
Publications for the TEX Community
Number 7

Conference
Proceedings

T EX Users Group
Ninth Annual Meeting
Montreal, August 22-24, 1988

T EX Users Group.
P. 0. Box 9506

Providence, R.I. 02940, U.S.A.

TEX Users Group

The 'JEX Users Group (TUG) is a nonprofit association dedicated to the dissem
ination of information to the 'JEX community and to the education of the general
public about 'JEX. These objectives are accomplished through the publication of
a newsletter, TUGboat, and the conduct of conferences and 'JEX courses. TUG
has about 3,000 members throughout the world: approximately 2,150 in the
U.S., 150 in Canada, 475 in Europe, and 175 in other countries.

President
BART CHILDS
Texas A&M University

Secretary
ALAN HOENIG
John Jay College, CUNY

Executive Director
RAYMOND GoucHER
'JEX Users Group

Program Committee
SHAWN FARRELL
McGill University

DEAN GUENTHER

CHRISTINA THIELE

Address:
'JEX Users Group
P.O. Box 9506
Providence, R.I. 02940
USA

Printed and Bound by:

Vice President
RICHARD FURUTA
University of Maryland

Treasurer
DAVID NESS
TV Guide

Program Committee Chairman
DEAN GUENTHER
Washington State University

Proceedings Editor
CHRISTINA THIELE
Carleton University

Phone:
{401) 751-7760

Electronic Mail:
TUG@SEED.AMS.COM

1- 80D-USA- BOOKS

nference

TEX Users Group
Ninth Annual Meeting

Montreal, August 22-24, 1988

© 1988 by the 'lEX Users Group. Copying any paper within is permit
ted as long as credit is given to the source, and copies are not made
or distributed for direct commercial advantage. Authors retain their
individual copyrights.

'lEX Users Group
P.O. Box 9506
Providence, R.I. 02940, USA

The following trademarks appear in this publication:

AMPRO LB-186 is a trademark of AMPRO Computers, Inc. AMS-'IEX is a trademark of the
American Mathematical Society. Apollo is a trademark of Apollo Corp. APS J.l-5 is a trade
mark of Autologic, Inc. AutoCAD is a trademark of Autodesk, Inc. Bitstream is a trademark
of Bitstream, Inc. CAP, CP-6, MULTICS, COMPOSE, and TEXT are trademarks of Honey
well Bull, Inc. CEO is a registered trademark of Data General. Compugraphic MCS 8400 is
a trademark of Compugraphic Corp. Cricket Draw is a trademark of Cricket Software, Inc.
DB-Library is a trademark of Sybase, Inc. dBaseiii is a trademark of Ashton-Tate, Inc. DEC,
Digital, LN03, LN03-Plus, Rainbow, Runoff, VAX and Micro VAX are trademarks of Digital
Equipment Corp. DVIHP, DVIPS, DVILASER/PS, and Preview are trademarks of Arbor
Text, Inc. Epson is a registered trademark of Seiko Epson Corp. Excelerator is a trademark
of Index Technology, Inc. FAS'JEX, F'JEX and QKEY are trademarks of Norman Paul Consul
tants, 920 Commercial Street, Palo Alto, CA 94303. GEM is a trademark of Digital Research,
Inc. Hercules is a trademark of Hercules Computer Technology. HiJaak is a trademark of
InSet Systems, Inc. HP and Laser Jet are registered trademarks of Hewlett-Packard Company.
IBM and PC-DOS are registered trademarks of International Business Machines Corp. IDM
and Intelligent Database Machine are trademarks of Britton Lee, Inc. IMAGEN, ImageSta
tion, and IMAGEN Innovator are trademarks of IMAGEN Corp. Lasergrafix and QMS are
trademarks of Quality Micro Systems, Inc. Lightning is a trademark of Borland International,
Inc. Macintosh and QuickDraw are trademarks of Apple Computer, Inc. MacLinkPlus is a
registered trademark of Data Viz, Inc. MacPaint is a trademark of Claris Corp. MAXview
is a copyright of Aurion Tecnologfa, SA de CV. META FONT and Micro'JEX are trademarks
of Addison Wesley Publishing Compan y. MS-DOS, Microsoft WORD, and Microsoft Win
dows are trademarks of Microsoft Corp. NBI System 8 is a trademark of NBI, Inc. Olivetti
is a trademark of Olivetti Corp. PageMaker is a trademark of Aldus Corp. PanaScan is a
trademark of Matsushita Electric Industrial Company, Ltd. Panasonic FX505 is a trademark
of the Matsushita Electric Company. PC Paintbrush is a trademark of Z-Soft Corp. PC'IEX
is a registered trademark of Personal '!EX, Inc. Peder is a trademark of Micro Programs,
Inc. Personal-REXX is the copyright of Mansfield Software. POSTSCRIPT and Adobe are
trademarks of Adobe Systems, Inc. Pre'JEX is a trademark of Robert L. Kruse. Prime 750
is a trademark of Prime Computers, Inc. ProKey is a trademark of RoseSoft, Inc. PSL/PSA
is a trademark of Meta Systems, Inc. Pyramid is a trademark of Pyramid Technology Corp.
Sanyo is a trademark of Sanyo Corp. Scan-Do is a trademark of Hammerlab, Inc. Stratl).s is a
trademark of Stratus Computer, Inc. Sunview and Sun-3 are trademarks of Sun Microsystems,
Inc. Tandy is a trademark of Tandy Corp. 'lEX is a trademark of the American Mathematical
Society. UNIVAC is a registered trademark of Sperry Rand Corp. UNIX is a trademark of
AT&T Bell Laboratories. Wang is a trademark of Wang Laboratories, Inc. WordPerfect is
a registered. trademark of WordPerfect Corp. WordStar is a trademark of MicroPro Interna
tional Corp. Wyse is a registered trademark of Wyse Technology. X Windowing system is a
trademark of MIT. Zephyr is a trademark of Zentec Corp.

Table of Contents

Introduction . v

Production Notes . vt

Mary McCaskill
Producing NASA Technical Reports with 1E;X 1

J. Tom Renfrow
Use of 1E;X in an Integrated System Development Environment 11

David Ness and James Slagle
1E;X and Databases . 25

Laurie Mann
Producing Manual Sets Using Single-Sourcing 31

Jean Pollari
Using 1E;X to Produce Government Standard Documentation 41

Eric Jul
Implementing 1E;X in a Production Environment: A Case Study . . . 53

Peter Tonkin and Alex Warman
How and Why a Trade Typesetter Chose 1E;X 61

James D. Mooney
An Experience in Textbook Production . 69

Robert L. Harris
Using 1E;X to Produce Kennel Club Yearbooks 83

Elizabeth Barnhart and David Ness
Layout for 1E;X . 97

Bart Childs et al
Syllabi for 1E;X and METAFONT Courses . 117

Berkeley Parks
1E;X Tips for Getting Started . 129

Alan Wittbecker
The Art of Teaching 1E;X for Production 149

Shawn Farrell
Choosing Between 1E;X and JJ\TFJ(. 155

Kazuhiro Kitagawa and Nobuo Saito
Mathematics Textbook Publishing with Japanese 1E;X 165

Jacques J. Goldberg
Approximate TFfX for Semitic Languages 171

Michael J. Ferguson
TjjX is Multilingual · 179

Kauko Saarinen
Experiences with 1};X in Finland 189

Stephan von Bechtolsheim
Using the Emacs Editor to Safely Edit 1};X Sources 195

Lynne A. Price
Using SGML and 1};X for User Documentation 203

Ken Yap
DVI Previewers ... 211

Robert L. Kruse
PreT_EX: Tools for Typesetting Technical Books 219

Mike Schmidt
Cap1};X: Industrial Strength 1};X 227

Paul M. Muller
FAST_EX: A PC Text Editor and Front-End for T_EX 235

Participants, 1988 1};X Users Group Meeting 255

List of Exhibitors . 262

Introduction

The 1988 Annual Meeting of the 'lEX Users Group was held in Montreal, Canada,
at McGill University, and was attended by some 180 people from as far away
as Finland, Israel, England and Japan. There were 24 presentations this year,
representing almost 250 pages in these Proceedings.

There was a very clear emphasis on TEX in a production environment: in
house document preparation, commercial applications, with case studies in both.
Several presentations dealt with non-English applications, describing the atten
dant problems and solutions encountered. The integration of TEX with other
programs is fast becoming a new and important aspect of the program, espe
cially with respect to source material stored in databases. How to use 1EX and
how to teach 'I'E;X was the subject of two presentations; using TEX in an SGML
context was also outlined in some detail. A presentation on previewers was the
sole discussion on the more technical side of the program, illustrating the feeling
that 'lEX the program has now achieved stability, and the focus is now shifting to
its integration into already existing operations, and with other non-typesetting
programs. Preprocessors to TEX also indicate a growing interest in making 'lEX
more accessible, and therefore more easily integrated into environments where
'lEX output is desirable, but TEX expertise is not as likely to be aimed for.

Indeed, in presentation after presentation, the recurring themes were the high
quality of 'lEX output, the program's flexibility, the fact that it allowed users
to continue working on their own computers, with no concern for compatibility.
Almost all the production/application presentations raised these points.

There remain some problems, most often in the area of font and printer
compatibilities; table making seems to be a recurring area of concern. Several
presentors spoke of the need for management to be firmly committed to the use of
'lEX, both in terms of support, and investment in training time. Interestingly, in
conjunction with concerns about adequate and proper training, there were calls
for TUG courses themselves to address the question of applied 1EX courses,
particularly to typography, font design, and the production process. Thus, as
the user focus shifts, the user group is also being asked to help deal with this
shift.

