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Abstract--Mean Fourier amplitudes through a bank of bandpass filters provide a feature vector with which 
typefaces can be identified using a piecewise quadratic classifier. 
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I. I N T R O D U C T I O N  

In this paper we describe the results of classification 
experiments we have performed on text images in 
various digital fonts. The feature vectors in the study 
are derived from data in the Fourier amplitude spectra 
of the images. These experiments have several purposes: 
(a) to establish statistical verification of certain predic- 
tions made by image processing theory; (b) to provide 
a foundation for automatic typeface identification of 
OCR data; (c) to examine the applicability of human 
vision models to the identification and discrimination 
of typefaces and (d) to investigate whether spectral 
features might be useful in typeface production, an 
enterprise which has important algorithmic compo- 
nents for which no quantitative measures of success 
presently exist. 

Nowadays, most documents are produced with 
characters made- -a t  least initially--in digital form 
under computer supervision. Laser printers and photo- 
typesetters make their images by selecting which pixels 
to darken. (The latter only 20 years ago rendered their 
characters photographically. For a review of the tech- 
nology and history of digital type rendering, see for 
example reference (1).) The final appearance of a charac- 
ter on a page depends on many factors, central among 
which is the scan conversion--the choice of which 
pixels to darken. Sometimes this is done by extensive 
bitmap editing by trained designers, especially for 
low-to-medium resolution devices such as 300 dots per 
inch (dpi) laser printers. In recent years, the scan 
conversion has increasingly been done algorithmi- 
cally, ~2'3~ often on demand in the printing device itself. 
This trend is increasing because of the advantages in 
cost, time, and flexibility of algorithmic scan conversion. 

Many gross distinctions between typefaces are easily 
made by the untrained observer, e.g. serif vs. sanserif 
faces and variable-width designs vs. fixed-width ones. 
Other distinctions, while noticeable, are not so easily 
characterized. The impact on the reader of different 
typefaces and sizes in a document arises from non- 
trivial skills usually residing in the mind of the typo- 

grapher. These professionals have various informal 
classification schemes for their choices--some tradi- 
tional and widely used, others personal and unarticu- 
lated. Attempts at such classifications and character- 
izations by these professionals and those who design 
the letterforms are the subject of substantial critical 
writing, especially of individual typeface designs, ~4'5) 
but there have been only the simplest statistical studies 
of any identifying or classifying properties of these 
images, e.g. reference (6), which contains histograms 
showing the distributions for several typographic vari- 
ables on a sample of over 700 typefaces, together with 
some classification terminology based on these vari- 
ables. 

2. SPECTRA O F  TEXT IMAGES 

We first wish to explain why the statistics of the 
Fourier amplitude spectra might be expected to provide 
insight into the issues mentioned above. An image i 
may be regarded as a real-valued function on the 
plane, where i(x, y) denotes the image intensity at (x, y). 
In practice, we consider images which are only of 
finite extent (this leads to certain well-known technical 
issues in computing their spectra). The Fourier trans- 
form I(to~, toy) of i(x, y) is given by 

/(cox, toy) ----- i(x, y) e-  12~tx,~x + y,o,) dx dy. 
~ - o o o  -oo 

It can be written in polar coordinates as 

A(tox, toy) e j0t . . . . .  i 

where A(tox, toy) = [l(tox, tov) l is the Fourier amplitude at 
(tox, toy) and $(tox, toy) the Fourier phase at (tox, toy)- 

The variables tox and toy denote spatial frequency 
and (roughly) represent the rate at which the image 
is changing in its intensity in the x (respectively y) 
direction. High spatial frequencies correspond to rapid 
rates of change with respect to position, i.e. of small 
features in the image. Low spatial frequencies corres- 
pond to slow rates of change, i.e. of large features. 
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Amplitudes and phases have fairly intuitive inter- 
pretations. The amplitudes denote the amount of 
variation at the given spatial frequency. Large ampli- 
tudes at a given spatial frequency or band of frequen- 
cies accompany prominent features repeating at those 
frequencies. For example, in an image of text set in 
a well designed typeface, the vertical strokes in the 
characters are regularly spaced and will therefore 
contribute a relatively large amplitude at a frequency 
(cox, 0). We might call this the stroke frequency. (In a 
single line of type, the strokes are only evenly spaced 
horizontally, so they have no variation in the y 
direction.) On the other hand, in an ensemble of images 
in a fixed type size, we might expect this amplitude to 
have little variance and so contribute little to any 
classification based on amplitudes. (It is not completely 
correct that stroke spacing is constant: type designers 
do sometimes change the spacing when making variants 
of a typeface, but by and large the stroke frequency is 
more characteristic of the size than of anything else.) 

