1 %% definition:
2 def pstroke_edge (expr ll,ul,ur,lr) =
3 filldraw ll -- ul -- ur -- lr --
4 cycle withcolor gcolor;
5 if proofing>0:
6 draw ll -- ul -- ur -- lr --
7 cycle withcolor black; fi
8 enddef;
9 %% usage example:
10 %% lines 13, 14 of Listing 12
11 pstroke_edge (
12 (x.prx.1f.l, y.prx.3a),
13 z.prx.1f.l,
14 z.prx.3b,
15 z.prx.3a
16 );

The four coordinates needed for pstroke_edge
can be provided starting from any point, as long as
the coordinates are sequentially in cyclic order, no
matter clockwise or anticlockwise.

3.5.6 DocGrid and PrintGrid
The DocGrid macro overlays a grid on top of the
glyph image in proofmode (proofing > 0). It is
an extended form of Knuth’s makegrid macro, ex-
plained in [6, p. 275]. Listing 19 provides the source
code of the macro.

Listing 19: The source code of DocGrid.
1 def DocGrid (expr w,h) =
2 if proofing > 0:
3 begingroup
4 defaultscale := 1.1;
5 pickup pencircle scaled minor_rulewidth;
6 rulecolor:=minor_rulecolor;
7 bm=(ypart(llcorner pp)-1u);

C. V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain



TUGboat, Volume 44 (2023), No. 2 309

8 makegrid(0,for i=u-4u step u
9 until w+3u: , i endfor)
10 (0,for i=0 step u
11 until h+2u+1: , i endfor)
12 makegrid(0,for i=u-4u step u
13 until w+3u:, i endfor)
14 (0,for i=0 step -u
15 until bm-1u: , i endfor)
16 pickup pencircle scaled major_rulewidth;
17 rulecolor:= major_rulecolor;
18 makegrid(0,for i=0 step 10u until w+2u+1u: ,
19 i endfor)
20 (0,for i=0 step 10u until h+2u+1: ,
21 i endfor);
22 makegrid(0,for i=0 step 10u
23 until w+2u+1u: , i endfor)
24 (0,for i=0 step -10u
25 until bm-1u: , i endfor);
26 draw (0,bm)--(w,bm) withcolor rulecolor;
27 makelabel.lft(”0”,(0u,0u));
28 makelabel.bot(”0”,(0u,bm));
29 makelabel.bot(”10”,(10u,bm));
30 makelabel.bot(”20”,(20u,bm));
31 if (w+2u) >= 30u :
32 makelabel.bot(”30”,(30u,bm)); fi
33 if (w+2u) >= 40u :
34 makelabel.bot(”40”,(40u,bm)); fi
35 if (w+2u) >= 50u :
36 makelabel.bot(”50”,(50u,bm)); fi
37 if (w+2u) >= 60u :
38 makelabel.bot(”60”,(60u,bm)); fi
39 if (w+2u) >= 70u :
40 makelabel.bot(”70”,(70u,bm)); fi
41 makelabel.lft(”0”,(-1u,0u));
42 makelabel.lft(”10”,(-1u,10u));
43 makelabel.lft(”20”,(-1u,20u));
44 endgroup;
45 fi;
46 enddef;

The DocGrid macro requires the width and
height of the character as its arguments and adds
2u space around the bounding box of the charac-
ter before overlaying with the grid. It is invoked by
the PrintGrid function though the endfig hook,
extra_endfig, as shown in Listing 20.

Listing 20: The source code of PrintGrid.
1 def PrintGrid =
2 picture pp; pp:=currentpicture;
3 pw = xpart(urcorner pp);
4 ph = ypart(urcorner pp);
5 DocGrid(pw,ph);
6 enddef;
7

8 extra_endfig:=”if proofing = 0:
9 add_space_around; else: PrintGrid; fi”;

3.5.7 The vertical conjuncts
The process of generating vertical conjuncts, where
two characters are stacked on top of each other, was
mentioned in Section 3.4, Reusable glyphs. The cor-
responding source code in Listing 14 demonstrated
how this is achieved. You may notice that the below-
base character is always scaled down to ensure typo-
graphic appeal and to limit the overall depth of the
glyph to a reasonable level. However, this scaling
action has the unintended consequence of reducing
the stroke width in the bottom character.

To address the limitation of width reduction, a
boolean variable called vconj is introduced. When
set to true, it automatically increases the width of
the thick and thin lines by a factor of 1.35. Since
all other stroke widths are derived from these two
fundamental dimensions, the overall width dimen-
sions are adjusted proportionately and accurately.

Listing 21: Change of the widths thick and thin
depending on the state of the boolean, vconj.
1 wa:=1;
2 if vconj:
3 thick:=(1.35*17.2bp)*mag; % width of thick line
4 thin:=(1.35*8.3bp)*mag; % width of thin line
5 else:
6 thick:=17.2bp*mag; % width of thick line
7 thin:=8.3bp*mag; % width of thin line
8 fi

The images in Figure 17 show the di昀昀erence
in stroke widths of the below-base character with
di昀昀erent states of the vconj boolean.

Figure 17: The e昀昀ect of the boolean vconj on the
stroke width of the below-base character. The image on
the left is when vconj is false; observe that the widths
of strokes of the below-base character are thinner than
its counterpart on the right, with vconj true.

3.5.8 The consonant doubling macro
Some consonants, such as ്ᨴ, ്ᩘ, ്ᩞ, ്ᩪ (phonetically
similar to chcha, bba, yya, vva), behave in a par-
ticular fashion when conjuncts with the same con-
sonants are created. This is di昀昀erent from others
like ്ᩔ, ്ᩆ, ്ᨮ (ppa, ṇṇa as in running, gga), etc.,
when forming vertical conjuncts with its own copy
of the below-base character and ്ᩜ, ്ᩈ, ്ᩦ (mma,
ththa, ḷḷa as in culling), etc., where conjuncts are

METAFONT/METAPOST and a complex Indic script: Malayalam



310 TUGboat, Volume 44 (2023), No. 2

formed with their own copy of the post-base char-
acter packed horizontally.

Since the shape of the bottom construct is an
ideal candidate for a component, we devised one,
called c_cons_dbl, the source of which is provided
in Listing 22.

Listing 22: Consonant doubling macro, c_cons_dbl.
1 def c_cons_dbl (suffix $)(expr xsh,ysh,wid,hgt) =
2 pstroke_stem ($) (xsh+0b,ysh+0h,-thick,-hgt);
3 dx$a.c=-.15b;
4 stroke_stem ($a)(x$b,y$b-thin,-wid,thin);
5 if not outln_i: ypenstroke stem; fi
6 z$aa=(x$a-.65wid,y$a); penpos$aa(w_n,a_w);
7 z$ab=(x$a.d-.2b,y$a.d+.5wd$ab);
8 penpos$ab(.6thin,a_n);
9 penstroke z$aa.e {dir 263} .. z$ab.e;
10 penlabels($aa,$ab);
11 pstroke_edge((x$ab.r,y$a.d),z$ab.r,z$a.c,z$a.d);
12 enddef;

Figure 18: The consonant doubling macro in action.

്ᨴ ്ᩘ ്ᩞ ്ᩪ
The macro requires four expression arguments

of horizontal shift, vertical shift, width and height,
after the suffix argument. A usage example showing
the source of the conjunct ്ᨴ is provided in List-
ing 23.

Listing 23: Usage of the consonant doubling macro.
1 beginfig(20);
2 coor_c_ch_lt (1) (0u,0u);
3 pstroke_c_ch_lt (1);
4 pstroke_stem (2)(0,0,3b,thin);
5 pstroke_stem (3)(x2d,0,thick,1h);
6 c_cons_dbl (4)(x3d,y3a,1.8b,.4h);
7 endfig;

3.5.9 The vowel signs
Among all the vowel signs, four of them — ◌ു, ◌ൂ, ◌ൄ,
◌ൃ — exhibit the tendency to join with consonants to
form conjuncts. Another speciality is that each of
the 昀椀rst two — ◌ു and ◌ൂ — has four di昀昀erent forms
depending on the shape and other characteristics of
the conjoining consonant. A few examples below
illustrate the diverse conjunct formation with the
sign ◌ു:
(i) കു, രു (ku, ru);
(ii) ഗു, ജു, തു, . . . (gu, ju, thu);
(iii) നു, ണു, , . . . (nu, ṇu, nnu) and
(iv) ദു, പു, ബു, മു, . . . (du, pu, bu, mu).

Similarly, the longer form ◌ൂ creates four di昀昀erent
conjuncts that correspond to the shorter forms cited
in the previous list:
(i) ജൂ, രൂ (jū, rū);
(ii) കൂ, ഗൂ, തൂ, . . . (kū, gū, thū);
(iii) നൂ, ണൂ, , . . . (nū, ṇū, nnū) and
(iv) ദൂ, പൂ, ബൂ, മൂ, . . . (dū, pū, bū, mū).

However, the other two vowel signs — ◌ൃ, ◌ൄ —
do not tend to create di昀昀erent kinds of conjuncts.
The 昀椀rst assumes the uniform shape of കൃ, ഗൃ, പൃ, ദൃ,
. . . while the conjuncts of the latter have the shape
of കൄ, ഗൄ, പൄ, ദൄ, . . . There is yet another consonant,
ര, that conjoins with base characters to make the
‘reph’ form as ്ᩅ, ്ᩇ, ്ᩚ, ്ᩖ, . . . that is de昀椀ned using
make_reph macro (see Table 4).

We observed that the majority of the conjuncts
with the 昀椀rst two vowel signs tend to form rounded
variants of ◌ു and ◌ൂ (see the examples in item iv of
the above two lists); hence, two macros have been
designed so that the corresponding conjuncts are
created via simple calling of one of these macros
augmented with appropriate x, y coordinate values
at which to attach. The two examples of the con-
juncts പു and പൂ provided in Figure 19 illustrate the
process. The corresponding METAPOST sources are
in Listing 24.

Figure 19: Formation of conjuncts with rounded vowel
signs aligned with the bottom of a horizontal stem.