All in all, this year's conference, and these Proceedings, mark a significant
change in direction, hinted at during last year's meeting in Seattle: 'lEX is
coming of age, and is now being stretched and adapted to deal with a much
wider range of applications than were perhaps initially envisaged by Professor
Don Knuth. And the demands being made of it are being addressed, are being
solved; the program not only works, but it works very well and seems to rise to
each new leap forward or outward in scope and use. Something which we can all
participate in, and enjoy.

v

Christina Thiele
Editor

Production Notes

Apple LaserWriter II
Berkeley Parks, TEfX Tips for Getting Started.

Apple LaserWriter Plus
Ken Yap, DVI Previewers.
Robert Kruse, PreTEfX: Tools for Typesetting Technical Books.

Autologic APS f.l5 (Almost Computer Modern)
Mary McCaskill, Producing NASA Technical Reports with TFfX.

IBM 3820
Participants, 1988 TEfX Users Group Meeting.

IMAGEN ImageStation
Preliminary pages to the Proceedings.
David Ness, TEfX and Databases.
Laurie Mann, Producing Manual Sets from the Same Source.
Eric J ul, Implementing TEfX in a Production Environment.
Peter Tonkin and Alex Warman, How and Why a Trade Typesetter Chose TF)X.
Elizabeth Barnhart, Layout for TF)X.
S. Bart Childs et al, Syllabi for TEfX and METAFONT Courses.
Alan Wittbecker, The Art of Teaching TEfX for Production.
Shawn Farrell, Choosing Between T£X and lATEX
Kauko Saarinen, Experiences with TEfX in Finland.
Stephan von Bechtolsheim, Using the Emacs Editor to Safely Edit TEfX Source.
Lynne Price, Using SGML and TEfX for User Documentation.
Mike Schmidt, CapTEfX: Industrial Strength TF)X.
Kazuhiro Kitagawa, Mathematics Textbook Publishing with Japanese TF)X.

IMAGEN Innovator
Paul Muller, FASTEfX: A PC Text Editor and Front-End for TEfX.

LN03A
Jacques Goldberg, Approximate TEfX for Semitic Languages.

LN03-Plus
James Mooney, An Experience in Textbook Production.

NEC Silentwriter LC890
Robert Harris, Using TEfX to Produce Kennel Club Yearbooks

QMS 810
Tom Renfrow, Use of TEfX in an Integrated System Development Environment.

QMS-1200
Michael Ferguson, Tj;X is Multilingual.

QMS Lasergrafix 2400
Jean Pollari, Using TEfX to Produce Government Standard Documentation.

Producing NASA Technical Reports With 'lEX

MARY K. MCCASKILL

Mail Stop 149
NASA Langley Research Center
Hampton, VA 23665-5225
mary@teb.larc.nasa.gov

ABSTRACT

Since 1984, the Technical Editing Branch (TEB) at NASA
Langley Research Center has been formatting NASA research re
ports with 'IE;X. These highly technical reports contain complicated
tables and numerous mathematical equations that are difficult to
format. lEX was chosen as the basis for Langley's in-house typeset
ting system because of its excellent mathematical typography and
its device independence; its excellence in typography in general, for
example, the line-breaking algorithm, was an added bonus.

lEX was initially installed on a Prime computer at Langley and
TEB personnel input files remotely using word processing work
stations as dumb terminals; no preview capability was available.
User adaptation to 'IE;Xing documents on a computer as opposed
to using a WYSIWYG word processor and development of exper
tise with lEX were difficult problems to surmount. With improved
hardware, experience, and perseverance, we are now typesetting our
reports in a highly efficient manner. Production figures (minutes
per page) are presented. Discussed are the successes and prob
lems during implementation of the lEX-based system, how prob
lems with hardware, training, and technical expertise were solved,
and how word processing personnel were converted to typesetters.
The paper concludes with a "wish list," what we would like to see
in the near and distant future.

Introduction

The Langley Research Center is one of several installations of the National
Aeronautics and Space Administration, which is responsible for government
sponsored aerospace and aeronautics research. Since its inception in 1917, as
the National Advisory Committee for Aeronautics (NACA), the NASA Langley
Research Center has published results of its research-in NACA or NASA re
ports and in journals or other external literature. As early as 1935, Langley had

1988 Conference Proceedings, JEX Users Group 1

Mary K. McCaskill

a technical editing department responsible for editing and production of manu
scripts for printing. Equipment for production has included simple typewriters,
proportional-spacing typewriters with changeable keys, word processors in con
junction with daisy-wheel printers, and most recently, a digital phototypesetter
and laser printer.

The Langley Technical Editing Branch typically produces 150-160 research
reports per year authored by members of 25 research divisions. The technical
complexity of these reports renders them difficult to produce, whatever system
is used. The typical report contains multilevel equations, complex tables, and
many illustrations. Word processing aided greatly in allowing quicker production
and correction of manuscripts, but the quality of the daisy-wheel printer output
was only marginally satisfactory for printing.

In the early 1980's, in-house typesetting was initiated to improve manuscript
quality from what was available with word processors. An extensive investiga
tion of available typesetting systems for technical manuscripts resulted in the
choice of a digital phototypesetter driven by a '!EX-based system. 'lEX was
chosen as the basis for Langley's typesetting system because it offered the only
hope of typesetting the NASA reports without losing productivity or quality.
Neither the editors nor the technical typists had to become expert in mathemat
ical typography; no other system that we evaluated automated mathematical
typography as well as 'lEX does. 'lEX could produce the equations written by
Langley researchers with the least difficulty and time. At this time we were
just beginning to explore transferring draft manuscripts electronically from the
author for correction and formatting. The 25 Langley research divisions that
submit manuscripts for publication each choose their own document-processing
system. '!EX's device independence offered the potential for simplifying elec
tronic transfer between all the disparate systems at the center.

A '!EX-based system was also the least expensive to acquire. The only hard
ware initially purchased was the digital phototypesetter itself; input terminals
and a computer were already available.

Initial Implementation

The Technical Editing Branch approached the installation of a '!EX-based
typesetting system with some naivete. 'lEX had been chosen on the basis of
Knuth (1979) (the preliminary version of the 'JEXbook) without actual experience
using it. In addition, the lack of maturity of the laser printer and terminal
technology made purchase of proofing and screen preview devices difficult.
Thus the initial implementation of 'lEX was somewhat crude; it was also a
pioneering achievement. A management-oriented office with little experience
with typesetting or computers were the first to install and use 'lEX routinely at
Langley. We were also one of the first to install it in a production environment.
Recognition of the advantages of 'lEX for technical typography and commitment

2 1988 Conference Proceedings, 'lEX Users Group

Telecommunications

NBI word
processor

Producing NASA Technical Reports With 'lEX

TEX
Driver programs
Prime minicomputer

Telecommunications

Autologic
phototypesetter

Figure 1. Initial implementation of TEX at Langley Research Center.

to device independence has resulted in a typesetting system well-suited to
Langley's needs.

Hardware

TEX was installed on an existing minicomputer, a Prime 750, at the central
computing facility at Langley. A device driver for the phototypesetter, an
APS-Micro 5, was also written and installed on this minicomputer. The
phototypesetter and the minicomputer were connected via a telecommunications
network. An existing word processing system, an NBI System 8, was interfaced
with the minicomputer also over the telecommunications network. The word
processor workstations served as dumb terminals creating ASCII input files,
which were sent to the central computing complex, Wed, and returned to
the phototypesetter over the network.

This somewhat simplistic system, shown in Figure 1, had some severe
drawbacks. The transmission of files via telecommunications was slow (1200
baud) and error prone. After the input files arrived at the central computing
complex, 1E;X ran very slowly, particularly at times of peak usage, on the shared
minicomputer. Then, because no proofing device or screen preview was available,
the only way to see the pages was to typeset the dvi file from the phototypesetter,
a time-consuming, expensive, and laborious process. The typesetters used
the excellent text editor available on the word processing system for initially
formatting the document file, but for minor corrections and debugging on the
minicomputer, a line editor was available. They found this line editor very
unattractive and consequently preferred to edit the file on the word processor
and re-send it to the minicomputer.

1988 Conference Proceedings, W Users Group 3

Mary K. McCaskill

User Adaptation and Training

The hardware difficulties described above made adaptation to the new produc
tion system even more difficult for users, who were technical typists accustomed
to a menu-driven word processor. The lack of interactive WYSIWYG display
was particularly hard to adapt to. Also, to format the complex Langley reports,
a higher level of expertise with 'lEX was required than had been anticipated.
These technical typists not only had to learn 'lEX but also had to adapt to using
a computer for the first time.

The system analyst who installed 'lEX and set up the system made the
interface between the word processor and the computer as user-friendly and
foolproof as possible. She wrote a macro set to produce the preferred double
column text format and ruled tables. She also taught a beginning 'lEX course
to the technical typists. In early 1984, we began typesetting technical reports.

Development of Expertise

Teaching the technical typists to use 'lEX on a computer was not the only training
requirement in implementing the new typesetting system. Editors, typists, and
proofreaders all had to learn basic typography.