Thus amplitude encodes the local size variations in 
features. Phases, on the other hand, encode the gross 
position of features. More precisely, if an image i is 
translated by a vector (x0, Yo) then the new image has 
the same amplitude but has linearly shifted phase 

~b'(cox, coy) = q~(cox, cot) + Xocox + Yocor 

For these reasons, it is natural to suspect that the 
amplitude might have typeface-specific (and character- 
independent) information, whereas the phase might 
have character-specific (and typeface-independent) in- 
formation. In fact, this role of phase seems to be con- 
firmed, tT) 

Now we can describe the feature vector we use to 
classify such text images. Given a text image, our 
problem is to identify the typeface to which the 
characters of that image belong. We have made several 
important simplifying assumptions, the relaxation of 
which is interesting and is the subject of our further 
research. 

First, our images are noise-free. That is, we are not 
deriving them from scanned images of paper documents, 
but rather synthetically from bitmaps for the characters 
in each typeface. (We remark below on the nature of 
the bitmap generation and what interest there is in 
studying its effect.) The application of these techniques 
to OCR data is potentially important because the 
typeface in which a string is rendered can help in 
understanding the structure of a document (for example, 
italics sometimes lend emphasis, computer programs 
are often set in fixed-width fonts, etc.). Automatic 
structure recognition is an active area of research, ts'9) 
Although it is reasonable to imagine that the noise 
statistics will be constant across typefaces, we have not 
yet attempted to extend our experiments to OCR data. 
Of course, the independence of noise across typefaces 
is not true when certain aspects of the image rendering 
are considered. For example, it has been well known 
for many years that the precise shape of letter features 
can affect the way in which ink is deposited, especially 

in high-speed, low-quality applications such as news- 
paper printing. Small-angled joins in characters can 
cause so-called "ink traps" which fill with ink and 
distort the feature. These considerations do apply to 
laser printing also, but their precise effect has only 
recently begun to be explored. 

Second, we have used only two specific pieces of 
software to produce the bitmaps. These are Metafont, 
a public domain font production system written by 
Donald Knuth "°) and TypeScaler, a commercial font 
production system from Sun Microsystems 311) Many 
more rendering systems are in use, and it will be 
interesting to see whether the techniques of this paper 
can, on the one hand, discriminate between renderings 
ofthe same face by different software, and, on the other 
hand, correctly identify a given face no matter what 
the rendering system. 

Third and last, in the experiments reported here we 
have restricted our attention to 10-point type rendered 
at 300 dpi for Canon CX laser printer marking engines, 
which were the most commonly used by printer 
manufacturers until recently replaced with Canon's SX 
engine. Each of the rendering programs can take 
account of (some) physical properties of the marking 
engine, and it will be important to see if those choices 
reflect themselves in our classifications. 

3. THE FEATURE SPACES IN THE STUDIES 

The samples under study consist of strings selected 
at random from English text (a portion of Wuthering 
Heights for training our classifier and a computer 
science grant proposal for testing it). Each string is 
rendered in a particular typeface as described above 
and truncated to an image 512 pixels wide and 64 
pixels high, then passed through a Blackman filter to 
control artifacts arising from the truncation (see p. 447 
of reference (12)). Then 512 x 64 discrete Fourier trans- 
form of the string is computed and the amplitudes at 
each of the resulting points recorded. Since 10-point 
type at 300 dpi is typically about 30 pixels high, our 
sampling has the effect of embedding every text string 
in a box with approximately constant white space 
surrounding the string. We assume this white space has 
no effect on the statistics within each class. 

To motivate our construction of the statistical 
features, we observe that the graphical features of text 
are of several different scales. For example, serifs are 
quite small, but bowls are relatively large. It is therefore 
reasonable not to consider the entire amplitude spec- 
trum at once, but rather to pass it through a bank of 
bandpass filters, each of which leaves us with data 
about a particular range of frequencies only. This 
approach is also reasonable from a visual point of 
view, since contemporary vision scientists largely agree 
that the visual system does exactly that in the first 
stages of its image processing, t13) 

Hence, we consider a collection of N linear filters, 
or, more conveniently, their Fourier transforms F k 
regarded as functions on the (co x, cot) frequency domain. 
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The result on the spectrum of applying the filters is 
obtained by multiplying the amplitudes by Fk. Since 
we are not interested in phases, we can restrict our 
attention to filters which have no effect on phase 
(i.e. which do not shift the images), as is true of filters 
currently used to model human vision. 