Listing 24: The conjuncts with rounded vowel forms.
1 %%% പു %%%
2 def gl_pu (suffix prx) =
3 outln:=true;
4 gl_pa(prx);
5 make_stem_u (21) (x.prx.3d-.5wd21c,
6 y.prx.3c-.75wd21b);
7 enddef;
8 %%% പൂ %%%
9 def gl_puu (suffix prx) =
10 outln:=true;
11 gl_pa(prx);
12 make_stem_uu (21) (x.prx.3d-(x21c.r-x21b),
13 y.prx.3c-.5wd21b);

Two macros, make_stem_u and make_stem_uu
are used to align the ◌ു and ◌ൂ respectively with the

C. V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain



TUGboat, Volume 44 (2023), No. 2 311

horizontal stem of പ. One may also notice a bool-
ean outln has been set true to improve the align-
ment process (this will be explained in detail in Sec-
tion 3.5.10 on outline mode). The macro requires
two arguments, the horizontal and vertical coordi-
nates, where the rounded object will align with the
stem. The sources in Listing 25 will amplify this
further.
Listing 25: The conjuncts with rounded vowel forms
conjoining with horizontal stems of consonants.
1 %%% ◌ു-sign %%%
2 def make_stem_u (suffix $) (expr xsh,ysh) =
3 coor_vl_round_u_alt ($) (xsh,ysh);
4 pstroke_vl_round_u_alt (21);
5 if not noreverse: stem:= reverse stem; fi
6 find_outlines(rmpath,stem)(P);
7 for i=1 upto P.num: ypenstroke P[i]; endfor
8 enddef;
9 %%% ◌ൂ-sign %%%
10 def make_stem_uu (suffix $) (expr xsh,ysh) =
11 coor_vl_round_uu_alt ($) (xsh,ysh);
12 pstroke_vl_round_uu_alt (21);
13 if not noreverse:stem:= reverse stem; fi
14 find_outlines(rmpath,stem)(P);
15 for i=1 upto P.num: ypenstroke P[i]; endfor
16 enddef;

As you might surmise, there are also variant
forms of the macros to accommodate rounded bot-
tom curves where the vowel sign is expected to align.
The source code is provided in Listing 26, and the
corresponding output in Figure 20.
Listing 26: The conjuncts with rounded vowel forms
conjoin with bottom curves of consonants.
1 %%% ഡു %%%
2 def gl_Du (suffix prx) =
3 outln:=true;
4 gl_Da (prx);
5 make_round_u (21) (x.prx.4a+20+(x21c-x21b),
6 y.prx.4a.r-.75wd21b);
7 enddef;
8 %%% ഡൂ %%%
9 def gl_Duu (suffix prx) =
10 outln:=true;
11 gl_Da (prx);
12 make_round_uu (21) (x.prx.4a,y.prx.4a+.1wd21b);
13 enddef;

The other forms of these two vowels are lim-
ited to a very few consonants and therefore created
individually by slicing the paths at appropriate lo-
cations and adding necessary components from the
ml-shape-lib.mp library.

A variety of macros, listed in Table 4, de昀椀ned
in ml-vlsigns-lib.mp, can be used to create con-
juncts with di昀昀erent vowels depending on the shape
of the consonant and the 昀椀nal form of the conjunct.

Figure 20: Formation of conjuncts with rounded vowel
signs aligned with the bottom of a curve.

3.5.10 outline mode
The rounded forms of the vowel signs ◌ു and ◌ൂ
present the unusual challenge of excising the por-
tions not encompassed by their curved structures,
when juxtaposed on a horizontal stem or rounded
path. This typographical intricacy is meticulously
adhered to by all the fonts crafted and published by
the Rachana Institute of Typography. Figure 21
shows two illustrative images, demonstrating this
requisite nuance, ensuring harmonious integration
of the rounded vowel signs within the textual fabric.

Figure 21: Example images showcasing the removal of
uncovered parts from ◌ു and ◌ൂ.

.3c

.3d

.4a .4d

21a

21b

21c

21d

21a

21b

21c

21d

remove

20 30

.3c

.3d

.4a .4d

21a

21b

21c

21d

21a

21b

21c

21d

1aa

1bb

1cc

1dd

1aa

1bb

1cc

1dd

remove

20 30

Implementing this particular requirement in
METAPOST presents itself as a formidable undertak-
ing. Happily, however, the bundled plain_ex.mp
library accompanying the METATYPE1 package [4]
emerged as a veritable fairy godmother to nav-
igate this very challenge. Thus we will share
a snippet from the self-documented code base of
plain_ex.mp, perfectly suited for the readers seek-
ing enlightenment in this matter.

The problem can be stated as follows: two paths
are given (precisely: expressions of type path); as-
sume that the positively directed (anti-clockwise)
path accomplishes 昀椀lling, and negatively directed
(clockwise) — erasing; the task is to 昀椀nd the
outline of the resulting (visible) 昀椀gure. Such
a task is known as “removing overlaps” which
seems too narrow for such a complex opera-
tion. Actually, the basic macro of that part,
i.e., find_outlines, accomplishes set-theory
operations: sum, di昀昀erence and product, depend-
ing on the turning number of the input paths.
The illustration below demonstrates the results

METAFONT/METAPOST and a complex Indic script: Malayalam



312 TUGboat, Volume 44 (2023), No. 2

Table 4: List of macros, glyphs in which used, and the glyphs in Malayalam script.

Macro Glyph ID ML glyph

c_thrkar h1r1, k1k1r1, k3r1, ch2r1, th1r1, th1th1r1, k1th1r1,
n1r1, n1n1r1, n1th1r1, z1r1, z1ch2r1

ഹൃ, ඇ, ഗൃ, ഛൃ, തൃ, , വ൏, നൃ, ,
ബ൏, ശൃ, ᩑ᪐

c_krkar n1th3r1, ngk1r1, p4r1, r3r1, th1p4r1, k1r1, k3th3r1,
th3r1, th3th3r1

ᨮ᪐, ഭൃ, രൃ, ഭ൏, കൃ, ᨽ᪐, ദൃ,

c_prkar
ch3r1, ch3ch3r1, h1m1r1, k1shr1, k2r1, k3k4r1, k4r1,
l3r1, m1r1, m1p1r1, n1m1r1, n1th3r1, njch1r1, njch2r1,
p1r1, p3r1, shr1, s1th2r1, t1r1, th1m1r1, th1th2r1,
th1s1r1, v1r1

ജൃ, , ᩧ᪐, ᩌ᪐, ഖൃ, ᨯ᪐, ഘൃ, ലൃ, മൃ, ᩘ᪐,
ᩎ᪐, ᨸ᪐, ട൏, പൃ, ബൃ, ഷൃ, ᩝ᪐, ടൃ, ᩒ᪐,
ᩉ᪐, ᩜ᪐, വൃ

c_srkar ch4r1, k3th3th4r1, n1th4r1, nht3r1, nht4r1, s1r1, t3r1,
t4r1, th1s1r1, th3th4r1, th4r1, y1r1

ഝൃ, ❤⟝, ᩏ᪐, ᩄ᪐, ᩅ᪐, സൃ, ഡൃ, ഢൃ,
ᩜ᪐, ᩍ᪐, ധൃ, യൃ

u_bot
ch2u1, ch3u1, ch3u2, ch3ch3u2, h1u1, h1u2, k1k1u2, k3u1,
k3u2, k1th1u1, k1th1u2, n1th1u1, n1th1u2, njch2u1, p4u1,
p4u2, th1p4u2, th1u1, th1u2, th1th1u1, th1th1u2, z1u1,
z1ch2u1

ഛു, ജു, ജൂ, , ഹു, ഹൂ, ආ, ഗു, ഗൂ. വ്,
വൎ, ബ്, ബൎ, ട്, ഭു, ഭൂ, ഭ്, ഭൎ, തു, തൂ,

, , ശു, ᩑ

c_chhuu k1u2, ch2u2, ngk1u2, njch2u2, z1u2 കൂ, ഛൂ, ᨮ, ടൎ, ശൂ

c_ku_rt ch3u2, ch3ch3u2, njch3u2, p4u2, th1p4u2 ജൂ, , ᨺ, ഭൂ, ഭൎ

c_noo_rt h1n1u2, k3n1u2, n1n1u2, n1u2, n1n1u2, nhu2 ᩡ, ᨿ, നൂ, , ണൂ

make_reph

ch1ch2r3, ch2r3, ch3r3, ch4r3, h1r3, k1k1r3, k1r3,
k1t1r3, k1th1r3, k3r3, k3th3th4r3, k4r3, l3p1r3, m1p1r3,
m1r3, n1m1r3, n1n1r3, n1r3, n1th1r3, n1th3r3, n1th4r3,
nht1r3, nht3r3, p1r3, p1s1r3, p2r3, p3r3, p4r3, r3,
s1k1r3, s1p1r3, s1r3, s1s1r3, s1t1r3, s1th1r3, s1rhrhr3,
shk1r3, shp1r3, shr3, sht1r3, t1r3, t3r3, t4r3, th1r3,
th1s1r3, th1th1r3, th3r3, th3th4r3, th4r3, v1r3, z1r3,
z1z1r3

❥, ്ᩋ, ്ᩌ, ്ᩍ, ്ᩩ, ඈ, ്ᩅ, ❤, ❩,
്ᩇ, ⟧㒔, ്ᩈ, ➌, ➈, ്ᩞ, ➆, , ്ᩘ, ❼,
❾, ❿, ❲, ❴, ്ᩚ, ➒, ്ᩛ, ്ᩜ, ്ᩝ,
ര, ❽, ➒, ്ᩨ, , ➇, ➌, , ❼, ➑,
്ᩧ, ➆, ്ᩏ, ്ᩑ, ്ᩒ, ്ᩔ, ➌, , ്ᩖ,
❽, ്ᩗ, ്ᩥ, ്ᩦ,

yielded by the macro find_outlines. There
are four cases since there are four combinations
of turning numbers for two “regular” paths. Each
case shows the initial situation (left) and the re-
sulting one (right). Filling is omitted, the outline
colour shows the turning number: blue — positive,
red — negative.

In the realm of typography, where every de-
tail matters, the plain_ex.mp library proves itself to
be an indispensable ally. Therefore, without a mo-
ment’s hesitation, the find_outlines macros have
been unabashedly borrowed in their entirety from
the plain_ex.mp library. They have been encap-
sulated within a function and employed to scruti-
nize the paths whenever the rounded vowel signs
align themselves alongside the horizontal stem or
the curved lower boundaries of the consonants. This
judicious integration ensures that the typographi-
cal integrity remains intact. Many of the compo-
nents that form part of the bottom curves and the
pstroke_stem macros have been rede昀椀ned to in-
clude code to check the state of outln and apply

find_outlines macros appropriately depending on
the state of the boolean. A closer examination of the
METAPOST sources listed in Listings 24 through 26
will provide ample illustration of the above.

4 OpenType font generation
METAFONT gives us parametric font design and
METAPOST gives us vector format glyphs, SVG be-
ing the preferred output format. Contemporary font
building tools work with vector glyph outlines; and
we have a few free software choices, viz., FontForge,
fontmake, etc. We did look at METATYPE1 but it
is suitable for generating Type 1 fonts only; still,
macros such as find_outlines from METATYPE1
are made use of. Khaled Hosny has built an Open-
Type version of Knuth’s Punk font [2], utilizing the
Python scripting abilities of FontForge (we thank
Hosny for adding an open license to the build script
on our request). We had earlier developed font
building tools based on FontForge for Malayalam
font development and this was found to be a natu-
ral 昀椀t.