Very early we encountered the problem of combining computer, publishing,
and 'lEX expertise. It was difficult for our systems analyst to understand
why the editors and proqfreaders would not tolerate widow and orphan lines,
unconventional page breaks, and so forth. Likewise it was difficult for the
editors to understand why all the fonts available on the phototypesetter were
not available through the 'lEX system. It became obvious that some liaison
between the three areas of expertise needed to be established. The editors
and proofreaders needed familiarity with the capabilities of 'lEX in order to
communicate their requirements to the typesetters and also to ensure that they
were not requesting the impossible. Being a technical editor with interest in
typography and computers, I became that liaison.

An in-depth understanding of 'lEX was developed slowly. At first no one
in the organization had experience using 'lEX· Such experience was difficult to
find in those days. The systems analyst wrote the initial macro set and taught
the beginning 'lEX course without formal training. She learned by reading the
T[jjXbook (Knuth 1984) and studying information that came with the program.

As each new formatting problem came up, the typesetters had no source for
a solution. Either the systems analyst or the liaison editor had to educate herself
(again from the T[jjXbook) to solve the problem, perhaps write or adjust a macro,
and teach the typesetters the proper approach. Lack of screen preview made
this trouble-shooting very slow and difficult. This situation slowed training;
productivity statistics showed that the typesetters were still on a learning curve
a full year after implementing TEX.