We considered two families of filters. First is a 
collection of ideal filters, which by definition are the 
identity on a particular region of the frequency space 
and zero outside that region. The other family is that 
of a particular model of human vision, which we 
describe later. We take as the kth feature the mean 
Fourier amplitude after applying the kth filter. If the 
passband of the filter is sufficiently small (thus, we need 
many filters to cover the 512 × 64 samples in the 
frequency domain), this mean amplitude might be a 
good approximation to the amplitude throughout the 
passband; this alone might lead to successful classifica- 
tion of the spectra. 

In the classification using ideal filters, we first parti- 
tioned the spatial frequency plane into 38 rectangular 
regions as described in Appendix C. The regions have 
very little overlap, except for those at the highest spat- 
ial frequencies. For  each region we define a corres- 
ponding bandpass filter whose value is 1 on the region 
and 0 off it. (By principal component analysis we can 
account for 99~ of the variance between classes with 
17 filters. It is those 17 fil ters--which are linear 
combinations of the original 38--which form the filter 
set we actually use for the final classification.) Each of 
the small bandpass filters represents about 4~o of the 
spectrum in each direction, and the three highpass 
filters begin at 36~o of the spectrum.t 

Assuming an 18 in. viewing distance, then with the 
sampling we have described for the construction of 
the type images, the maximum spatial frequency re- 
presented on each axis is about 96 cycles per degree 
(cpd) of visual angle. (This is the usual measure of 
spatial frequency in vision research, since it is distance 
independent.) The features given by the highpass filters 
thus represent mean amplitude above about 35 cpd, 
corresponding to features smaller than about 2 min of 
visual angle. However, most humans cannot distinguish 
features smaller than 1 min of visual angle (i.e. 60cpd) 
and visual acuity for many tasks drops off rapidly 
above 15 cpd. This suggests that features smaller than 
4 min wide will not play much of a role in distinguishing 
type images from one another. Thus, if we have 
significant energy at these high frequencies, we can 
expect that it represents either harmonics of larger 
features or aliasing artifacts due to truncation of the 
images. One important exception to this is the serifs 
present in some typefaces, which we will discuss later. 
As mentioned above, we control the aliasing artifacts 
with standard windowing techniques. Harmonics might 

be expected to show up in correlations between filters, 
which could also provide a basis for dimensionality 
reduction in the classification. $ In summary, we have 
partitioned the spectrum finely where there is some 
reason to believe features are visually relevant, and 
coarsely elsewhere. 

The second family of filters is that described by 
the model of human vision put forth by Wilson and 
GeibJ TM These are linear combinations of Gaussian 
functions with coefficients chosen to fit experimental 
data. Their precise form is not relevant to this discussion, 
but we should note two things. First, unlike our ideal 
filters, each of these filters overlaps substantially with 
its nearest neighbors (measured either by their separa- 
tion in the x or y direction, or by their orientation 
tuning). This means that averaging the filtered images 
generally counts each amplitude two or more times. In 
addition, there is some suggestion in the vision liter- 
ature that these models cannot account for pattern 
classification (p.434 of reference (15)). On the other 
hand, vision filtered features have found some success 
in texture recognition algorithms. {16"1v} Second, the 
vision filters we used have much greater bandwidths 
than the ideal filters we used, and for this reason 
averaging the response through these filters may be 
throwing out useful classifying data. In general, we got 
poor results with these filters and have therefore 
abandoned them. One experiment with ideal filters of 
comparable bandwidths similar to those of the vision 
filters led to classification rates intermediate between 
those with the vision filters and those we report here. 