C. V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain



TUGboat, Volume 44 (2023), No. 2 313

We thus developed a font build tool in Python,
heavily utilizing FontForge Python libraries, driven
by a con昀椀guration 昀椀le to (1) import the SVG outlines
into glyph slots; (2) assign Unicode codepoints to
them; (3) set left/right bearing, width and other
properties; (4) set font metadata and (5) generate
the 昀椀nal OpenType font formats such as TTF, OTF,
WOFF. Thus, the overall development work昀氀ow is:
METAPOST −→ SVG −→ FontForge + scripts

−→ OTF/TTF/WOFF
Each character is de昀椀ned in its own METAPOST

昀椀le following the glyph naming convention, which is
then compiled to generate an SVG 昀椀le in a directory
for the variant being generated (serif-regular,
serif-thin, etc.), bearing the same glyph name,
for e.g., ml_a.mp → ml_a.svg. In general, all the
glyph names in the METAPOST 昀椀les, generated SVG
昀椀les, con昀椀g 昀椀les and OpenType layout rules follow
the convention explained in Section 3.4.1.

Once the SVG 昀椀les are generated, the next
round of scripts, driven by a con昀椀guration 昀椀le that
associates glyph names with its Unicode codepoint
and other properties, are run. The Malayalam script
has many conjuncts that do not have individual
codepoints themselves but are formed by a combi-
nation of basic Unicode codepoints. These glyphs
do not need a mapping entry for codepoint but may
need other properties.

The con昀椀guration 昀椀le also holds the font meta-
data such as family name, PostScript name, variant
name, version, license, etc. Crucially, it should also
be possible to adjust the left/right side bearings of
all the glyphs. A default bearing value suffices for
most; but quite a few need either a smaller or neg-
ative value, for e.g. ◌ി (U+0D3F, glyph name i1) and
◌് (U+0D4D, glyph name xx) which extends outside
the left margin (negative side bearing). In addition,
setting the width for non-printable characters like
space is crucial, as this a昀昀ects word spacing.

The common ini con昀椀guration 昀椀le format is
used; and a self-explanatory sample 昀椀le is provided
in Listing 27.

Listing 27: Con昀椀guration 昀椀le for font building.
1 # Metadata
2 [font]
3 family=Sayahna
4 name=Sayahna-Regular
5 version=0.9.1
6 ascent=820
7 descent=180
8 copyright=Copyright 2021-2023 Rachana
9 Institute of Typography
10 <info@rachana.org.in>
11

12 # SVG, OpenType feature file, Unicode mapping
13 [source]
14 glyphdir=svgs-regular/
15 featurefile=features/sayahna-feature.fea
16 ucglyphmapfile=tools/rit-ml-uc-glyph.map
17

18 # Width of specific glyphs
19 [width]
20 space=300
21

22 # Default and overridden left, right bearings
23 [bearing]
24 default=30,40
25 i1=-74,30 # negative left bearings
26 i2=-80,30
27 r1=-112,30
28 xx=-57,30
29 y2=-70,30
30 y2u1=-70,30
31 y2u2=-70,30
32 v2=-40,30

The font build tool performs a number of steps:
• Assemble all the SVG format glyphs found in

the target directory glyphdir.
• Remove overlap of outlines.
• Add additional glyphs/codepoints for space,

zero-width joiner/non-joiner (U+0020, U+200D,
U+200C), etc. These are used in certain charac-
ter combinations.

• Adjust side bearings/widths of glyphs as spec-
i昀椀ed in the con昀椀g 昀椀le.

• Set metadata.
• Assign the Unicode code points for all base

characters, given in a simple mapping 昀椀le
rit-ml-uc-glyph.map.

• Apply the OpenType shaping rules for Malay-
alam [8], given in a 昀椀le sayahna-feature.fea.

• Set kerning values as speci昀椀ed.
• Finally, produce the font in any desired for-

mat(s), such as TTF, OTF or WOFF2.
All these steps are fully automated by a few

Make昀椀le targets. Thus, if a font developer wishes
to make amendments to a glyph, she can make
the changes in the METAPOST 昀椀le and then run
a make font (or equivalent) command that goes
through all the above steps and generates the re-
vised font a few moments later.

5 Availability
All of the source code of the project, including
METAPOST libraries, glyph de昀椀nitions, font build
tools, OpenType shaping rules, Unicode mapping
昀椀les and other con昀椀guration 昀椀les, is available at
gitlab.com/rit-fonts/Sayahna-font under free
software licenses, such as the LPPL and the OFL.

METAFONT/METAPOST and a complex Indic script: Malayalam

https://gitlab.com/rit-fonts/Sayahna-font


314 TUGboat, Volume 44 (2023), No. 2

6 About the Rachana Institute
of Typography

The Rachana Institute of Typography (RIT) is a not-
for-pro昀椀t digital foundry in Kerala, India. To date,
it has released ten families of Indic script fonts in
TrueType and WOFF2 formats under the terms of
the Open Font License, with more planned.

The following are the technical objectives un-
derlying the founding of the RIT:

1. To resurrect the original script of Malayalam,
which was diluted by dropping hundreds of con-
juncts and ligatures when a reformed script for
the language was introduced by the government
of Kerala to 昀椀t the typewriter keyboards.

2. To develop fonts that completely adhere to the
de昀椀nitive character set prevalent through the
ages.

3. To completely revamp the OpenType layout
(i.e., the GSUB table) of the RIT fonts to uphold
the right spirit of a comprehensive character set
and to replace all previous modi昀椀cations.

4. To redesign all the glyphs in the 昀氀agship font,
RIT Rachana.

5. To freshly redesign RIT Rachana Italic, Bold
and Bold Italic and to generate respective font
variants.

6. To encourage use of code-driven font develop-
ment models by employing character descrip-
tion languages such as METAFONT and META-
POST.
The RIT Rachana font is used throughout this

article. For samples, font charts, usage options, etc.,
see the documentation of the rit-fonts package:
ctan.org/pkg/rit-fonts.

References
[1] J. Hobby, et al. MetaPost: A Users Manual.

tug.org/metapost
[2] K. Hosny. The Punk Nova font. 2010.

github.com/aliftype/punk-otf
[3] K.H. Hussain, R. Chitrajakumar, et al.

The Rachana font family. 2023.
gitlab.com/rit-fonts/RIT-Rachana

[4] B. Jackowski, J.M. Nowacki, P. Strzelczyk.
Programming PostScript Type 1 fonts using
METATYPE1: Auditing, enhancing, creating.
TUGboat 24(3), 2003. Proceedings of
EuroTEX 2003.
tug.org/TUGboat/tb24-3/jackowski.pdf

[5] D.E. Knuth. The TEXbook, vol. A of
Computers & Typesetting. American
Mathematical Society and Addison Wesley,
Reading, Massachusetts, 1986.

[6] D.E. Knuth. The METAFONTbook, vol. C
of Computers & Typesetting. American
Mathematical Society and Addison-Wesley,
Reading, Massachusetts, 1986.

[7] Rachana Institute of Typography. Malayalam
glyphs, components and sectors. 2022.
rachana.org.in/docs/rit-comp-list.pdf

[8] K.V. Rajeesh. Malayalam OpenType shaping
rules. 2020. gitlab.com/rit-fonts/
malayalam-shaping/

[9] Unicode. Malayalam: 0D00–0D7F.
unicode.org/versions/latest/ch12.pdf
unicode.org/charts/PDF/U0D00.pdf

[10] Wikipedia. Brahmic scripts. wikipedia.org/
wiki/Brahmic_scripts

[11] Wikipedia. Languages of India. wikipedia.
org/wiki/Languages_of_India

⋄ C. V. Radhakrishnan
River Valley Technologies, River Valley

Campus, Malayinkeezh
Trivandrum 695571, India
cvr (at) river-valley (dot) org
http://river-valley.com
ORCID 0000-0001-7511-2910

⋄ K. V. Rajeesh
Rachana Institute of Typography
rajeesh (at) rachana (dot) org (dot) in
https://rachana.org.in/

⋄ K. H. Hussain
Rachana Institute of Typography, Jagathy,
Trivandrum 695014, Kerala, India
hussain (at) rachana (dot) org (dot) in
https://rachana.org.in

C. V. Radhakrishnan, K. V. Rajeesh, K. H. Hussain

https://ctan.org/pkg/rit-fonts
https://tug.org/metapost
https://github.com/aliftype/punk-otf
https://gitlab.com/rit-fonts/RIT-Rachana
https://tug.org/TUGboat/tb24-3/jackowski.pdf
https://rachana.org.in/docs/rit-comp-list.pdf
https://gitlab.com/rit-fonts/malayalam-shaping/
https://gitlab.com/rit-fonts/malayalam-shaping/
https://unicode.org/versions/latest/ch12.pdf
https://unicode.org/charts/PDF/U0D00.pdf
https://wikipedia.org/wiki/Brahmic_scripts
https://wikipedia.org/wiki/Brahmic_scripts
https://wikipedia.org/wiki/Languages_of_India
https://wikipedia.org/wiki/Languages_of_India


TUGboat, Volume 44 (2023), No. 2 315

TUG 2023 abstracts

Editor’s note: Links to videos and other informa-
tion are posted at tug.org/tug2023.

−− ∗ − −

Patrick Gundlach
News from boxes and glue: How do the TEX

algorithms help in developing a new typesetting

engine?

In this presentation I will talk about the experience
of the last two years with boxes and glue. The li-
brary has not yet reached its final state, but a lot
has already been typeset with it. I will show what
kind of experiences I have made with the TEX algo-
rithms, which data structures are suitable for text
typesetting and how PDF specialties like interaction
and accessibility can be integrated.

About boxes and glue: boxes and glue is a li-
brary written in the Go programming language that
includes many of TEX’s algorithms, such as the opti-
mum fit paragraph breaking algorithm, the hyphen-
ation algorithm, and the basic structure with nodes
and node lists to assemble boxes. It was originally
written as a replacement for LuaTEX to create docu-
ments with the speedata Publisher.

Island of TEX
The Island of TEX 2023—sailing the smooth seas

of ideas

The Island of TEX has always valued community
over development pace. This year, we are proud
that we could convince our inner sloths to produce
a long-awaited new albatross release and a new
website for our community. On the technical side,
we improved our build infrastructure and started
welcoming TEX packages. But in the end, this year
was primarily about collecting ideas so stay tuned
for our talk and call for action.

Oliver Kopp
JabRef as BIBTEX-based literature

management software

JabRef is literature management software completely
based on the BibTEX format. This talk provides
an overview of JabRef by first introducing the basic
concept of JabRef. After that, highlights of JabRef
will be demonstrated: Integrated web search, group-
ing of entries, import and export of other formats,
and the quality assurance of entries. The integration
of PDFs will be demonstrated: Both the linking of
PDFs and the integration of BibTEX data into PDFs
using XMP metadata.