4 1988 Conference Proceedings, 'lEX Users Group

Producing NASA Technical Reports With 'lEX

Network

High-resolution
terminals

-E::il Proof copy

~-~
OMS laser

printer

~~~~1---+ 
Auto logic 

phototypsetter 

Reproducible 
manuscript 

~ 

Figure 2. Present implementation of 'lEX in the Langley Technical Editing 
Branch. 

The result of these difficulties with hardware, user adaptation, and training 
was an alarming decrease in productivity and a severe backlog of work, an 
intolerable situation in a production environment. 

Solutions to Difficulties 

Since 1985 the problem of productivity has been solved. With the present 
typesetting system shown in Figure 2, the four typesetters are typesetting reports 
faster than they typed them prior to 1984. The problems associated with 
hardware, that is, 

1. Slow transmission of il).put files 

2. Slow execution of TEX 
3. No screen preview or quick proofing 

4. Awkward file manipulation 

have been solved by acquiring a laser printer for proofing and a dedicated 
computer system for typesetting in the Technical Editing Branch. The UNIX 
computer system consists of Sun-3 workstations, with high-resolution screens. 
Moving to the UNIX operating system has necessitated further training of users, 
and having our own computer has required more expertise in computer system 
administration. 

A particularly important enhancement has been a preview program that 
displays the output from 'J.EX on the screen, so that ''what you see" is almost 

1988 Conference Proceedings, TEX Users Group 5 



Mary K. McCaskill 

Figure 3. 'lEX ASCII file 
and typeset page displayed 
together on high-resolution 
screen. 

"what you get" from the digital phototypesetter. The windowing environment 
also allows input files. to be displayed alongside the typeset results, as shown in 
Figure 3. 

The users adapted to the new computer system and learned '!EX, UNIX, 
and so forth primarily through perseverance. They began using the system 
with only minimal formal training. When a new challenge or question came up, 
they met it as best they could, sought assistance when necessary, and learned 
from the experience. The original technical typists have become typesetters 
and have developed a body of knowledge of TEX and experience TE:;Xing NASA 
technical reports. These employees have been able to pass on this knowledge 
and experience very quickly to new typesetters, who have become proficient and 
productive in approximately 2 months. . 

When novices are being trained on a system, whether a publishing program 
or some other system, they need an expert to whom they can turn for answers 
and help. Initially, we did not have such a resource and thus training was 
unacceptably slow. 

The Technical Editing Branch computer system is going to continue to 
require significant technical knowledge and experience in system administration, 
networking, '!EX, and publishing systems so that the productivity of the branch 
can be maintained and enhanced. Computer technology obviously has great 
potential to enhance the efficiency and productivity of publishing professionals, 
but only people who know how to use the technology and how to produce high
quality mechanicals for printing can make it work. 

6 1988 Conference Proceedings, TEX Users Group 



Producing NASA Technical Reports With TEX 

Present Status 

As mentioned before, the research divisions at Langley each use text-processing 
systems that suit their individual needs. Thus numerous document-processing 
systems exist on various computers at Langley. The Technical Editing Branch 
(TEB) has been actively encouraging the use of '!EX, since it can be installed 
on nearly any computer for very low cost. Although we are receiving many 
inquiries concerning 'JEX, its use, and its availability, we are not yet receiving 
many drafts that have been formatted with 'JEX. However we can accept ASCII 
files from several sources (network, PCs, word processors). Thus the typical 
draft is transferred to the TEB system without 'lEX formatting. The text of 
a document is rarely re-keyed, but the mathematics and tables almost always 
must be re-keyed. 

For the typical rough draft, the standard procedure is to 

1. Make changes marked in the draft either by extensively editing the file that 
has been transferred from the author's system or by entirely re-keying the 
draft 

2. Enter TEX formatting, math, and alignment macros into the file (a standard 
macro set1 has been defined on our system to produce the preferred double
column format) 

3. Print out a proof copy from the laser printer 

4. Correct the document twice, once after proofreading in TEB and once after 
author review 

5. Typeset reproducible copy of text, tables, and captions from the phototype
setter 

6. Paste up the illustrations 

Table 1 lists the productivity statistics for the 128 reports produced by the four 
typesetters during the past year. The numbers in the table are the average time 
in minutes required to typeset the material from an 81/2-inch by 11-inch page of 
double spaced, typed (usually) draft. All these reports have technical material 
within the text, that is, Greek symbols, mathematical characters, subscripts, and 
superscripts. Of the 128 reports, 20 had from one to four displayed equations per 
page. To prepare the text of these 20 reports required an average of 28 min/page, 
only 6 min/page more than the average for all 128 reports. As with most 
typesetting systems, tables offer the most room for productivity improvement. 
Typesetting a text page requires less than one-third of the time required to 
typeset a table page. 

1 This macro set will be documented in a forthcoming NASA Technical 
Memorandum. 

1988 Conference Proceedings, TEX Users Group 7 



Mary K. McCaskill 

Table 1. Productivity Statistics During Past Year 

Text (typeset) . . . . . . . . . . . 
Table (typeset) . . . . . . . . . . . 
Figure (captions typeset and pasted up) 
Correct all pages (two correction cycles) 
All page types . . . . . . . . . . . 

Future 

Average time 
required to 

prepare rough draft 
page, min 

22 
73 
5 

16 
21 

At present we are evaluating '!EX-based desktop publishing software in an effort 
to lower the cost of producing technical illustrations for printing. Our goal is to 
import graphics electronically from as wide a variety of computer graphic systems 
as possible, embed these graphic files in text which has been initially formatted 
with '!EX, and print out the finished document at a resolution sufficient for 
high-quality printing. 

In participating in the implementation of the 'lEX system in TEB, I have 
developed several concerns: 

1. I have been known to say, "If I. had never heard the word font, it would have 
been too soon." Publishers, and certainly graphic designers, are going to be 
happy only with a choice of typefaces. Setting up font families other than 
Computer Modern has been extraordinarily difficult. If we had known the 
trials of using the fonts available from the Autologic phototypesetter with 
'!EX, we may not have chosen 1E;X. This is a severe problem. 

2. With the new '!EX-based software that is coming out ('lEX translators, 'lEX 
math packages, desktop publishing packages), are document files produced 
on one '!EX-based system going to be portable to other '!EX-based systems? 

3. How are technical editors going to fit into this publication system? Figure 4 
illustrates how much of the Langley publication system is automated. The 
editing function, totally unautomated at present, exists in the midst of the 
other functions. Computerized editing tools (for example, prose analyzers) 
are now available, but will they work with '!EX-formatted files? Some work 
on the part of a programmer was required to allow the UNIX spell command 
to work with 'lEX files. 

8 1988 Conference Proceedings, TEX Users Group 



information-

c:::::J Automated 

Writing, 
draft 

preparation 
(author) 

Producing NASA Technical Reports With 'lEX 

Technical 
illustration 
(illustrator) 

Typesetting 
(manuscript 
preparation 
assistant) 

Sizing illustrations 
(photographer) 

Pasteup 
(manuscript 
preparation 
assistant) 

Proofreading 
(editorial 

assistant) 

Document 

Figure 4. Langley publishing system-functions and personnel. 

Concluding Remarks 

Installation of a '!EX-based typesetting system at NASA Langley Research 
Center has resulted in a system well-suited to the technical typesetting needs 
within the Langley Technical Editing Branch. 'lEX has offered the following 
advantages: 

1. When adequate sources of 1E;X training and expertise became available, 
personnel were able to learn to typeset technical material quickly; Langley 
typesetters become productive in approximately 2 months. 

2 The productivity possible with the system is very satisfactory. The appear
ance of Langley reports has been greatly improved over the output from 
daisy-wheel printers, while the reports are actually being produced in less 
time than they were previously with a word processing system. 

3. The automation of mathematical typography has simplified the tasks of 
editors and proofreaders in marking and checking mathematics as well as the 
task of typesetters in formatting it. Not only does 1E;X produce outstanding 
mathematical typography, but also it excels in other typographic areas, for 
example, line breaking, hyphenation, and justification. 

4. Device independence offers hope of attaining a standard text formatting 
system at Langley, where 25 research divisions each have a document
processing system of their choice. 

The only disadvantage found in using 1E;X at Langley has been the difficulty 
with using font families other than Computer Modern. 

1988 Conference Proceedings, 1E;X Users Group 9 



Mary K. McCaskill 

On the basis of our experience in using 'lEX in a production environment, 
three additional comments are in order: 

1. Because 'lEX is so device independent, one can scrimp on hardware and 
still attain a working system. However, such a system is not necessarily a 
productive one. 

2. To install and maintain a 'lEX typesetting system requires expertise in 
computer systems, 'IE;X, and publication practices. A real effort must be 
made to coordinate knowledge in all three areas. 

3. 'lEX works best in an environment where the same format is used in most 
documents. When page layout changes often, too much time and expertise 
are required to constantly set up new formats. 

Wish List 

Imagine a bottle containing a '!EXnical genie who could make all 'lEX wishes 
come true. Were I to rub the bottle, my three wishes would be 

1. A program that provided a self-paced tutorial on using 'JEX. Short courses 
are not as effective as prolonged study with much practice mixed in. 

2. An easy way of setting up the '!EX-required files for any font. 

3. Software that would assist technical editors in their tasks and that could be 
easily used on files formatted with 'lEX· 
Actually, what I really want is a publication system that uses all the 

potential capability of computers to assist in (1) writing a document, (2) 
editing, analyzing, and revising it, (3) beautifully formatting it, even the difficult 
technical parts, in the typeface of my choice, (4) producing precise, artistic 
illustrations, (5) combining all its elements-text, tables, and illustrations
in the most useful and attractive layout, and (6) printing it precisely for 
distribution. 'lEX has a definite place in this system, but much work lies 
ahead in combining technology in the various areas to produce a truly complete 
computerized publication system. 

Bibliography 

Knuth, Donald E. TJi.jX and Metafont-New Directions in Typesetting. Bedford, 
Mass.: Digital Press and American Mathematical Society. 1979. 

Knuth, Donald E. The TJi.jXbook. Reading, Mass.: Addison-Wesley. 1984. 

10 1988 Conference Proceedings, TEX Users Group 



Use of 1EX in an Integrated System Development 
Environment 

J. T. RENFROW 

Jet Propulsion Laboratory 
California Institute of Techology 
4800 Oak Grove Drive 
Pasadena, CA 91109 
trenfrow@jplpds.jpl.nasa.gov 

ABSTRACT 

The Planetary Data System (PDS) is a software-intensive sys
tem being developed to archive planetary science data from all 
NASA missions. 'lEX is used as one of the tools in PDS' Integrated 
System Development Environment. The documentation produced 
using 'lEX includes system (i.e., software, database, user interface) 
development documents, user manuals, status reports, configura
tion management reports, and visual presentations. The genera
tion of all this material is accomplished primarily by means of a 
variety of automated document generation techniques-database 
management systems, CASE tools (e.g., PSL/PSA and Excelera
tor), text manipulation languages (awk), and graphics editors. This 
environment is composed of heterogeneous hardware (IBM PCs, 
Macintoshes, Apollos, VAXes) connected via a national network. 
A set of methodologies has been implemented to allow the smooth 
integration of all these tools across this distributed development 
environment. The programs, procedures, and macros used are also 
discussed. 

Introduction 

The National Aeronautics and Space Administration (NASA) has sent many 
spacecraft to various planets in our solar system, in addition to launching nu
merous satellites to study our planet Earth. The Jet Propulsion Laboratory 