We assumed that the class conditional densities 
are normal and used a piecewise quadratic classifier 
as an approximation to the Bayes minimum error clas- 
sifier (p. 169 of reference (18)). The class statistics were 
gathered on 100 text strings. The classification success 
rate was estimated by classifying 100 strings. We briefly 
examined histograms of marginal distributions for a 
few cases and satisfied ourselves of the reasonableness 
of the normalcy assumption, but made no rigorous 
attempt to verify that the feature vectors are normally 
distributed; this assumption is in fact lying under the 
use of a quadratic classifier as the minimum error 
classifier. Indeed, we know that certain spectral features 
of text images are found in all text (of a fixed size). For 
example, the distance between vertical stroke centers 
in adjacent 10-point characters (the most common for 
reading, and the size used for all our experiments) is 
generally constant at about 7.5 min of visual arc. This 
means the most 10-point text in western languages 
has an amplitude peak at 60/7.5 = 8 cpd. The spectral 
samples therefore will not be independent in the 
vicinity of this characteristic frequency. Another com- 
mon spectral feature arises from the fact that our 
samples are always 512 pixels wide, which corresponds 

t Strictly speaking, these are also bandpass filters, since 
the entire spectrum is truncated by virtue of sampling, but we 
abuse terminology and refer to them as highpass. 

$ We briefly examined correlation coefficients and found 
adjacent filters to be highly correlated in general, but we did 
not explore this as an avenue of dimensionality reduction. 
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to about 12 characters. Since English word length 
averages 4-5 characters, about half our samples have 
one word boundary and half have two. This leads to a 
bimodal distribution of means through our low fre- 
quency filters corresponding to a "word frequency" 
much akin to the stroke frequency described above. As 
both of these phenomena are relatively constant across 
typefaces, we assume that they do not contribute to 
classification and thus ignore them. 

Preliminary experiments with a nearest mean classi- 
fication gave very poor results. With the current exper- 
iments we indeed found that the class covariance 
matrices vary widely. This suggests that success with 
a linear classifier is unexpected, since the quadratic 
classifier reduces to the nearest mean classifier only 
when the covariances are the same. 

4. CLASSIFICATION RESULTS 

Table 1 summarizes the results of classification on 
all 55 fonts in the study. For the ideal filter based 
features, overall error rate is about 6%. Three fonts 
were perfectly classified, and half had error rates be- 
low 3%. In a second study on a substantially smal- 
ler number (nine) of typefaces classification improved 
somewhat to an overall error rate of about 4% (Table 2). 

More realistic experiments focus attention on related 
collections of typefaces, such as might be found in a 
single document. Table 3 gives the overall classification 
rate among the variants in each of four families: 
Lucida, Avant Garde, Pandora, and Computer Modern. 

Table 1. Summary of classification statistic for two exper- 
iments classifying 55 fonts. The first column describes the 
feature space comprising spectral amplitudes through ideal 
filters, the second column through filters from a model of 
human vision. Experimental design is described in the text 

Ideal Vision 
filters filters 

Minimum class error 0 0.03 
Maximum class error 0.12 0.47 
Median class error 0.03 0.18 
Total error 0.06 0.19 

Table 3. Classification error rate within four typeface fam- 
ilies. Nc is the number of fonts in the study, e the total error 

for the family 

Computer 
Avant Garde Modern Lucida Pandora 

Nc 4 8 10 6 
8 0.003 0.006 0.019 0.157 

Each entry represents an experiment in which the 
classifier was trained on 100 samples in each class and 
tested on 100 samples taken from a different text. Nc is 
the number of classes (i.e. the number of typeface 
variants in each family), and e the overall error rate as 
estimated by the number of misclassified samples in 
the testing. 

In light of the above classification rates, it is instruc- 
tive to consider the nature of these families a n d - - i n  
the case of Lucida and Pandora- - to  examine their 
confusion matrices. The reader is invited to examine 
type samples in Appendix A to appreciate some of the 
remarks below. 

The Avant Garde family was originally designed in 
1962 by Herb Lubalin as logotype for the magazine 
of the same name. Perhaps this is why Avant Gardd 
faces are somewhat taller than similar type of the same 
width. It is sometimes argued that their original design 
makes them inappropriate for general use in small 
sizes.( ~ 9) 

The Computer Modern family (2°'21) was designed 
by a computer scientist (Donald Knuth) with the 
assistance of professional type designers in later stages 
of the design. It is a "loosely coupled" family in that 
only some of its variants are closely related visually. 
For example, the serif and sanserif faces are quite 
different, unlike, e.g. those of Pandora (see below). 