Eberhard W. Lisse
Introduction to Typst

typst is a new markup-based typesetting system that
is designed to be as powerful as LATEX while being
much easier to learn and use. It flows from a Master’s
thesis at the Technical University Berlin, is written
in Rust, and has a domain-specific language that
is much easier to master than TEX or LATEX. It
produces quite reasonable output, and especially for
shorter documents it is extremely fast, though it
remains a work in progress. It can be obtained from
Github at github.com/typst/typst.

I am a long time user of LATEX, in particular
with LYX and while not a programmer but rather
an obstetrician/gynecologist, I’m computer-literate
enough to generate and use templates with perl and
bash. This will be an introductory presentation,
showing the comparison of some simple texts in LATEX
and typst.

Frank Mittelbach
The LATEX Companion, 3rd edition—

Anecdotes and lessons learned

During the last five years a lot of work has gone into
producing a new edition of The LATEX Companion.
In this talk I will talk about some aspects of that
work, the unique challenges and some of the lessons
learned during that endeavour.

Frank Mittelbach
38 years with LATEX—A personal picture story

As the title indicates, this is part of the story of
LATEX in pictures, as seen from my eyes. It shows
many highlights throughout the years and puts faces
to names—some of which are in the audience but
many not. It is based on what was available in my
photo archive and certainly biased, but I nevertheless
hope it is of some interest.

Vít Novotný
Markdown 3: What’s new, what’s next?

Plain TEX, expl3, and Lua provide a common pro-
gramming environment across different TEX formats.
Similarly, the Markdown package for TEX has pro-
vided an extensible and format-agnostic markup lan-
guage for the past seven years. In this talk, I will
present the third major release of the Markdown
package and the changes it brings compared to ver-
sion 2.10.0, which I presented at TUG 2021.

In my talk, I will target the three major stake-
holders of the Markdown package:

1. Writers will learn about the new elements,
which they can type in their Markdown documents.

2. Coders will learn how they can extend Mark-
down with new elements and how they can style
Markdown documents in different TEX formats.

doi.org/10.47397/tb/44-2/tb137abstracts

TUG 2023 abstracts

https://tug.org/tug2023
https://github.com/typst/typst
https://doi.org/10.47397/tb/44-2/tb137abstracts


316 TUGboat, Volume 44 (2023), No. 2

3. Developers will learn about the implementa-
tion details of the Markdown package and will have
a chance to discuss plans for the future governance
and development of the Markdown package.

samcarter
The tcolorbox inner beamer theme

The tcolorbox inner beamer theme is a new theme
for the beamer class. It replaces normal beamer
blocks with tcolorboxes of the same look and feel.
This allows users to easily modify the appearance of
blocks. In this short talk, I will give a short overview
of the theme and show some examples of how one
can customise blocks.

Jan Šustek
On generating documented source code by blocks

in TEX

In this talk I will focus on literate programming in
TEX—writing source code and its documentation
in a single file. Firstly I will show an easy modifica-
tion of OpTEX macros to allow literate programming.
Then I will modify the macros to build the source
code by nested blocks which can be built consec-
utively in the whole document—quite similar to
tex.web, but implemented completely in TEX. Such
documentation is more comprehensible to the reader.

With a few more macros or hooks, one can apply
this method in the following real situations.

• Cross references make goto jumps easy in pro-
gramming languages with line numbers.

• The abovementioned blocks can imitate sub-
programs with arguments in programming lan-
guages where they are not allowed.

• TEX macros can define a metalanguage and gen-
erate the source code in two different program-
ming languages simultaneously.

Without the TEX methods the solutions would be
more complicated.

Joseph Wright
Supporting backends in expl3

The backend in TEX is responsible for the parts
of producing output that TEX doesn’t know about,
for example colour, image inclusion and hyperlink
creation. Each backend has its own syntax and range
of supported concepts, so at the macro level there
needs to be the appropriate code to ‘talk’ to the
backend. In expl3, we have developed a consistent
set of backend support files, based on the experience
of (LA)TEX developers over 30+ years of working with
these backends. Here, I will look at the history of
backend abstraction and the model used in expl3.

Joseph Wright
Further adventures in Unicode-land: Refining

case changing

Getting text processing right for Unicode in TEX is
a challenge, particularly where one wants to support
the full range in pdfTEX. Over the past few years, I
have worked on one aspect: case changing. Code to
carry out the Unicode case changing algorithm was
integrated into the LATEX kernel a couple of years
ago. Since then, we have been refining the details,
adding more power and discovering new issues. Here,
I’ll look at what we’ve done to get the code working
smoothly, and look forward to what might still be
improved.

L
e
c
t
u
r
e

h
a
ll

c
e
il
in

g
c
o
u
r
t
e
s
y

A
le

x
a
n
d
e
r

W
il
la

n
d
.

C
o
n
fe

r
e
n
c
e

c
lo

s
in

g
c
o
u
r
t
e
s
y

R
e
in

h
a
r
d

K
o
t
u
c
h
a
.

TUG 2023 abstracts



TUGboat, Volume 44 (2023), No. 2 317

ArsTEXnica #34 (May 2023)

ArsTEXnica is the journal of guIt, the Italian TEX user
group (www.guitex.org).

Claudio Beccari, Editoriale [From the editor]; p. 5

Grazia Messineo, Salvatore Vassallo, Come
scrivere un libro e sopravvivere [How to write a book
and survive]; pp. 7–19

In 2022, we wrote with two other colleagues a book
on calculus for first year economics students. Writing this
book posed various problems, which can be divided in two
areas: the need to use a package to collaboratively write
the book, possibly with the files saved on a cloud service,
with authors working at different times, but sometimes
at the same time; and the need to satisfy the stylistic
requests of the editor, some of which were already known
and others only becoming known during the proofreading
phase.

We found, for a great number of these problems,
some tricks and solutions that we want to share in this
paper with those willing to begin a similar job. Let
us specify that these are the solutions which allowed
us to survive and to produce a book satisfying all the
characteristics imposed by the editor. Perhaps these are
not the optimal solutions, nor unique ones.

Emmanuele F. Somma, Semplificare LATEX con
ORG-mode in Emacs [Simplifying LATEX with
ORG-mode in Emacs]; pp. 21–48

In writing academic or technical articles, you can
reduce complexity by using markup or configurations,
dropping the LATEX markup language and adopting ORG-
mode in Emacs while retaining LATEX’s high typograph-
ical quality. This article shows how the ORG markup
exported to LATEX works. Also, it explains the attributes
of the most common elements of academic papers, such
as links, tables, notes, figures, and bibliographic refer-
ences. Finally, in the appendix, as a practical project,
the author’s choices for delivering this article following
the typographical rules of ArsTEXnica are documented.

Luigi Scarso, CJK Unicode strokes e radicals con
MFLua: uno studio preliminare [CJK Unicode strokes
and radicals with MFLua: A preliminary study];
pp. 49–60

We present an original method for generating an
OpenType font for the Unicode block Kangxi Radicals
and CJK Strokes of the Chinese writing system using
MFLua and some auxiliary programs. Given its non-
definitive status, the generated font is not intended to
be used in normal applications.

Joseph Wright, Mapping to individual characters in
expl3; pp. 61–62

[Published in TUGboat 43:3.]

Richard Koch, TeXShop, Version 5; pp. 63–66
[Published in TUGboat 43:3.]

Richard Koch, Interactive content using TEX4ht;
pp. 67–78

[Published in TUGboat 43:3.]

[Received from Massimiliano Dominici.]TUGboat, Volume 44 (2023), No. 2 317

La Lettre GUTenberg 50, 2023

La Lettre GUTenberg is a publication of GUTenberg,
the French-language TEX user group
(gutenberg-asso.org); published online at
publications.gutenberg-asso.fr/lettre.

Issue #50 was published June 14, 2023.

Patrick Bideault, Maxime Chupin, Éditorial
[Editorial]; pp. 1–2

Patrick Bideault, Activité récente de l’association
[The various works of the group]; pp. 3–5

Denis Bitouzé, Exposés mensuels sur (LA)TEX et autres
logiciels [Monthly presentations on (LA)TEX and other
software]; pp. 6–7

Patrick Bideault, Denis Bitouzé, Maxime Chupin,
Yvon Henel, Et maintenant, une bonne vieille veille
TEXnologique ! [TEXnology watch]; pp. 7–21

58 new CTAN packages, January–June 2023.

Maxime Chupin, Un site dédié aux exemples
METAPOST [A website dedicated to METAPOST

examples]; pp. 22–26
This new website is hosted at:

metapost.gutenberg-asso.fr.

Maxime Chupin, Composer l’arbre de Hu昀昀man avec
METAPOST et METAOBJ [Typesetting the Hu昀昀man
tree with METAPOST and METAOBJ]; pp. 26–41

About the author’s new package: huffman.

Denis Bitouzé, Dans le labyrinthe infernal des
environnements d’amsmath [In the hellish maze of the
amsmath environments]; pp. 42–46

A new diagram based on a 昀氀owchart by
Stefan Kottwitz.

Maxime Chupin, La fonte de ce numéro : Noto
[This issue’s font: Noto]; pp. 47–52

Steven Matteson, En route vers Noto [The road to
Noto]; pp. 53–73

Translation of the article published in TUGboat,
Volume 41 (2020), No. 2, pages 145–154.

Patrick Bideault, Maxime Chupin, En bref [At a
glance]; pp. 74–79

Short news about spams, TikZiT, exhibitions and
more.

Yvon Henel, Rébus [A rebus and the solution to the
rebus in the previous Lettre]; p. 80

[Received from Patrick Bideault.]



318 TUGboat, Volume 44 (2023), No. 2

ConTEXt Group Journal 2021

The ConTEXt Group publishes proceedings of the
ConTEXt meetings: articles.contextgarden.net.

Henning Hraban Ramm, Editorial note; p. 4

Day plan; pp. 5–6

Willi Egger, Handling fonts in ConTEXt; pp. 7–19
Obviously when typesetting electronically, we need

to have at least one font available for use as base font.
Although there are quite a number of fonts delivered with
the distribution, often we need to use a custom font. It is
not that complicated to use a third-party font; however,
one needs to implement it in a structured way in order
to make it available to TEX. The following article gives
insight into the basic principles of how this can be done
in ConTEXt.

Hans van der Meer, Macros and Lua snippets;
pp. 20–32

A module containing a number of helper macros is
described, many of them programmed in Lua.

Hans van der Meer, Translations from a vocabulary;
pp. 33–40

This module was formerly part of hvdm-xml but has
now been split off into an independent module with its
own description. It is used for making other modules
language-sensitive and is especially tailored for XML use.