(JPL), a part of the California Institute of Technology, has the unmanned explo
ration of the solar system as one of its main missions. The engineering, scientific, 
and technological challenges to send a satellite to a distant planet, to have that 
satellite make meaningful measurements of the state of the planet, and to return 
that data to earth are extremely significant and complex, but the final value to 
the mission is achieved only if scientists can get access to, understand, and use 
the data acquired from a planetary exploration mission. 

1988 Conference Proceedings, 'lEX Users Group 11 



J. T. Renfrow 

The goal. of the Planetary Data System is to develop a cost-effective means 
to catalog, archive, and distribute useful, easily interpretable planetary science 
data, and the supporting data and computer programs for the planetary sci
ence community. This goal is being realized through three efforts...,-technology 
evaluation, standards development, and system development. The project is 
managed by JPL but involves the work of eight other academic institutions and 
government agencies. A distributed architecture is the model for the system, 
with JPL serving as the central node and the other nodes functioning as remote 
discipline-specific nodes. The institutions are all connected via several national 
electronic networks and communication between nodes is almost exclusively via 
these networks. 

This paper focuses primarily on the requirements and design phases of the 
system development life cycle. The project recently completed its Critical Design 
Review and Version 1.0 is scheduled to be operational in November 1989. One 
system prototype was introduced in November 1987, and another prototype will 
be introduced in November 1988. 

In order to develop a cost-effective system, the PDS uses a very automated 
approach to system development. 'lEX is used to produce all official PDS docu
mentation. Various methodologies and other tools have been combined into an 
integrated system development environment to allow the efficient development 
and documentation of the PDS. Further information on these methodologies or 
machine-readable copies of any PDS-developed macros or software discussed in 
this article can be obtained by writing to the author. 

The next section summarizes the guiding philosophy for this project as it 
relates to document production. The next four sections describe the integrated 
system development environment and explain the function 'lEX serves in that 
environment. The section on the system development environment describes 
the components of the environment: hardware, software, standards, method
ologies, and staff. The section on T:EX support discusses how and why 'lEX 
was introduced into the project and how it is currently supported and used. 
The section on document production processes describes the various classes of 
documents that are produced by the PDS and the methodologies/production 
strategies associated with documents in each class. The penultimate section 
presents the conclusions of our work as it relates to 'IEX- The last section of the 
paper presents the bibliography for the paper. 

Project Philosophy 

The following philosophical assumptions or guidelines have been used in devel
oping the document production approach for the project: 

1. The appearance of documentation as well as the content of documentation 
is important in conveying the project's message to its audience. 

2. Tools should be developed when appropriate. "If you do a task less than five 

12 1988 Conference Proceedings, TEX Users Group 



Use of 'lEX in an Integrated System Development Environment 

times, don't automate it. If you do a task five or more times, build a tool to 
help you. If you build a tool more than five times, build a tool to help you 
build tools!' 

3. Not aU staff on the project need the same level of training or expertise with 
all the tools. Try to make t~e tools as simple to use as possible. 

4. Advance planning is essential to build databases that will contain all the 
information that will be needed in all the documents. 

5. Since the project involves many geographically distributed components the 
creation of a comprehensive set of development and documentation standards 
is essential. 

System Development Environment 

The PDS system development environment is highly distributed. The work is 
done at nine nodes, one at JPL and the remainder at eight other institutions.1 

The node at JPL consists of two development groups and three science groups, in 
addition to groups working on standards and technology. The nodes at the other 
sites are principally science groups, developing science databases, and science 
data retrieval and display software. 

L Hardware 

There are different types of computer hardware at the various nodes. Every 
node has a VAX computer and this is the target architecture for the operational 
PDS system. At the nodes (including JPL) there are local networks involving 
IBM PCs, Apple Macintoshes, and Apollo workstations. Not all the computers 
are connected via these institutional local networks but all have access to the 
national networks connecting PDS (Telenet and SPAN). Some of the nodes have 
PDS-purchased Britton Lee Intelligent Database Machines (IDM). All the nodes 
have laser printers and most of the nodes have printers which can interpret 
PostScript code. 

2. Software 

The software used in system development includes the usual compilers (the PDS 
is using FORTRAN and C) and text editors/word processors. In addition to 
these standard development tools, there are tools which have been used exten
sively during the requirements and design phases of the project. These include: 

1 Washington University (St. Louis), U.S. Geological Survey (Flagstaff), Uni
versity of California at Los Angeles, University oflowa (Iowa City), MIT, Applied 
Physics Labs (Johns Hopkins University), University of Colorado, and University 
of Hawaii. 

1988 Conference Proceedings, 'lEX Users Group 13 



J. T. Renfrow 

2.1 Document production tools 

'lEX is the principal tool used for document production. While a few of the 
remote nodes produce some documents using automated systems other than 
'lEX, all official PDS documents are produced using 'JEX. 

2.2 Computer aided software engineering (CASE) tools 

PSL/PSA (Problem Statement Language/Problem Statement Analyzer) is a 
software package used for automated analysis, design, and documentation. 
PSL/PSA supports a flexible model of information systems and allows one to 
capture information about the various aspects of an information system (in
formation about processes, inputs, outputs, user interfaces, data items, etc.). 
While PSL/PSA produces many standard reports for use in analysis and design 
and documentation, PDS has been using a companion tool to PSL/PSA, Text 
Generator (TG), which allows the production of customized documentation and 
reports. These two packages are used to store the entire system model for the 
PDS. They run on the VAX and Apollo systems at JPL. 

Standard software-based and hardware-based database management systems 
( dBase III and the Britton Lee IDM) are also used to keep track of the data for 
certain parts of the PDS system model. In particular the PDS Data Management 
Team maintains the entire data dictionary for all science and system data on the 
Britton Lee IDM. Conversion routines have been developed to share this data 
with the PSL/PSA processor. 

Excelerator is a PC-based tool which can be used for automated drawing, 
printing, and analysis of data flow diagrams, structure charts, and data mod
elling diagrams. It has been used to produce all data flow diagrams and structure 
charts for our development work. Excelerator does not currently produce these 
diagrams in PostScript code. A program has been written to translate the Excel
erator output metafile to PostScript code. Another program has been obtained 
from a custom software house to translate the text-based structural information 
from Excelerator to PSL/PSA input. In this way the Excelerator and PSL/PSA 
databases can be kept consistent. A software package is used to send PostScript 
and textual files between the PC and Apollo environments. 

2.3 Utilities 

Two graphics drawing programs, Cricket Draw and Adobe Illustrator, are used 
to produce graphics which are not produced by Excelerator. These packages are 
used both because they contain powerful graphics tools and because they can 
easily be made to output very intelligible PostScript code. The programs are run 
on a Macintosh and the results communicated to the PC environment using a 
software product, MacLinkPlus, which does all necessary file format conversions. 

Text manipulation languages, such as awk and sed, are used to convert text 
between non-T:EX formats and T£X formats. These two languages are used for 

14 1988 Conference Proceedings, TEX Users Group 



Use of 1EX in an Integrated System Development Environment 

frequently re-occurring and standard types of text modifications. ProKey, a 
PC-based keyboard macro package, can be used in conjunction with a word 
processing program such as WordPerfect to perform these same types of format 
changes when they are done on an ad hoc or interactive basis. 

3. Standards 

The PDS has adopted or created a number of system/ data/software development 
standards based on the JPL software development standards. These have been 
documented in the PDS Software Management Plan. The standards for the work 
at the central node are more stringent than those required of the remote nodes, 
and the requirements on each are carefully delineated in the document. The 
reason for more complex standards at the central node is that the code being 
developed for the central node falls within a higher standards level by the JPL 
classification of software. Because of the widely distributed nature of this project, 
the systematic application of the standards has been extremely important. It 
has tended to ensure uniform and compatible software development and software 
products. 

4. Methodologies 

The PDS has adopted three methodologies for use with the requirements and 
design phases of the system development. During the requirements phase of 
the project Yourdon's Structured Analysis methodology was used (DeMarco 
1979). During the design phase of the project, Yourdon's Structured Design 
methodology was used (Page-Jones 1980). The database was developed us
ing extended Entity Relationship modeling techniques as well as internal PDS
developed methodologies. 

5. Staff 

The PDS staff consists of engineers, development engineers and programmers, 
document production personnel, and scientists. The core development team at 
the central node has had experience with the systematic application of develop
ment methodologies. All other members of the project have gradually come to 
realize the advantages (as well as the extra effort) associated with these auto
mated systematic design approaches. The management of the PDS has actively 
supported and encouraged the use of these methodologies. 

'lEX Support 

1EX was chosen for this project for several reasons, the principal being that the 
PDS project manager was familiar with its power and greatly encouraged its 
use. A second reason arose from the distributed nature of the project. Textual 
information had to be sent from one node to another (generally in the form 

1988 Conference Proceedings, 'lEX Users Group 15 



J. T. Renfrow 

of electronic mail messages) to generate reports and documents. A variety of 
word processors and text editors were being used. There was no common set of 
control sequences associated with these word processors and even if there were, 
these control sequences could not be easily incorporated into electronic mail 
messages. Thus the only standard that could be required was the transmission 
of pure ASCII text. A third reason for the adoption of TEX was that very 
large documents (500 to 1,000 pages) would have to be produced based on an 
automated extraction of text from databases and there would not be enough time 
for manual manipulation and adjustment of text. The UNIX-based typesetting 
tools were not considered because the use of UNIX is not widespread in the PDS 
community. A fourth reason was that TEX was a very inexpensive (relatively 
speaking) yet extremely powerful product. 

T:EX has been installed on almost all the PCs at the central node (JPL 
has a site license for a micro-based version of 'lEX) and exists on many of the 
workstation/minicomputers at the remote nodes. It has also been installed on the 
VAX at the central node and the Apollo workstation. We have 'lEX supplied by 
Kellerman and Smith (VAX), Arbortext (Apollo), Addison-Wesley (MicroTEX), 
and Personal 'lEX (PCTEX). We use Preview from Arbortext. For print drivers 
we have the Imagen driver from Kellerman and Smith, and PostScript and HP 
drivers (DVIPS and DVIHP) from Arbortext. 

There are various levels of T:EX expertise among the project staff. At most 
of the remote nodes at least one member of the programming staff has become 
somewhat familiar with 'fBX. At the central node most members of the staff fol
low directions for document preparation and use of TEX conventions and macro 
packages supplied to them by other PDS staff. Another group of staff members 
have learned enough 'lEX so that they can generate the appropriate 'lEX com