The Lucida family, designed by Charles Bigelow and 
Kris Holmes, was among the first designed explicitly 
for low-to-medium resolution digital media. Its de- 
signers took special care to solve certain problems 
endemic to 300 dpi rendering on laser printers322) The 
bright variant, designed especially for high resolution 
typesetter use, is the main text face in which Scientific 
American is typeset. In the experiments described in 

Table 2. Confusion rates for 100 samples from each of nine fonts. The overall correct classification rate is 0.96. Design is 
17-dimensional principal components derived from 38 quadratic discriminant functions given by mean spectral amplitude 
through non-overlapping ideal filters, as described in the text. The components account for 99% of the variance in the original 

classifier. (Font name abbreviations are listed in Appendix B) 

AvGBk Bebmbo Cour GISans LucBr i  LucSans TimesR Helv cmr 

AvGBk 0.95 0.05 AvGBk 
Bebmbo 0.92 0.03 Bebmbo 

Cour 0.98 0.02 Cour 
G1Sans 0.99 0.01 GlSans 
LucBri 0.99 0.01 LucBri 

LucSans 0.02 0.98 LucSans 
TimesR 0.05 0.95 TimesR 

HeN 0.05 0.95 HeN 
cmr 0.04 0.01 0.95 cmr 
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Table 4. Confusion rates for 100 samples from each of 10 members of the Lucida family. Font name 
abbreviations are given in Appendix B 

LB LBD LBDI LBI LS LSB LSBI LSI LST LSTB 

1.0 LB 
LBD 

LBDI 
LBI 
LS 

LSB 
LSBI 

LSI 
LST 

LSTB 

1.0 
1.0 

1.0 
0.01 0.91 0.08 

0.01 0.98 0.01 
1.0 

1.0 
0.I0 0.90 

1.0 

Table 4, the four Lucida Bright styles are distinguished 
from one another 100% of the time. Virtually the only 
confusion among Lucida faces is between Lucida Sans 
and Lucida Sans Typewriter, which we discuss below. 

The Pandora typeface family was designed by 
Neenie Billawala as an exercise in the use of Meta- 
font, rather than for production use. A central design 
criterion was uniformity of appearance among the 
members of the family. (231 Our methods somewhat 
reflect the success in that they failed to cleanly separate 
all the members of the Pandora family from one 
another (in contrast to the virtually 100% classification 
rates for the other families shown in Table 3). 

One kind of distinction among typefaces, especially 
within tightly coupled families such as Pandora, is 
often expressed in the serifs. Because serifs are small, 
they are not visible through low frequency filters, but 
find their expression in the high frequencies. Therefore, 
we consider briefly exactly what information is con- 
tained in the high-frequency energy and what is the 
cost of ignoring it or of averaging it in the gross 
way we described above. 

The highest spatial frequency which can be repres- 
ented with sampled images is 1 cycle per sample, i.e. 1 
cycle per pixel (cpp). Since our highpass filter has its 
low edge at 369/0 of the maximum frequency, it is selec- 
ting features which are smaller than 1/0.36 (roughly 3) 
pixels. This is approximately the size of the serifs in the 
characters in our experiment. To the extent that we 
lose information by our treatment of the high frequen- 
cies, we can expect increased confusion where the serifs 
are an important discriminator. 

The most striking example of this is in the Pandora 
family. When we classify only within this family, we 
get high confusion rates--averaging 169/o error (Table 5), 
compared to, for example, 2.19/o error when we classify 
only within the Lucida family (Table 4), whose serifed 
and sanserif variants differ in ways other than the 
presence of serifs. In the Pandora classification the 
confusion is virtually always between a serif face and 
its corresponding sanserif face--because by design 
these variants differ almost entirely in the serifs. The 
only consequential confusion in the Lucida family is 
between Lucida Sans and Lucida Sans Typewriter. 

Table 5. Confusion rates for 1,'- oamples from each of six 
typefaces from the Pandora family. The overall correct 
classification rate is only 84%. Most misclassification is 
between the serifed variants and their corresponding sanserif 
face, because in Pandora the serifs are the principal visual 
discriminant between each such pair, and these features are 
too small to be distinguished without finer filter. However, as 
described in the text, finer filters in fact suffice to separate the 
pairs. (Typeface name abbreviations are listed in Appendix B) 

pnr pnss pnb pnssb pnsl pnssi 

pnr 0.82 0.16 pnr 
pnss 0.19 0.79 pnss 
pnb 0.85 0.15 pnb 

pnssb 0.11 0.89 pnssb 
pnsl 0.85 0.15 pnsl 

pnssi 0.16 0.84 pnssi 

The latter is a fixed width font highly stylized to look 
as much like Lucida Sans as possible. ~19) We were able 
to increase the average success rate to 96% with 
Pandora by doubling highpass cutoff (even while 
doubling the width of the filters to keep the computa- 
tion small). 