Denis Maier, Automatic suppression of unwanted
ligatures: The ConTEXt LMTX approach; pp. 41–47

It’s well known that ligatures should be avoided in
certain cases. But especially when typesetting German,
ligatures have proven to be tricky beasts, and it’s hard
to get them right automatically.

Taco Hoekwater, MetaPost paths and pairs;
pp. 48–92

This talk and paper tries to explain everything re-
lated to paths, pairs, pens and transforms in MetaPost. A
fair bit of familiarity with MetaPost’s data types and gen-
eral syntax is assumed. In particular, I assume you have
read my ‘sparks, tags, suffixes and subscripts’ article.

Henning Hraban Ramm, Der erweiterte Orbit [The
extended orbit]; pp. 93–96

The theme of the 15th ConTEXt meeting was “ex-
panding orbits” and took place from September 20th to
25th, 2021 at ’s Sjetootje in Bassenge-Boirs (Belgium), a
village between Maastricht and Liège.

Harald König, Henning Hraban Ramm, Meeting
impressions; pp. 97–99

Abstracts without papers; pp. 100–102

Participant list of the 15th ConTEXt meeting; p. 103

[Received from Henning Hraban Ramm.]

Die TEXnische Komödie 2/2023

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (dante.de).

Martin Sievers, Einladung zur 65. Mitgliederver-
sammlung von DANTE e. V. am 13. Juli 2023 in Bonn
[Invitation to the 65th user group meeting of DANTE

e. V. on July 13th, 2023, in Bonn.]; p. 5

Oliver Rath, Einladung zum bayerischen
TEX-Stammtisch BayTEX 2023 [Invitation to the
Bavarian TEX user meeting BayTEX 2023]; pp. 6–7

Invitation to the Bavarian TEX user meeting,
BayTEX 2023, taking place on July 28th and 29th
in Kirchheim.

Keno Wehr, LATEX und Schulphysik 2: Schaltbilder
[LATEX and physics in school 2: Electronic circuits];
pp. 8–18

How to typeset electronic circuits with several dif-
ferent packages.

Ralf Mispelhorn, Musik-CD mit Cover produzieren
[Producing music CD covers]; pp. 19–24

A tutorial on how to design CD covers with LATEX.

Rolf Niepraschk, Mehrsprachigkeit: Das
LATEX-Paket translator [Multiple languages with the
translator package]; pp. 25–26

A tutorial on how to implement terms within a
document to various languages.

Willi Egger, PocketDiary – Ein Modul für
Terminkalender [PocketDiary — A module for diaries];
pp. 26–38

A ConTEXt module to typeset pocket diaries.

Willi Egger, Andere Kalender mit dem PocketDiary
Modul [Other calendars made with the PocketDiary
module]; pp. 38–56

How to design other calendars with the PocketDiary
module.

Henning Hraban Ramm, ConTEXt kurz notiert!
[ConTEXt news]; pp. 57–59

News regarding ConTEXt.

Sudhir Rao and Indranath Sengupta, Die
Morgendämmerung der Strenge in der Kunst des
Programmierens [The dawn of rigour in the art of
programming]; pp. 60–90

German translation of the text published at
https://bhavana.org.in/the-dawn-of-rigour-in-

the-art-of-programming. Biographical sketch of Don-
ald Knuth with an extensive interview.

Jürgen Fenn, Neue Pakete auf CTAN [New packages
on CTAN]; pp. 56–61

List of new packages on CTAN.

[Received from Uwe Ziegenhagen.]

https://articles.contextgarden.net


TUGboat, Volume 44 (2023), No. 2 319

Zpravodaj 2023/1–2

Zpravodaj is the journal of CSTUG, the TEX user group
oriented mainly but not entirely to the Czech and Slovak
languages. The full issue can be downloaded at cstug.

cz/bulletin.

Petr Sojka, Úvodník [Introductory word]; pp. 1–3
Go forth and participate in CSTUG to make the

bright future of TEX & Friends a reality! You can!

Vít Starý Novotný, Nápadovník jmen pro tvůrčí
psaní v LuaTEXu [Character name generator for
creative writing in LuaTEX]; pp. 3–38

A famous dictum of the computer scientist Phil
Karlton says that there are only two difficult things in
computer science: cache invalidation and naming things.
This is also true in creative writing, where authors have
to come up not just with a story and a setting but also
the names of all their fictional characters. In this article,
we develop a language model in LuaTEX which allows
authors to automatically generate names for their charac-
ters. Besides creative writing, we also discuss other uses
of language models in LuaTEX, namely the automatic
switching of hyphenation patterns based on the current
language and blind text generation. For the TEXnically-
minded users, the article acts as an introduction to the
programming languages of Lua and expl3, and also the
xparse LATEX package for defining document commands
in LATEX.

Karel Šebela, Sazba hudebních skladeb [Musical
composition typesetting]; pp. 39–47

TEX is a useful tool for text typesetting; however,
it doesn’t feature good support for music composition
typesetting at its core. The TUG 2022 conference fea-
tured a talk on notation typesetting which compared the
MusiXTEX package with the MuseScore and Flat tools,
but did not mention the PMX and M-Tx preprocessors.
In this article, I compare typesetting using MusiXTEX

and its preprocessors and describe its usage. In addition,
I describe the incorporation of note symbols into a para-
graph text. After reading the article, the reader will be
able to create a short simple excerpt of a piece of music
and incorporate it into a TEX document, as well as add
musical symbols to a written text.

Matúš Vančík, Pohľad TEXového nováčika na
prezentáciu „Bricks and Jigsaw Pieces“ z TUGu 2022
[A TEX newbie reports on the “Bricks and Jigsaw
Pieces” talk at TUG 2022]; pp. 48–53

The article deals with TikZbricks and jigsaw pack-
ages: their use, design, and possible applications. I look
at these aspects of the packages through my own exper-
imentation as a newish TEX user and I show why such
packages are needed in the world of TEX.

Peter Wilson, Mělo by to fungovat XIII [It might
work XIII]; pp. 54–60

Published in TUGboat 32:3 as “Glisterings”.

[Received from Vít Novotný.]

The gods smile at me: The LATEX

Companion, third edition, and ChatGPT

George Grätzer

1 Contemplation

The fifth edition of my Math into LATEX book is still
selling well, but it is seven years old (LIT). A lot
has changed. All TEX files, BibTEX and MakeIndex
files changed from ASCII to UTF-8. Lots of work
has been done for references, further developing and
enhancing BibTEX. And a lot more . . .

So I started contemplating a sixth edition, a
huge undertaking. For instance, the BibLATEX man-
ual alone is about 350 pages and I would have to
read at least ten like that.

And then the gods smiled at me . . . .
First smile: The LATEX Companion, third edi-

tion.
Second smile: ChatGPT.

2 The LATEX Companion, third edition

This is a heavy con-
tribution by Frank
Mittelbach (mostly);
the two volumes
weigh 3.5 Kg and
they run to almost
1,800 pages. I com-
plained how much I
would have to read
for my sixth edi-
tion, multiply that

by ten, twenty, or more for this. Frank is a voracious
reader with an immense knowledge of LATEX. The
book discusses about 500 packages.

It caters to two audiences, the general user, GU

(they use LATEX for their work but cannot read TEX
code, like me) and the 1% (they read TEX code and
design style files and create packages).

It is hard to tell whether the 1% is 1% of LATEX
users. CTAN has currently about 6,500 packages
and 3,000 contributors. We have no hard numbers
on the number of research mathematicians who use
LATEX or the number of computer scientists, physi-
cists, chemists, and so on, who also use it. So I will
use 1% as a label, not quantified.

The needs of the GU and the 1% are very dif-
ferent. I wrote over 270 research papers, all for
mathematical journals, style files supplied by the
journals and 31 books, all with custom style files
written by the 1%.

doi.org/10.47397/tb/44-2/tb137gratzer-smile

The gods smile at me

https://doi.org/10.47397/tb/44-2/tb137gratzer-smile


320 TUGboat, Volume 44 (2023), No. 2

Now the content, it starts with Chapter 2, “The
Structure of a LATEX Document”. The first few sec-
tions are for the GU, each veering off into topics for
the 1%. At least one section, “Splitting the source
document into several files”, was made obsolete by
the increasing speed of computers. When I started
TEXing, it took more than two minutes to typeset
a page. Now the whole sixth edition typesets in
less than 3 seconds. So the section on how to use
the LATEX commands \include and \includeonly

is much more esoteric.
There is little in the 130 pages of Chapter 3,

“Basic Formatting Tools—Paragraph Level”, for the
GU. It does mention xspace and microtype, so

important.
Chapter 4 is “Basic Formatting Tools — Larger

Structures”. Another 100 pages that does not have
much for the GU. It does discuss modifying the
list environments; not many users like how they are
spaced.

Chapter 5, “The Layout of the Page”, is full of
useful information for the 1%.

Chapter 6, “Tabular Material”, helps the reader
to publish nicer-looking tables, the LATEX default is
rather ugly. It mentions the booktabs package I use
for all my tables in my LATEX books.

Chapter 7, “Mastering Floats”, addresses every
LATEX user’s huge problem: the figures and illustra-
tions act up, they are not inserted into the document
well. It suggests the use of the \clearpage com-
mand. In the sixth edition, I recommend trying to
combine two or three floats into one.

“Graphics Generation and Manipulation” is dis-
cussed in Chapter 8, including the very important
graphicx package of David Carlisle.

Maybe one of the most illuminating parts is
Chapter 9, “Font Selection and Encodings”. Ev-
erybody can benefit from reading the first five sec-
tions, a detailed introduction to the New Font Selec-
tion Scheme (NFSS) of Frank Mittelbach and Rainer
Schöpf, which revolutionized LATEX.

This completes Volume 1, and we start the sec-
ond volume with Chapter 10, “Text and Symbol
Fonts”. It is continued in Chapter 12, “Fonts in
Formulas”. I am not sure for whom these chapters
are meant. They must have been hard to compile,
but who will benefit? The exception is the Lucida
font, in which the book is typeset. Almost 200 pages
of font samples seems a little excessive.

Chapter 11, “Higher Mathematics”, is compul-
sory reading for all mathematicians. Also for all
scientists using formulas. Maybe, “Typesetting For-
mulas” would have been a better title. College math
does not utilize formulas?

Chapter 13, “Localizing Documents”, is also
compulsory reading for all LATEX users who want to
write in a language other than English. There is
support for 30 languages, French and German are
the best.

Chapter 14 dis-
cusses “Index Gen-
eration” for books
and long documents
utilizing MakeIndex.
All book authors
should read it.

Chapters 15,
“Bibliography Gen-
eration” and 16,
“Managing Citations”
are also must-reads

for book authors. The first focuses on BibTEX and
the highlight of the second is the section on BibLATEX,
a 45 page summary of a 350 page user manual.