mands as they create their document generation programs. There is a small staff 
on the project at the central node which is in charge of document production. 
They maintain the documentation databases and actually perform the produc
tion runs, which means that they have become very good in dealing with 'lEX's 
error messages. Finally there is one 'fEX wizard who writes widely-used macros, 
gives classes in 'lEX for the staff, and consults on 'lEX as necessary. Some of the 
documents require some sophisticated uses of 'lEX (e.g., modifying the output 
routine) and he helps in the development of these uses. 

Training on T:EX has evolved. Initially the classes consisted of lectures in 
which the instructor explained the principles of 'lEX and showed examples of 
'lEX code to produce documents. There were nine classes, one a week, and each 
lasted two hours. No homework was given or required. Based on the instructor's 
experiences at a course from Adobe Systems on PostScript, the method of in
struction was changed. The classes are now very interactive, with each student 
having a computer terminal with 'JEX on it as the class is taught. The class 
size is usually restricted to five or six students. A 'fEX concept or technique is 
explained and several examples are explained by the instructor. The students 

16 1988 Conference Proceedings, TEX Users Group 



Use of 'lEX in an Integrated System Development Environment 

are then asked to complete several exercises based on the examples. The raw 
material for the exercises (text and macros to be manipulated and changed) 
are supplied to minimize the data entry delays. The instructor works with the 
students so that they actually complete the exercises. Answers for all the ex
ercises are always provided after the lecture. By making the instructional style 
interactive and immediate the learning process is active rather than passive. 

The topics covered in the course are only those that are needed to create most 
of the 'IEX macros needed for PDS documents. The topics include: basic TEX 
wisdom (e.g., many spaces collapse to one space), handling of special characters 
(&, %, #, etc.), fonts, glue (how to skip vertically and horizontally), hboxes 
and vboxes, shaping of paragraphs, tables, and the creation of simple macros. 
The work on hboxes and vboxes is considerable since these are used extensively 
in PDS documents. Topics such as T_EX for math, complicated macros, output 
routines, marks, and the reading and writing of files are not discussed. 

Document Production Processes 

There are several categories of documents that are produced by the PDS. Some 
of these have different development processes and these will discussed separately. 
There are, however, some widely-used document development processes which 
will be discussed first. Figure 1 presents the documentation tree for the project. 

System Development Standards &: Guides Planning and Review 

User Requirements&; Standards for the Proposals 
Functional Requirements Preparation and 

Interchange of Data Sets 

Project Data Management Task Plans 
Plan Guidelines 

Catalog Design Data Administration Plan Monthly Status Reports 

Integration and Test Plan 
& Acceptance Test Plan 

onfiguration 
Management Reports 

Software Management 
Plan 

MOUs with data 
suppliers 

MOUs with classes of 
data users 

& Quarterly Progress 
Reports 

Slides for Status Reviews, 
Development Reviews & 
Working Meetings 

Operations 

~Software Operators 
Manual 

User's Manual 

System Transfer 
Agreements 

Figure 1: PDS Project Documentation Tree 

Many of the documents produced by the PDS have the following 
characteristics-a title page, a table of contents, several chapters with each chap
ter containing sections, subsections, etc., and zero to many appendices, again 
with sections, subsections, etc. Since this form of documentation is so ubiq
uitous, a set of 'lEX macros was created to produce them. These macros were 

1988 Conference Proceedings, 1E;X Users Group 17 



J.T. Renfrow 

designed to "word wrap" arbitrarily long titles, section headings, figure and table 
titles, and table of contents entries. Additional macros can be added to handle 
special formatting needs. The features of this standard package are: 

1. Creation of chapters or appendices - Each chapter or appendix begins on an 
odd-numbered page. An extra page is inserted at the end of the previous 
chapter if necessary. The title of the chapter is included in the footer line. 
An author for the chapter can be included also. Title and page number 
information is written to a table of contents file. 

2. Creation of sections, subsections, etc. - Up to 15 levels of sections can be 
given. Section numbering is automatically calculated. Table of contents 
entries are entered. 

3. Figures and tables - Captions and numbers for figures and titles are auto
matically generated. Table of contents entries for each are created. 

4. Verbatim text - Verbatim text can be entered. This allows for blank lines, 
lines starting with spaces, etc. 

5. Automated list management -Lists with up to four levels of indentation are 
handled. Numbering is done automatically so rearrangement of lists is easy. 

6. Table of contents generation - After the document has been 'JEXed, another 
macro package is called which generates the complete table of contents from 
files generated by TEX in the document production process. The table of 
contents includes separate parts for the main chapters of the document, the 
appendices, the list of figures, and the list of tables. 

The PDS has developed a document describing the writing conventions to 
be used in PDS documents. This includes capitalization conventions, word use 
conventions (e.g., "data base" versus "database"), 'fEX. conventions, and editing 
conventions. 

If someone is producing a document and these macros are sufficient, then. 
he can produce the document and "TEX" it on his own system. If it is a PDS 
official document, however, then a documentation production schedule for the 
document is prepared, including a review schedule. The document production 
plan clearly identifies the people involved in the production process (i.e., writers, 
programmers, producers, reviewers). 

1. Project Development Documents 

The automated production of system development documents (i.e., producing 
documents from databases) is done principally at the central node. The approach 
used in producing these documents is to extract information from a database and 
build a 'lEX file from this information. 

The development of a system model which can be implemented via a database 
and then used to hold all information associated with the system being con-

18 1988 Conference Proceedings, TEX Users Group 



Use of 'lEX in an Integrated System Development Environment 

structed is a very complex process. The details of this process will not be 
described in this article; it is described elsewhere (Childs 1988). The model 
must store all information as it is created, and must capture all the relationships 
between the various pieces of information. In building the model, one has to 
understand all the information needed from the model either for analysis of the 
requirements or design, for the generation of prototyping software, or for the 
documentation of various components of the system. 

For example, consider a data item which is a part of the PDS Catalog (a 
catalog of scientific datasets). This data item has attributes such as data type, 
length, default value, value constraints, and measurement units. In addition it 
may be related to other entities and elements of the relational database schema 
and these relationships will have to be documented in the P DS Catalog Design 
Document. The data item may be called by software and this relationship must 
be specified in the PDS Software Specification Document. The presentation of 
this data item to the user via the PDS user interface system and the menus 
and display screens which use this item must be documented in the PDS User's 
Guide. All these relationships are captured for this data item. Other items of 
the model have equally complex relationships. By having all this information 
stored in only one model we help to ensure the consistency of the system and its 
documentation. As the items making up the system model change, this change 
can be reflected in all documentation since all are generated from the same model. 

The production of the system development documentation goes through sev
eral stages: 

1. The organization and content for the documentation are specified. The con
tents ofthe document are based on the JPL software documentation require
ments, the development methodology being used, and the system documen
tation requirements found in the P DS Software Management Plan. 

2. The information that will be needed to populate each section is determined. 
If some relationships among the data items are missing from the model, then 
the model and the database are augmented and the missing information is 
acquired. 

3. The format for the presentation of the information (e.g., lists, tables, and 
diagrams) is determined and the 'lEX macros are written to format the in
formation. 

4. Programs are written (in C, TG code, or in the database system language) 
which will extract the information from the database and insert it properly 
into TEX macros. The programs are able to detect when pieces of information 
have not yet been entered into the database and handle this situation as the 
document is being generated. 

5. The programs are run against the database and the documentation can be 
produced in several preliminary versions for inspection and review. 

1988 Conference Proceedings, TEX Users Group 19 



J .T. Renfrow 

6. The final documentation is produced, reproduced and sent out for review 
and use. 

The first two steps in this process are performed by development engineers; the 
third and fourth steps are done by document programmers; and the last two by 
the document production staff. 

The graphics generated from Excelerator, Adobe Illustrator, and Cricket 
Draw must be included in the document. Initially these graphics items were 
produced in PostScript format, printed separately, and manually pasted into the 
documents. Currently these graphics are being stored in PostScript format and 
placed in the document directly via the \special command. Naming conven
tions are used to keep the graphic file names consistent with those found in the 
document. 

This automated placement of graphics has shortened the time in which a 
document can be "turned around"-which was already remarkably short. For 
example, once all the edits to the database have been made, a new copy of any 
document can be produced in one half to one full day, and all the documents 
produced after the edits will be consistent with respect to contents. 

2. User Manuals and Program Documentation 

User manuals and program documentation are produced not only by the central 
node's system development staff but also by the science development staffs at the 
various nodes. Two nodes, in addition to the central node, have made significant 
and novel uses of 'lEX in producing this form of documentation. 

The central node uses TAE (Transportable Applications Executive, a soft
ware package created by NASA's Goddard Space Flight Center) for its user 
interface. TAE allows the user to create menu definition files {MDFs) and pro
cedure definition files {PDFs) and basically these define the user interface. All 
the associated help messages, parameter specification and passing, process ini
tiation and control are handled by TAE. Loosely speaking, TAE builds a user 
interface system based on a set of tables. Through a rather clever bit ofpro
gramming, the PDS staff builds all these tables using programs that draw the 
needed information from the system model. The menu hierarchy, components, 
help messages, descriptions and software procedure names are all contained in 
the system model. The User's Manual for this system is also produced from the 
same system model. This ensures consistency between the actual user interface 
system and the User's Manual. 

Two of the science nodes have developed mechanisms for documentation of 
actual programs that involve 'JEX. These have some of the characteristics of the 
WEB system but have been designed for slightly different purposes. They have 
also been designed for languages other than Pascal, namely FORTRAN and C. 

The node at UCLA has developed a system to produce online and printed 

20 1988 Conference Proceedings, 'IE;X Users Group 



Use of 'lEX in an Integrated System Development Environment 

User's Manuals from the same source. They have also developed a mechanism to 
produce programmer's reference manuals from program headers. Help informa
tion for the programs is maintained online in VAX help file formats. No ''foreign" 
'lEX commands are allowed to appear in this material. However, natural looking 
but syntactically exact constructs are used which can be converted to material 
that includes the necessary 'lEX macros. For example, a list can be started by 
ending the previous line with a ":". Key caps are made by enclosing material 
between "<" and ">" inside a rectangle. For example <CR> is translated into 
rr:::HJ. Tables presented in the online help as 