Finally, we note that two of the families (Lucida and 
Avant Garde) were produced with the TypeScaler 
software, and two with Metafont (Computer Modern 
and Pandora), so the font production system alone 
is not likely to account for the confusions described 
above. Further, when we put together all the members 
of each family and run the classifier in an attempt to 
classify between rather than within families, we get 
family separations ranging from 92 to 97% correct 
identification, with an average correct identification 
of over 96%. 

5. SUMMARY 

Collections of mean Fourier amplitudes through 
ideal filters form a reasonable feature space for classi- 
fying typefaces because typefaces differ from one another 
by features of varying scale. Samples of typefaces 
which are visually similar on these grounds are confused 
by our spectral measures, while those which are not 
visually similar are well separated. 
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APPENDIX A. TYPEFACE SAMPLES 

AvantGarde-Book 

Wffhthatconcluding wo~,  

Bembo 

W i ~  ~atconclu&ngwo~,  

Bookman-Light 

Wlth t h ~  c o n c l u d i n g  word, 

c m r l O  

W i t h t h ~  concluding word, 

cmssl0 

Withthatconcluding wo~, 

cmt t 10 

With that concluding word, 

Courier 

With that concluding word, 

GillSans 

With that concluding word, 

Helvetica 

With that concluding word, 

LucidaBright 

With that  conc lud ing  word,  

L u c i d a S a n s  

With that concluding word, 

LucidaSans-Typewrit er 

With that concluding word, 

pnrl0 

With that  concluding word, 

p n s s l O  

With that concluding word, 

pnsll0 

With that concluding word, 

pnssil0 

With that concluding word, 

p n b l 0  

With t h a t  c o n c l u d i n g  w o r d ,  

pnssbl0 

With that concluding word, 

Time s-Roman 

With that concluding word, 

APPENDIX El. TYPEFACE ABBREVIATIONS IN 
TABLES 2, 4 AND 5 

AvGBk Avant Garde Book 
cmr Computer Modern Roman 
Cour Courier 
G1Sans Gill Sans 
Helv Helvetica 
LB, LucBri Lucida Bright 
LBD Lucida Bold Demi 
LBDI Lucida Bold Demi Italic 
LBI Lucida Bold Italic 
LS, LucSans Lucida Sans 
LSB Lucida Sans Bold 
LSI Lucida Sans Italic 
LSBI Lucida Sans Bold Italic 
LST Lucida Sans Typewriter 
LSTB Lucida Sans Typewriter Bold 
pnr Pandora Roman 
pnss Pandora Sans Serif 
pnb Pandora Bold 
pnssb Pandora Sans Serif Bold 
pnsl Pandora Slanted 
pnssi Pandora Sans Serif Italic 
TimesR Times Roman 
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APPENDIX C. IDEAL FILTERS 

The basic bank of ideal filters divides the cox and coy axes into 
N intervals (u~, U~+ 1] and their reflections around the cox-axis, 
here ul = 0,ui+l - u~ = w, for i < N together with (ut~, Um,x']. 
This partitions the frequency plane into overlapping rect- 
angular regions as shown in Fig. C1. In most of the exper- 
iments described here, N -- 11, w ---- 0.04 and u~ = 0.36Um,r For 
any sampling, Um,x = I cycle per pixel, but as described in the 
text, this corresponds to about 94 cycles per degree of visual 
angle for the images we studied if considered to be viewed.at 
an 18 in. distance. The overlaps are quite small for all but the 
highest band, As discussed in the text, this is generally 
harmless except for the detection of serifs. For Pandora, the 
single (and unusual) family where the sanserif and serif 
variants differ principally in the serifs, it is necessary to take 
a higher frequency cutoff to separate the two variants in the 
classification. In this case, we used us = 0.80Um~ and increased 
w to 0.08. In this case, we generally exceeded 96% correct 
classification for the difficult Pandora faces. 

\ 
\ 

-u  4 I / 0 X\ I I ~ Um~ 
I I \ I I  I I I I I I  ? 

I I I  I \\ 'iow-p~s~Iters; // / / 
\ \ \ \ \x .  \"  band-pass filters '~ / /  / / /  

"~'~ high-pass filters . /- ' . ' ' -  

Fig. CI. Support regions of ideal filters. Shaded regions 
denote overlap. 
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