Chapter 17, “LATEX Package Documentation
Tools”, Appendixes A, “LATEX Overview for Pream-
ble, Package, and Class Writers” and B, “Tracing
and Resolving Problems” are, of course for the 1%.

This book is a tour de force by Frank Mittelbach,
seven years of intense work. I am not sure that “the
Companion would serve as the only reference needed
to get ‘the job’ done.” But for sure, no LATEX user
should be without it.

A minor complaint: The Contents is almost
20 pages long, hard to navigate. Maybe a Short
Contents would have been helpful.

3 ChatGPT

For a few months now, I have been writing the sixth
edition of my book, with a new title, Text and Math

into LATEX. Every day I consult ChatGPT dozens
of times. I mostly converse about LATEX topics but
I also check English usage often (and love to write
Hungarian poems in the poet Petőfy’s style.)

ChatGPT got
a bad rep. Ver-
sion 3.5 used its
pattern recognition
and completion abil-
ities to generate ref-
erences and links,
with unfortunate re-
sults. I use Ver-
sion 4.0 which does
not have this prob-
lem, nor do I ask

anything where such a problem would arise.

George Grätzer



TUGboat, Volume 44 (2023), No. 2 321

In the first three editions of my book, I dis-
tinguish between LATEX commands and AMS math
commands. I changed that in the fourth edition,
to simplify the discussion. So the phrase: “LATEX
does not provide tools to access bold lowercase Greek
letters”, changed its meaning from the third to the
fourth edition. Is it still true?

So I ask ChatGPT. It responds: use the \bm

command provided by the bm package.
I want to refresh my understanding of the com-

mand \fontencoding. I ask ChatGPT:

latex \fontencoding command, use and

examples

The reply:

As of my last training cut-off in September 2021,
in LaTeX, the \fontencoding command is used
to specify the font encoding scheme. Different
font encodings contain different sets of char-
acters. By using a specific encoding, you can
access the set of characters that it defines.

For example, the OT1 encoding is the de-
fault in LaTeX, and it does not support accented
characters. If you use an accented character,
then LaTeX will build it by combining the unac-
cented character and a separate accent character.
But this can cause problems in some situations,
like hyphenation.

The T1 encoding, which is part of the Cork
encoding scheme, supports accented characters
directly. It’s often recommended to use T1 for
European languages, because it improves the
hyphenation of words with accented characters.

Here’s an example:

In this example, the \usepackage[T1]{fontenc}
line loads the T1 font encoding. The words in
the document are German and include accented
characters. The T1 encoding allows LaTeX to
handle these characters properly.

It’s worth mentioning that using
\usepackage[T1]{fontenc} changes the font
encoding for the entire document. If you want
to change the encoding for a specific part of the
document only, you can use the \fontencoding
command together with \selectfont, like this:

ln this example, the T1 encoding is used only
for the German text, and then the encoding is
changed back to OT1 for the rest of the docu-
ment. Note that \fontencoding doesn’t change
the font immediately. It only changes the encod-
ing that LaTeX will use the next time it selects
a font, which is why \selectfont is needed.

And if you want more related information, ask:

And how about XeLaTeX and LuaTeX

ChatGPT keeps track of all your conversations,
so I have hundreds more to share. I trust these two
are enough to convince you to try it for yourself.

⋄ George Grätzer

University of Manitoba

gratzer (at) mac dot com

http://server.maths.umanitoba.ca/

homepages/gratzer/

The gods smile at me



322 TUGboat, Volume 44 (2023), No. 2

Book review: The LATEX Companion,

third edition, by Frank Mittelbach with

Ulrike Fischer

John D Lamb

Frank Mittelbach with Ulrike Fischer, The LATEX

Companion, 3rd edition. Addison-Wesley, 2023, two
volumes, 944 pp. and 970 pp., hardcover, US$96,
ISBN 978-0-13-465894-0 and 978-0-201-36300-5.
Electronic edition forthcoming. tug.org/l/tlc3

Why would you need another edition of The LATEX

Companion when you can find online guides to just
about any available feature, e.g. [4, 5], so easily?

The LATEX Companion, 3rd edition (TLC3), is
not simply a reference manual or recipe book listing
solutions to common problems you might encounter
using LATEX. That is not to say that you cannot use
it as a reference manual, and many of the examples
can be adapted as recipes to solve practical problems.
But the real value of TLC3 is that it gives you deep
insight into how LATEX and its various packages work.

TLC3 is published in two parts, each of which is
nearly as long as the second edition [3]. Part I, with
contributions by Joseph Wright, introduces LATEX
and explains how to structure documents. It fo-
cuses almost exclusively on text —Part II discusses
mathematics— covering such things as page layout,
breaking documents into sections and paragraphs,

lists, tabular material, tables of contents, footnotes
and endnotes, how to include images and graphics,
and floats for tables and figures. It finishes with a
detailed chapter on font selection and encodings.

Part II, with contributions by Javier Bezos, Jo-
hannes Braams and Joseph Wright, starts with an
illustrated guide to the fonts readily available in
LATEX. Then it discusses various packages for type-
setting mathematics, followed by a chapter on how
to use the various math fonts that are now possible
as alternatives to the standard TEX math fonts. It
also covers how to use LATEX for languages other
than English, citation and referencing, indexing, be-
fore finishing, as did the second edition [3], with a
chapter on package documentation and appendices
on writing preambles, packages and classes, resolving
problems, and finding further resources.

There are many new developments and pack-
ages, and substantial improvements on older pack-
ages, since the second edition. The most important
new developments to know about are default UTF-8

input support, LuaTEX and biber. UTF-8 is partic-
ularly important for those of us who use languages
other than English. While pdfTEX is still the domi-
nant LATEX engine, it is worthwhile learning about
LuaTEX, if only because it allows you to use Open-
Type font features like historical ligatures and alter-
native characters, shown in Figure 1. And biber is a
more powerful alternative/successor to BibTEX that,
especially notably, can sort correctly in languages
that use characters available only in UTF-8.

Hi猀琀orical ligatures in OpenType
Figure 1: OpenType font features with LuaTEX.

There are too many new packages to enumerate
here. So, I will point out a few that struck me as
interesting. The refcheck package is a nice alterna-
tive to showkeys for showing the keys generated by
\label commands and whether or not they are ref-
erenced. The todonotes package is also helpful for
drafts: it produces todo notes in the margin. Figure 2
illustrates both.

A locally integrable function f is weakly dif-
ferentiable if there exist locally integrable func- Add definition
tions g1, . . . , gq from Ω to R such that

∫
Ω

f(x)
∂φ

∂xj
(x) dx = −

∫
Ω

gj(x)φ(x) dx (1) ?eq:weak-diff?

for j ∈ {1, . . . , q} and φ ∈ C∞

0 .

Figure 2: Illustration of todonotes and refcheck.

doi.org/10.47397/tb/44-2/tb137reviews-mittelbach-tlc

John D Lamb

https://tug.org/l/tlc3
https://doi.org/10.47397/tb/44-2/tb137reviews-mittelbach-tlc


TUGboat, Volume 44 (2023), No. 2 323

The microtype package (not new) is for those who
find TEX’s text formatting just not perfect enough —
for example, it is what allows the hyphens on this
review to jut slightly into the margin. It also can
avoid rewriting to fix overfull hboxes. It only needs to
be loaded to work, like subdepth, a package for better
alignment of subscripts in mathematics. There is also
an embrac package, for roman parentheses around
italic text. The marginnote package is a flexible
alternative to \marginpar for those who, like the
authors of TLC3, realize that marginal notes are
much easier to read than footnotes.1 And the acro

package lets you ensure that an acronym is defined
at first point of use.

There are numerous improvements in the sci-
ences. I will note two. The diffcoeff package simpli-
fies typesetting of derivatives. For example, the first
integral in Figure 2 can now be set with

\int_\Omega f(\mathbf{x})\diffp{\phi}{x_j}

(\mathbf{x})\dl{\mathbf{x}}

instead of

\int_\Omega f(\mathbf{x})

\frac{\partial\phi}{\partial x_j}

(\mathbf{x})\,\mathrm{d}{\mathbf{x}}

to satisfy ISO 80000-2 recommendations. The siunitx

package makes it easier to type scientific units. So, we
can now write \qty{3.6}{\kilogram} to get 3.65 kg
(the weight of the two parts in hardcover) and LATEX
produces both the correct units and the correct spac-
ing between number and units. It can also be used
in a table like the following, with numbers aligned
at a decimal point for easy comparison.

median maximum

mean 0.68 1.973

skewness − 0.101 11.384

kurtosis 3.615 161.422

The siunitx package (or fcolumn if you need to
match accounting conventions) lets you create such a
table without resorting to fiddly \hphantom{0} and
the like.

Chapter 8 of Part I, Graphics Generation and
Manipulation, shows substantial changes from TLC2.
The discussion on PostScript is much reduced, pre-
sumably because it is much less used. Instead, TLC3

now discusses some of the packages that can be used
to produce graphics within LATEX, such as those in
Figure 3. This includes a reasonable introduction to
tikz. The packages are outlined rather than described
in the detail of [1].

1 But, see [2] for why historians won’t be switching to
marginal notes any time soon.

NH2

Figure 3: Graphics from packages outlined in TLC3.

One of the biggest areas of development since
TLC2 has been in fonts. Chapter 10 of Part II il-
lustrates the huge variety of fonts now available, in-
cluding handwriting and symbol fonts and fonts that
support languages not based on Latin. The focus
is on what is either available with a standard LATEX
distribution or is freely available and good quality.
But two fonts that require a license are discussed.
The first is Lucida, which can be purchased from
tug.org/lucida. The second is the Cambria font,
which many LATEX users will already have a license
for. Both are suitable for both text and mathematics
and support languages other than English. Lucida is
a family and includes sans serif, handwriting, math
(see Figure 4) and even a blackletter font. Chapter 12
discusses the many alternatives to Computer Modern
Roman now available for typesetting mathematics
and explains how to set them up.

The writing style, if not always elegant, is at
least competent, comprehensive and candid. On
the few occasions when I found myself going back
through a sentence or two trying to work out what
was meant, it was hard to tell if I had missed some
concept because the explanation could have been bet-
ter or because the concept was too subtle. The expla-
nations are usually detailed and up-to-date — I had
to update my LATEX installation to the latest avail-
able to try out, for example, the \DocumentMetadata
command. This command is not yet necessary for
most people, but will become important as LATEX
gets better at addressing accessibility for people who
cannot read printed text easily. The most impor-
tant packages are explained in detail. Packages of
more niche interest are outlined, with explanations
on where to get further advice.