+----------------------------------.----+ 
I word I description I 
1--------------------------------------1 
I help I a request for assistance! 
+--------------------------------------+ 

will be translated into a genuine table using the \halign command (multiple 
entries need to be set via vboxes/vtops). The number of dash symbols is used 
to determine how wide to make the tables. The use of these conventions allows 
the online material to appear natural and yet allows a correct translation into 
material that can be processed by TEX. The conversion of this material is handled 
by the awk and sed utilities. 

The UCLA programming staff find it acceptable to maintain program header 
information inline with the program code. They have written awk and sed pro
grams which extract these comments as well as actual code from the programs 
and then prepare material in a standard format for a reference manual. Informa
tion on functional declarations, entry requirements, returned values, develQPment 
history, include files, functions accessed, common variables, and local variables 
can be captured and formatted into tables. 

The node (located at JPL) in charge of navigation/planetary geometry for all 
satellite data has developed a different approach for producing consistent sets of 
program documentation. They produce all their program documentation using 
a special subset of 'lEX commands. These documents can either be run through 
'lEX and typeset or they can be run through a special translator, SUB 'lEX 
(for SUBset of 'lEX), which will produce a pure ASCII version of the text. This 
ASCII version attempts to mimic the format that 'lEX would produce-indented 
lists, word wrap within tables, etc.-and can be used in help files or in program 
headers. SUB'IEX allows the creation of tables, lists, and verbatim text so 
that the usual material needed in online helps can be produced. The node is 
developing a "reverse" translator to convert this ASCII material back to a form 
that has 'lEX macros in it. The utilities that do these translations are written 
in FORTRAN. 

1988 Conference Proceedings, 'lEX Users Group 21 



J. T. Renfrow 

3. Status Reports 

Monthly and quarterly progress reports are prepared for all the work on the 
PDS. The monthly reports are prepared by the PDS Administrative Assistant 
based on information received from the PDS managers. A set of macros has 
been written to produce these reports so that the managers have to use only a 
few simple 'lEX macros when they send in their text. The material is sent to 
the Administrative Assistant via electronic mail. Resource data (financial and 
manpower) is graphed using an Apple Macintosh and pasted in. Schedules are 
prepared using a special widely-used program at JPL and are pasted in (they 
are not produced in PostScript format). 

Quarterly status reports are sent in (via electronic mail) by twelve differ
ent people to the Administrative Assistant. Each report forms one chapter of 
the PDS Quarterly Report. The macros for documents with multiple chapters 
discussed earlier are used for this document. A simple set of formatting conven
tions has been distributed to the preparers of chapters of the document and they 
try to follow these formatting conventions. The Administrative Assistant must 
sometimes make editorial changes to the documents and for this, the use of a key
board macro package, such as ProKey, has proven invaluable. The combination 
of ProKey and WordPerfect commands allows the systematic and rapid transfor
mation of non-'!EX constructs into ones containing the appropriate syntax and 
'lEX macros. Where additional formatting is required, as in the conversion of 
ASCII material into correctly formatted tables, the combined use of ProKey and 
WordPerfect can be used very effective and is sometimes much easier than using 
awk or sed utilities. 

4. Presentation Material 

Oral presentations of PDS material are usually accompanied by 8 1/2 x 11 
inch overhead transparencies. The material for these overhead transparencies is 
prepared using a powerful and flexible set of transparency preparation macros 
created at JPL by Peter J. Scott. The PDS 'lEX expert has added some macros 
which basically restrict the options available to someone using these prepara
tion macros. There are only six macros which anyone needs to use to prepare 
transparencies. Thus, this macro package is widely used and the preparation of 
presentation material is very easy, yet the results are very professional. 

5. Other Documents 

Other documentsproduced include telephone directories, action item status re
ports, and form letters. These documents have been produced from dBase III 
files, and special macro packages have been written to format these documents. 
This allows very professional reports to be prepared as often as necessary and 
with minimal impact on PDS personnel resources. 

22 1988 Conference Proceedings, 'lEX Users Group 



Use of 'lEX in an Integrated System Development Environment 

Conclusions 

'lEX has been used extensively on the PDS since 1985 and by a wide group 
of people with varying degrees of expertise in document preparation systems" 
Some conclusions can be drawn from this experience based on well-understood 
experiments and processes. These are: 

1. People are more receptive to reading documents prepared using a professional 
typesetting system such as TEX than if a standard word processing system 
had been used. The content of the document is very important of course 
but we have shown that the format and appearance of the document are also 
important. 

2. The engineering of a document production process is worthwhile but defi
nitely non-trivial. By using databases and TEX macros, information can be 
formatted in ways that enhance its interpretation and usefulness. Complex 
information can be integrated correctly. The consistency and correctness 
of document contents can be enhanced by producing documents from one 
source. In order to achieve these benefits, however, careful planning must be 
done. Issues such as how to build and control the database, how to ensure 
consistency of written material, how to map between a database and a docu
ment, and how to construct programs to build documents must be addressed 
during the early stages of the engineering effort. The building of tools to 
help in the documentation process can be expensive initially but can pay big 
dividends when these tools are used repeatedly. 

3. Care must be taken to consider the person who will be reading a document 
produced from a database. The material extracted from a database can 
begin to look very formal and very repetitious if one is not careful. Proper 
introductions and explanations of the extracted material are necessary to 
enhance readability. An enormous amount of information can be extracted 
from the database and the document can become quite large. Decisions 
must be made carefully regarding how much material to include in such a 
document. 

4. Documents with a consistent format can be produced at different sites by the 
use of a common set of 'lEX macros. Differences in document "source codes" 
(e.g., spacing, indentations, line lengths) disappear when the final product 
is produced. Electronic exchange of document "source code" is very feasible 
since 'lEX uses only standard ASCII characters. 

5. People must receive training in the use of TEX. Most people will not learn as 
complicated a language as TEX without some training. Different groups of 
people need training for different levels of TEX expertise. Writing and 1EX 
formatting conventions must be well documented and examples of their use 
prepared. Commonly used macros must be written to simplify the imple
mentation of standard document formatting conventions. 

6. Total document production costs using TEX and databases can be lower than 

1988 Conference Proceedings, '!EX Users Group 23 



J. T. Renfrow 

if an outside documentation preparation service is used. Different versions 
of a document can be produced rapidly and with little additional cost. 

Bibliography 

Childs, D. B. Planetary Data System System Engineering Environment. PDS 
internal document. 1988. 

DeMarco, T. Structured Analysis and System Specification. Englewood Cliffs, 
New Jersey. Prentice-Hall. 1979. 

Page-Jones, M. The Practical Guide to Structured Systems Design. New York, 
New York. Yourdon Press. 1980. 

Acknowlegement 

The research described in this paper was carried out at the Jet Propulsion Lab
oratory, California Institute of Technology, under a contract with the National 
Aeronautics and Space Administration. 

24 1988 Conference Proceedings, '!EX Users Group 



'lEX and Databases 

DAVID NESS AND JAMES SLAGLE 

TV Guide Magazine 
Radnor, PA 19088 

ABSTRACT 

Sometimes several documents form a family, or group, because 
they share some common characteristics. It is often useful to be 
able to extract these characteristics from the documents in order 
to put them into a database that can be used for other purposes, 
including automated generation of summary documents. This ar
ticle describes some facilities that allow us to do this with families 
of 'lEX documents. 

What 'lEX Facilitates 

'lEX is flexible to the extreme. This makes it possible-through the careful 
organization of information-to accomplish more than the rendering of the doc
uments themselves. A common example of this kind of meta-use is to prepare 
lists and summaries of documents of various kinds. 

Some Common Problems 

We have found the technology described in this article to be of use to us in 
several different problem domains: 

• project control documents 
• program documentation 
• general memos 
• computer purchase 'dockets' 

All of these areas share an important common characteristic: 

There is a requirement for at least two ways of looking at the documents: 
(1) as individual documents themselves; and (2) as information to be 
incorporated into a summary of the documents relevant to a particular 
purpose. 

Dockets as a Prototype 

The Docket in our organization is a document that is presented to the Steer
ing Committee requesting an allocation of funds for the purchase of computer 

1988 Conference Proceedings, 'lEX Users Group 25 



David Ness and James Slagle 

hardware or software (or occasionally, services). All dockets share a number of 
characteristics, which include: 

o Title 
• Requester 
e Author (often a different person from the requester) 
• Amount 
• Date Submitted 
• Date Decided Upon 
1111 Purpose 
• Nature, etc. 

Some of these data items are a few words or a sentence (i.e., Title, Author, 
Dates, Amount). Others can be many paragraphs in length (i.e., Economic 
Justification, Purpose). 

Dealing with these documents led us through some problems to a comfort
able solution. In fact, these rather sophisticated documents are now routinely 
produced by an employee with only introductory-level TEX skills. 

An Early Try 

In the early days of preparing Dockets and Docket Summaries, we attempted 
to maintain this information in two separate-but~related documents: a text file 
and a facts file. The text file grew to be a very long document containing all 
the text describing the verbose sections of dockets, such as Nature and Purpose. 
The facts file, on the other hand, was stored in a comma-delimited file format 
that we borrowed from BASIC. 

With this early try, all the information necessary to produce a Docket Sum
mary was contained in the facts file. However, to produce an individual docket, 
it was necessary to pull data from both the text and facts files. 

The database became difficult to maintain. Changes to a docket or dockets 
required that two different documents be updated concurrently, and sometimes 
we ended up with in,consistent entries. 

The Solution 

The solution-which has also worked well for other databases-is to mam
tain each docket as a self-contained document, with facts stored as \def val
ues. The documents have been given similar filenames, e.g., dock0100. tex, 
dock0101. tex, to facilitate batch processing. 

A batch process extracts these definitions and compiles them into a summary 
file that is similar to the facts file formerly maintained by hand. This summary 
file is always built on demand in order to produce the Docket Summary, thus 
ensuring that the summary data is consistent with the actual dockets. 

26 1988 Conference Proceedings, TEX Users Group 



'lEX and Databases 

The process requires some general purpose sorting software, and some soft
ware specifically developed to handle ':IE)C definitions in useful ways. We are com
fortable with this mix of technology, although it may offend some 'lEX purists. 

GETDEFS passes through the list of dockets and gathers macro definitions into 
an output file. Every time that the sequence \de:f\macname{De:f ini tion} is en
countered, a line is written into the output file consisting of: 

FILENAME: macname="De:finition" 

REMAPDEFS is then executed to replace the names of the macros in the file 
produced by GETDEFS by sequence numbers that are specified in an auxiliary 
remap file. This fixes some field lengths and makes the file amenable to sorting 
and further processing. Definitions not required in the output database are 
removed at this point by excluding them from the remap file. 

A SORT program then organizes the definitions into the desired order, typ