The advice in TLC3 is refreshingly honest about
the limitations of LATEX and the problems you might
encounter in using various packages. It notes when
there are conflicts between different packages. For
example, Chapter 6 (Part I), on tabular material,
discusses a range of problems in presenting tables —
variations of the tabular environment. These in-
clude vertical and horizontal alignment of cells, is-

Book review: The LATEX Companion, third edition, by Frank Mittelbach with Ulrike Fischer

https://tug.org/lucida


324 TUGboat, Volume 44 (2023), No. 2

sues with narrow columns, cells that span more than
one row or column, automatic calculation of column
widths, tables that are longer than a page, and the
difficulty of rearranging the columns of a table and
using tables within other environments. It then de-
scribes various ways within LATEX to deal with these
problems. It tells you which packages can be used
together and which can’t and presents different solu-
tions so that you can make an educated choice. It
also points out potential conflicts, for example, in
using multi-page tables and floats that (currently)
can only be solved manually.

TLC3 indicates potential difficulties clearly by
the extensive use of marginal notes in blue. Some
are marked with warning signs to indicate potential
conflicts or easy misunderstandings, for example,
pointing out that [h] does not mean ‘here,’ and [bt]

and [tb] have the same effect when placing floats.
More often, though, the marginal notes helped me
find more quickly the detail I sought. TLC3 also uses
a gray background when explaining features specific
to X ETEX/LuaTEX or to biber so that you don’t try
to use what won’t work with these programs and
don’t try to use with them what will only work in
pdfTEX or BibTEX.

TEX makes it difficult to produce what is reason-
ably considered bad typography: random spacing,
typewriter apostrophes, small changes in font size,
hyphens for dashes. TLC3 explains these issues with-
out being didactic, assuming the reader is intelligent
enough to make their own judgment. For example,
it includes booktabs among a range of packages for
producing table rules, then suggests briefly when
booktabs might be preferable.2 It notes underlining,
letterspacing and the like are not always desirable
before introducing packages that produce these fea-
tures and explaining what can go wrong. It explains
why manual adjustment of line spacing might not
work and how setspace can help. It explains why
quotation can be a tricky issue, how the csquotes

package can help, and later how babel allows you to
follow different conventions for different languages.
So, TLC3 is worthwhile reading not just to find out
how to do something but for its discussion on whether
or not what you were thinking of doing is a good
idea and what the alternatives are.

One of the most convenient features of the first
two editions of The LATEX Companion were the ta-
bles, particularly the tables of symbols whose names
you might never guess. TLC3 does not disappoint.
The tables are updated. There are more of them,
because there are more symbols, fonts and the like

2
TLC3’s own tables are mostly in booktabs style.

now available. There are lists of tables and, at least
in the hardcover edition, each part comes with a
ribbon marker you can conveniently use to mark
your favorite table. There are also many figures that
let you, for example, compare fonts when choosing
them for your next document. And, of course, the
comprehensive index nearly always leads you quickly
to what you were looking for.

The LATEXCompanion, 3rdEdition, illustrates
font choices such as TEX Gyre Pagella and Lu-
cida Bright Math.

∫∞

−∞
exp

{

1

2
x

2

}

dx =
√

2π. (1)

Figure 4: TLC3 illustrates many font choices.

There were one or two issues I would have liked
more discussion of— for example, the koma-script

packages and how LATEX might be used to produce
more accessible documents. But every book must set
some bounds; the first of these is well documented
elsewhere, and the second remains too much work-
in-progress.

In summary, then, The LATEX Companion, 3rd

Edition is much more than a how-to guide, recipe
book or even reference for LATEX. It is the kind
of book you want to have at hand for your next
LATEX document. When you want to do something
but don’t know how, it will show you—and, not
just show you. It will treat you as an intelligent
reader. It will show you different methods and the
issues around them and help you to both develop
a better understanding of LATEX and write better,
more beautiful documents.

References

[1] Michael Goossens, Frank Mittelbach, Sebastian
Rahtz, Denis Roegel and Herbert Voß,
The LATEX Graphics Companion, 2nd Edition,
Addison-Wesley, 2008.

[2] Anthony Grafton, The Footnote: A Curious

History, Faber, 1997.

[3] Frank Mittelbach and Michael Goossens,
The LATEX Companion, 2nd edition,
Addison-Wesley, 2004.

[4] Overleaf, Learn LaTeX in 30 minutes.
overleaf.com/learn/latex/Learn_LaTeX_in_

30_minutes

[5] Wikibooks, LATEX.
en.wikibooks.org/wiki/LaTeX

⋄ John D Lamb

j.d.lamb (at) johndlamb dot net

John D Lamb

https://overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://en.wikibooks.org/wiki/LaTeX


TUGboat, Volume 44 (2023), No. 2 325

Science is what we understand well enough to explain to a
computer. Art is everything else we do.

— Donald E. Knuth

stmdocs
the confluence of art and science of text

processing in the cloud!

◦ empowering authors to self-publish

◦ assisted authoring

◦ TEXFolio — the complete journal
production in the cloud

◦ NEPTUNE — proofing framework for
TEX authors

S T M D O C U M E N T E N G I N E E R I N G P V T LT D
Trivandrum • India 695571 • www.stmdocs.in • info@stmdocs.in

1

Find out more at www.overleaf.com

A free online LaTeX and Rich Text 

collabora琀椀ve wri琀椀ng and publishing tool 

Features include:

•  Cloud-based platform: all you need is a web browser. No 

software to install. Prefer to work o昀툀ine? No problem - stay in 
sync with Github or Dropbox

•  Complementary Rich Text and LaTeX modes: prefer to see 
less code when writing? Or love writing in LaTeX? Easy to 
switch between modes

•  Sharing and collaboration: easily share and invite colleagues  
& co-authors to collaborate

•  1000’s of templates: journal articles, theses, grants, posters, 
CVs, books and more – simply open and start to write

•  Simpli昀椀ed submission: directly from Overleaf into many 
repositories and journals

•  Automated real-time preview: project compiles in the 
background, so you can see the PDF output right away

•  Reference Management Linking: multiple reference tool linking 
options – fast, simple and correct in-document referencing

•  Real-time Track Changes & Commenting: with real-time 
commenting and integrated chat - there is no need to switch to 
other tools like email, just work within Overleaf

•  Institutional accounts available: with custom institutional  

web portals

Overleaf makes the whole process of writing, editing and 
publishing scienti昀椀c documents much quicker and easier.



The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
tug.org/consultants. If you’d like to be listed, please
visit that page.

Boris Veytsman Consulting

132 Warbler Ln.
Brisbane, CA 94005
+1 703-915-2406
Email: borisv (at) lk.net

Web: www.borisv.lk.net

TEX and LATEX consulting, training, typesetting and
seminars. Integration with databases, automated
document preparation, custom LATEX packages,
conversions (Word, OpenOffice etc.) and much more.

I have about two decades of experience in TEX and
three decades of experience in teaching & training. I
have authored more than forty packages on CTAN as
well as Perl packages on CPAN and R packages on
CRAN, published papers in TEX-related journals, and
conducted several workshops on TEX and related
subjects. Among my customers have been Google,
US Treasury, FAO UN, Israel Journal of Mathematics,
Annals of Mathematics, Res Philosophica,
Philosophers’ Imprint, No Starch Press, US Army
Corps of Engineers, ACM, and many others.

We recently expanded our staff and operations to
provide copy-editing, cleaning and troubleshooting of
TEX manuscripts as well as typesetting of books,
papers & journals, including multilingual copy with
non-Latin scripts, and more.

Dangerous Curve

Email: khargreaves (at) gmail.com

Typesetting for over 40 years, we have experience in
production typography, graphic design, font design,
and computer science, to name a few things. One DC
co-owner co-authored, designed, and illustrated a TEX
book (TEX for the Impatient).

We can: convert your documents to LATEX from
just about anything type up your handwritten pages
proofread, copyedit, and structure documents

in English apply publishers’ specs write custom
packages and documentation resize and edit your
images for a better aesthetic effect make your
mathematics beautiful produce commercial-quality

326 TUGboat, Volume 44 (2023), No. 2

TEXConsultants

tables with optimal column widths for headers and
wrapped paragraphs modify bibliography styles
make images using TEX-related graphic programs
design programmable fonts using METAFONT and

more! (Just ask.)
Our clients include high-end branding and

advertising agencies, academics at top universities,
leading publishers. We are a member of TUG, and
have supported the GNU Project for decades (including
working for them). All quote work is complimentary.

Hendrickson, Amy

57 Longwood Avenue Apt. 8
Brookline, MA 02446
+1 617-738-8029
Email: amyh (at) texnology.com

Web: www.texnology.com

Full time LATEX consultant for more than 30 years;
have worked for major publishing companies, leading
universities, and scientific journals. Our macro
packages are distributed on-line and used by thousands
of authors. See our site for many examples:
texnology.com.

LATEX Macro Writing: Packages for books,
journals, slides, posters, e-publishing and more;
Sophisticated documentation for users.

Design as well as LATEX implementation for
e-publishing, print books and journals, or specialized
projects.

Data Visualization, database publishing.
Innovative uses for LATEX, creative solutions our

speciality.
LATEX Training, customized to your needs, on-site

or via Zoom. See https://texnology.com/train.htm

for sample of course notes.
Call or send email: I’ll be glad to discuss your

project with you.

Latchman, David

2005 Eye St. Suite #6
Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman

(at) texnical-designs.com

Web: www.texnical-designs.com

LATEX consultant specializing in the typesetting
of books, manuscripts, articles, Word document
conversions as well as creating the customized LATEX
packages and classes to meet your needs. Contact us
to discuss your project or visit the website for further
details.



LATEX Typesetting

Auckland, New Zeland
Email: enquiries (at) latextypesetting.com

Web: www.latextypesetting.com

LATEX Typesetting has been in business since
2013 and is run by Vel, the developer behind
LaTeXTemplates.com. The primary focus of the service
is on creating high quality LATEX templates and
typesetting for business purposes, but individual
clients are welcome too.

I pride myself on a strong attention to detail,
friendly communication, high code quality with
extensive commenting and an understanding of your
business needs. I can also help you with automated
document production using LATEX. I’m a scientist,
designer and software developer, so no matter your
field, I’ve got you covered.

I invite you to review the extensive collection of past
work at the showcase on my web site. Submit an
enquiry for a free quote!

Monsurate, Rajiv

Web: www.rajivmonsurate.com

latexwithstyle.com

I offer: design of books and journals for print and
online layouts with LATEX and CSS; production of
books and journals for any layout with publish-ready
PDF, HTML and XML from LATEX (bypassing any
publishers’ processes); custom development of LATEX
packages with documentation; copyediting and
proofreading for English; training in LATEX for authors,
publishers and typesetters.

I have over two decades of experience in academic
publishing, helping authors, publishers and typesetters
use LATEX. I’ve built typesetting and conversion
systems with LATEX and provided TEX support for a
major publisher.

Warde, Jake

90 Resaca Ave.
Box 452
Forest Knolls, CA 94933
+1 650-468-1393
Email: jwarde (at) wardepub.com

Web: myprojectnotebook.com

I have been in academic publishing for 30+ years. I
was a linguistics major at Stanford in the mid-1970s,
then started a publishing career. I knew about TEX
from editors at Addison-Wesley who were using it to
publish beautifully set math and computer science books.

Long story short, I started using LATEX for
exploratory projects (see website above). I have
completed typesetting projects for several journal
articles. I have also explored the use of multiple
languages in documents extensively. I have a strong
developmental editing background in STEM subjects.
If you need assistance getting your manuscript set in
TEX I can help. And if I cannot help I’ll let you know
right away.

TUGboat, Volume 44 (2023), No. 2 327

TUG InstitutionalMembers

TUG institutional members receive a

discount on multiple memberships, site-wide

electronic access, and other benefits:

tug.org/instmem

Thanks to all for their support!

American Mathematical Society,

Providence, Rhode Island, ams.org

Association for Computing Machinery,

New York, New York, acm.org

Aware Software, Newark, Delaware, awaresw.com

Center for Computing Sciences, Bowie, Maryland

CSTUG, Praha, Czech Republic, cstug.cz

CTAN, ctan.org

Duke University Press, Durham, North Carolina,

dukeupress.edu

Hindawi Foundation,

London, UK, hindawi.org

Institute for Defense Analyses, Center for

Communications Research, Princeton, New Jersey

L3Harris, Melbourne, Florida, l3harris.com

LATEX Project, latex-project.org

MacTEX, tug.org/mactex

Maluhy & Co., São Paulo, Brazil, maluhy.com.br

Marquette University, Milwaukee, Wisconsin,

marquette.edu

Masaryk University, Faculty of Informatics,

Brno, Czech Republic, fi.muni.cz

Modular Font Editor K, mfek.org

Nagwa Limited,

Windsor, UK, nagwa.com

Overleaf, London, UK, overleaf.com

StackExchange, New York City, New York,

tex.stackexchange.com

TEXFolio, Trivandrum, India, texfolio.org

Université Laval, Ste-Foy, Québec, Canada,

bibl.ulaval.ca

University of Ontario, Institute of Technology,

Oshawa, Ontario, Canada, ontariotechu.ca

University of Oslo, Institute of Informatics,

Blindern, Oslo, Norway, uio.no

VTEX UAB,

Vilnius, Lithuania, vtex.lt



2023

Aug 17 – 19 TypeCon 2023, Portland, Oregon.

typecon.com

Aug 22 – 25 23rd ACM Symposium on Document

Engineering, Limerick, Ireland.

doceng.org/doceng2023

Sep 8 The Updike Prize for Student Type Design,

application deadline, 5:00 p.m. EST.

Providence Public Library,

Providence, Rhode Island.

prov.pub/updikeprize

Sep 10 – 16 17th International ConTEXt Meeting,

Prague–Sibřina, Czech Republic.

meeting.contextgarden.net/2023

Oct 15 TUGboat 44:3, submission deadline.

2024

Feb 4 – 7 CODEX IX,

Oakland, California.

www.codexfoundation.org

328 TUGboat, Volume 44 (2023), No. 2

Calendar

Mar 31 TUGboat 45:1, submission deadline.

Apr 16 – 20 Association Typographique Internationale,

ATypI Brisbane 2024,

Brisbane, Australia.

atypi.org/conferences-events/

atypi-brisbane-2024

Jun 26 – 28 Twenty-second International Conference

on New Directions in the Humanities,

“Traveling Concepts: The Transfer of

Ideas in the Humanities”,

Sapienza University of Rome,

Rome, Italy and online.

thehumanities.com/2024-conference

Jul 1 – 5 SHARP 2024, Society for the History

of Authorship, Reading & Publishing,

Reading, UK.

www.sharpweb.org/main/conferences

Status as of 15 August 2023

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568, by email: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

User group meeting announcements are posted at tug.org/meetings.html. Interested
users can subscribe and/or post to the related mailing list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

Reports and notices

154 TUG 2023 conference information and program

157 Eileen Wagner / A rally in Bonn: TUG 2023

162 Karl Berry, Robin Laakso / TUG 2023 Annual General Meeting notes

315 TUG 2023 abstracts (Gundlach, Island of TEX, Lisse, Mittelbach, Novotný, samcarter, Šustek, Wright)

318 From other TEX journals: ArsTEXnica 34 (2022); La Lettre GUTenberg 50 (2023);
ConTEXt Group Journal: 15th meeting (2021); Die TEXnische Komödie 2/2023;
Zpravodaj 2023/1–2

319 George Grätzer / The gods smile at me: The LATEX Companion, Third Edition, and ChatGPT

• summary of the book for general users, and ChatGPT’s usefulness

322 John Lamb / Book review: The LATEX Companion, 3rd edition, by Frank Mittelbach with Ulrike Fischer
• review of this monumental new edition of the LATEX documentation mainstay

325 TUG 2023 advertisements: STM Document Engineering Pvt Ltd; Overleaf

326 TEX consulting and production services

327 Institutional members

328 Calendar



TUGBOAT Volume 44 (2023), No. 2

Introductory
164 Barbara Beeton / What every (LA)TEX newbie should know

• rundown of basic knowledge, common errors, extra spaces, debugging, and more

255 Ben Davies / Bumpy road towards a good LATEX visual editor at Overleaf
• overview of redesigning the code and visual editor duo

197 samcarter, Joseph Wright / Beamer news: 2023
• a selection of user-visible improvements to Beamer in recent years

Intermediate
180 Willi Egger, Hans Hagen, Edith Sundqvist, Mikael P. Sundqvist / New dimensions: Edith and Tove

• two new metric dimensions and a device with which to determine them

240 Jim Hefferon / Using Asymptote like MetaPost
• workflow methods to help get started with Asymptote

256 Tom Hejda / Overleaf and TEX Live deployment
• overview of the yearly deployment of the TEX Live release at Overleaf

192 LATEX Project Team / LATEX news, issue 37, June 2023
• new tagged PDF functionality; extending hooks; \BCPdata; \samepage, \label improvements; more

170 Henning Hraban Ramm / Architectural guides for Bonn — book production with ConTEXt
• design, layout, maps, print modes, images, covers, and many illustrations

176 Henning Hraban Ramm / Calculating covers with ConTEXt
• step-by-step practical examples of creating covers with ConTEXt

257 Rishikesan Nair T, Apu V, Hàn Thé̂ Thành, Jan Vaněk / Primo — A new sustainable solution for publishing
• a cloud-based system with authoring, submission, and proofing tools

252 Martin Ruckert / News from the HINT project: 2023
• better glyph display, links and outlines, searching, HINT viewers

233 samcarter, Gert Fischer / Behind the scenes of the Great TikZlings Christmas Extravaganza
• using LATEX with video tools to create the annual animation

209 Victor Sannier / A METAFONT for rustic capitals
• fully parameterized METAFONT design using Vergilius Vaticanus as a reference

213 Ulrik Vieth / An updated survey of OpenType math fonts
• comprehensive summary of character coverage and more, with examples

Intermediate Plus
267 David Carlisle, Ulrike Fischer, Frank Mittelbach / Report on the LATEX Tagged PDF workshop, TUG 2023

• tagged PDF overview and tools, adapting existing packages, handling tables

262 Ulrike Fischer, Frank Mittelbach / Automated tagging of LATEX documents — what is possible today, in 2023?
• many, though not all, “Leslie Lamport Documents” can now be tagged automatically

207 Hans Hagen, Mikael Sundqvist / On bottom accents in OpenType math
• existing behavior and proposals for handling bottom math accents

249 Island of TEX / Living in containers — on TEX Live (and ConTEXt) in a Docker setting
• container usage examples and infrastructure for current and historic releases

203 Oliver Kopp / The LATEX template generator: How micro-templates reduce template maintenance effort
• separating writing from knowledge of packages, classes, tools

297 C.V. Radhakrishnan, K.V. Rajeesh, K.H. Hussain / METAFONT/METAPOST and a complex Indic script: Malayalam
• implementing an aesthetic Unicode-compliant Malayalam font, with many illustrations

236 Linus Romer / Curvature combs and harmonized paths in MetaPost
• visualizing curvature and making curvature continuous

186 Thomas A. Schmitz / Producing different forms of output from XML via ConTEXt
• making slides, handouts, etc., from a single source, using ConTEXt modes and Lua

226 Mikael Sundqvist, Hans Hagen / Standardizing OpenType math fonts
• italic corrections, accents, rules, primes, parameters, and other OpenType and Unicode math difficulties

242 Didier Verna / Interactive and real-time typesetting for demonstration and experimentation: ETAP
• GUI and programmatic access to algorithms and parameters for line breaking

200 Boris Veytsman / Updating the nostarch class
• handling unusual url, chapter opening, and caption requirements

Advanced
287 Hans Hagen / Cheats (or not): When \prevdepth = -1000pt

• explaining and generalizing the sentinel value for \nointerlineskip

270 Ross Moore / Enhancing accessibility of structured information via ‘Tagged PDF’
• using CSS with HTML derived from PDF to meet WCAG recommendations

275 Dennis Müller / An HTML/CSS schema for TEX primitives —
generating high-quality responsive HTML from generic TEX

• discussion of translating TEX primitives in the RusTEX engine

289 Ondřej Sojka, Petr Sojka, Jakub Máca / A roadmap for universal syllabic segmentation
• Judy array and Unicode support in patgen, to generate universal hyphenation patterns



Reports and notices
154 TUG 2023 conference information and program

157 Eileen Wagner / A rally in Bonn: TUG 2023

162 Karl Berry, Robin Laakso / TUG 2023 Annual General Meeting notes

315 TUG 2023 abstracts (Gundlach, Island of TEX, Lisse, Mittelbach, Novotný, samcarter, Šustek, Wright)

318 From other TEX journals: ArsTEXnica 34 (2022); La Lettre GUTenberg 50 (2023);
ConTEXt Group Journal: 15th meeting (2021); Die TEXnische Komödie 2/2023;
Zpravodaj 2023/1–2

319 George Grätzer / The gods smile at me: The LATEX Companion, Third Edition, and ChatGPT
• summary of the book for general users, and ChatGPT’s usefulness

322 John Lamb / Book review: The LATEX Companion, 3rd edition, by Frank Mittelbach with Ulrike Fischer
• review of this monumental new edition of the LATEX documentation mainstay

325 TUG 2023 advertisements: STM Document Engineering Pvt Ltd; Overleaf

326 TEX consulting and production services

327 Institutional members

328 Calendar