ically descending order, so that the most recent dockets will head the docket 
summary. 

Finally, COMBINE is run to group all the definitions for an individual docket, 
as m: 

DOCKET1{Arg1, Arg2, Arg3, ... } 

A Sample Docket 

A fragment of a docket follows. The definitions are entered one per line in a 
format we consider the header. In practice a new header is virtually always 
picked up and edited from an existing docket, minimizing omissions and making 
it easy to compare one document to another. Some of the \de:fs that are not of 
any use in a summary file will only print in 'Docket 0185'; others will print only 
in the 'Docket Summary', and many will be used in both. 

\def\dockno{0185} 
\def\requestby{J.Slagle} 
\def\dept{REO} 
\def\amt{151,575} 
\def\state{Proposed} 
\def\name{Telex} 
\def\type{HardYare} 
\def\niter{JFS} 
\def\firstdisc{25 May 88} 
\def\lastdisc{} 
\header 
\nature{ 

This is a request for equipment to upgrade three classes of PCs in 
the field 

} 
\purpose{ 

1988 Conference Proceedings, TEX Users Group 27 



David Ness and James Slagle 

This is a follow-up to Docket 0170, in which the need for faster 
processing . . . 

} 

Producing a Docket Summary 

Anyone fluent in 'lEX should be able to produce 'Docket 0185' from the above 
data. The \defs can be called upon as needed, and the form determined by a 
dockets style file. 

Producing a summary of all the dockets is less straightforward. The first step 
is to collect the \defs from each of the dockets into a facts file. As outlined above, 
this is accomplished by a batch process ofseveral home-grown programs. The 
process passes through each docum!'lnt collecting the 'facts' and sorting them 
into an order defined in an auxiliary file, then reformatting the results into a 
useful file format: 

•DOCKNO,FIRSTDISC, REQBY, START, FDATE, AMT, STATE, NAME, 
0185, 25May88, J.Slagle, 88-06-07, "151,575", Proposed, Telex, 
0184, 15Apr88, D.Ness, 88-06-07, ? Mitron, .. 
[ ... .. .] 

Compare this fragment to the document for docket 0185 above. The first 
row labels the columns that follow. Facts such as DOCKNO and FIRSTDISC were 
pulled unaltered from the original dockets. FDATE (file date) was obtained from 
DOS. START was not only renamed from \lastdisc in the original, but a default 
value of,_.:__, was supplied, since the original \def was found empty. The value 
for AMT was quoted for docket 0185, since it contained a comma-our delimiter 
character. 

Once the facts file is prepared, certain facts are selected and dumped into a 
file that will be presented to 'JEX: 

\def\mac{\xxx{A} 
\fact<0185=J.Slagle=25May88=151,575=Proposed=Telex> 
\fact<0184=D.Ness=15Apr88=?=---=Mitron> 
\tablerule} 
\input DOCSUM.FIL 

DOCSUM. FIL is essentially a style file, containing basic table-building 'JEX. Here 
is a look at the output: 

Steerin.e: Committee Docket Status 

No. Req.By Date Amt State Item 

0185 J .Slagle 25May88 151,575 Proposed Telex 

0184 D.Ness 15Apr88 ? - Mitron 

28 1988 Conference Proceedings, 'lEX Users Group 



'lEX and Databases 

Knuth, Speed & Flexibility: Some Appreciation 

Working on a project like this makes one appreciative of both the flexibility and 
efficiency with which Knuth implemented 'lEX· By worrying about efficiency 
inside 'lEX, Knuth left us free to make heavy use of facilities-such as macro 
definitions and calls-which otherwise might prove expensive and cumbersome. 
Vvithout hesitation we can encapsulate crucial notions in macros and know that 
we will never be concerned about the computer time that will be eaten up by 
the implementation. 

Moreover, the flexibility of'IEX makes it easy to use macro definitions to store 
information. If we wanted to define some macros, but not have them recognized 
by our database management software, we would just provide an alternative form 
for \def and its allies. Our database software would never see the definitions 
while 'lEX, of course, would. 

Definitions and Calls 

So far we have accomplished our objectives by using \de:f and \gdef to mark 
'facts' for later use. We have not found a need to keep track of our \xdef and 
\edef commands, as these would be unusual in the context we are describing 
here, although the process could be easily adapted to accommodate these related 
commands. At the moment we normally recognize only \defs, but a run-time 
switch on our software allows \gdefs to be recognized also. 

Relationship to SGML 

At present we are disinclined to pursue Standard Generalized Markup Language, 
since we have been able to achieve what it promises and more through 'lEX· With 
some clever re-definitions of the active character, it may even be possible to cause 
1E;X to rather directly interpret SGML. As has been demonstrated above, 'lEX is 
able to accomplish some of the sought-after separation of form and content, and 
it is able to handle database functions as well, something not generally touted 
for this kind of language. 

Managing the Database 

The database-a collection of documents-is stored on the server of a local area 
network. The utility program ARC is used to compact them into a single archive, 
which is rigorously backed up. Any time a facts file is needed, it is built on 
demand to incorporate the latest revisions. Because several people work on the 
dockets, we must be careful to avoid simultaneous updates. 

The facts file uses a very simple database format, in which each line repre
sents a record and fields are comma-delimited. This format is very similar to 
that used by an off-the-shelf database manager called InfoScope that performs 
standard data-management tasks (sorts, totals, averages, etc.). In fact, to load 

1988 Conference Proceedings, 'lEX Users Group 29 



David Ness and James Slagle 

our database into InfoScope, we simply split offthe format line into a separate 
file, since InfoScope reads data and format from two separate files. 

30 1988 Conference Proceedings, TEX Users Group 



Producing Manual Sets Using Single-Sourcing 

LAURIE MANN 

Stratus Computer, Inc. 
M22PUB 
55 Fairbanks Blvd. 
Marlboro, MA 01752 
508-460-2610 
uucp: harvard!anvil!es!lmann 

ABSTRACT 

Maintaining sources for manual sets can be made easier by.ex
ploiting TEX.'s powerful conditional capabilities. This paper de
scribes how Stratus has developed a system for producing multiple 
manuals from the same basic source files, and other ways this sys
tem can be used. 

Introduction 

In documentation departments, it is common to write and revise manuals that 
are similar. At Stratus Computer, we publish some manual families where related 
manuals contain much of the same text. For example, we publish six manuals 
that document operating system subroutines-one for each of the six program
ming languages Stratus supports. Text describing individual subroutines is the 
same from language to language; usually the only difference from language to 
language is the subroutine declaration. Rather than writing separate descrip
tions for each subroutine in each language, we write and maintain a single source 
file containing the subroutine description. This paper describes single-sourcing, 
a system which simplifies the writing and maintenance of manual families. 

The History of Single-Sourcing 

Stratus Computer was founded in 1980, and designs and builds fault-tolerant 
computers for on-line transaction processing. In the early 1980s, computer man
uals at Stratus were written in-house, but produced out-of-house. 1EX was first 
used at Stratus to produce manuals in 1983. By early 1984, we had converted 
old manual source files to T:EX, and coded all new material in 1£X. 

When the VOS Service Subroutine .Manual (R005) was first published in 
1981, it was 370 pages long and documented how to call 152 subroutines in 
PL/I. During 1982 and 1983, Stratus added a number of new subroutines to the 
operating system. In addition, we needed to document subroutine support for 

1988 Conference Proceedings, 'lEX Users Group 31 



Laurie Mann 

BASIC, FORTRAN, Pascal, and COBOL. Because of the number of subroutines 
being added, we were faced with three problems: 

1. How could we best maintain the source files for nearly 200 subroutines in five 
different languages? 

2. How could we manage documentation sources to allow for future expansion 
(i.e., new language support and new subroutines)? 

3. How could we make the VOS Service Subroutine Manual (R005) easy for the 
reader to use, in light of the amount of material we needed to present? 

We decided to document the subroutine set for each language in a separate 
manual. The five manuals would share the same text with the exception of the 
subroutine declarations. Since the subroutine declaration for each language was 
different, it was coded in a separate input file. Here is part of the source file for 
the s$read subroutine. Flags appear in the left margin of the source code, and 
the related explanation follows the code: 

\begincrs{s$read} 
\INDEX{s$read subroutine} 

\begintitle{Purpose} 
The subroutine ls$readl reads a record in the file or I/O 
device attached to the caller's ldefault_inputl port. 

\begintitle{Usage} 

J\ \input read.\language.tex 

J\ \language is a macro which appears as an infix in the name of a file contain
ing a subroutine declaration. For example, the name of the file containing 
the usage information for s$read in COBOL is s$read. cob. tex. For Pascal, 
the name of the input file is s$read. pas. tex. 

The s$read PL/I usage input file, s$read. pli. t ex, is coded as follows: 

\setbox\codebox=\vbox{\begintt 
declare buffer_length binary(15); 
declare record_buffer char(0N@) varying; 

declare s$read entry( binary(15), 
char(©N@) varying); 

call s$read( buffer_length, 
record_buffer); 

\endtt}\code 

32 1988 Conference Proceedings, TEX Users Group 



Producing Manual Sets Using Single-Sourcing 

The s$read BASIC usage input file, s$read. bas. tex, is coded as follows: 

\setbox\codebox=\vbox{\begintt 
dimension buffer_length%=15 
dimension record_buffer$<=~N~ 

subprogram s$read( buffer_length%=15, t 
record_buffer$<=~N~) external 

call s$read( buffer_length%, t 
record_ buffer$) 

\endtt}\code 

To pull together all the source files and macros for one manual, we wrote a 
unique wrapper file for each version of the manual. The following is a portion 
of the wrapper file, used for the second edition of the VOS PL/I Subroutines 
Manual (R005): 

Al \def\language{pl1} 

\def\languagename{PL/I} 

\beginmanual{\vosplisubrsmanual} 

13 \input subintro.\language.tex 

\startpart{Introduction to the \vos\ Service Subroutines} 

\input subguide.\language.tex 
\input briefsubsdesc.\language.tex 

C \input abbrev 

\input addepiloguehandler 
\input additem 

\input writewrapindent 
\input writewrappartial 

\endmanual 
\end 

1988 Conference Proceedings, TEX Users Group 33 



Laurie Mann 

A This is the definition for the \language infix. 

B The files in the wrapper with the \language infix are unique to each manual; 
these files are different for each language documented. 

C Each subroutine description is documented in a separate file. As described 
above, each source file contains another input file, to call in the appropriate 
usage file. Since each manual has a unique wrapper file, it is easy to modify 
the list of subroutines to be included for each manual. A number of VOS 
subroutines supported under PL/I, are not supported under BASIC or FOR
TRAN. For example, the epilogue handler subroutines are not documented 
in the VOS BASIC Subroutines Manual (R018), but they are documented 
in the VOS PL/I Subroutines Manual (R005). 

To document the s$read subroutine in every supported language, the fol-
lowing files are needed: 

read. tex TEX source file for the text of the s$read subroutine 
read. bas. t ex BASIC usage for the s$read subroutine 
read.cob.tex COBOL usage for the s$read subroutine 
read.for.tex FORTRAN usage for the s$read subroutine 
read. pas. t ex Pascal usage for the s$read subroutine 
read. pli. t ex PL/I usage for the s$read subroutine. 

When the wrapper file for VOS PL/I Subroutines Manual (R005) is com
piled, 'IEX reads in the appropriate files. When that edition of the VOS PL/I 
Subroutines Manual (R005) was published, the printed description ofthe s$read 
subroutine looked as follows: 

s$read 

Purpose 

The subroutine s$read reads a record in the file or I/0 device attached to 
the caller's de:fault...input port. 

Usage 

declare buffer~ength binary(15); 
declare record..buffer char(N) varying; 

declare s$read entry( binary(15), 
char(N) varying); 

call s$read( buf:fer~ength, 

record..buffer); 

34 1988 Conference Proceedings, T_EX Users Group 



Producing Manual Sets Using Single-Sourcing 

In contrast, the description of the s$read subroutine in the VOS BASIC 
Subroutines Manual (R018) looked like this: 

s$read 

Purpose 

The subroutine s$read reads a record in the file or I/0 device attached to 
the caller's de:faul t_input port. 

Usage 

dimension 
dimension 

buffer-length%=15 
record_buff er$<=N 

subprogram s$read( buffer-length%=15, & 

record_buf:f er$<=N) external 

call s$read( buffer-length%,& 
record_bu:f:fer$) 

Other language-specific information is also put in special files. This infor
mation generally consists of tables, which sometimes vary from language to lan
guage. 

While this system works well for most of the subroutines, there is a limitation. 
A few subroutines function differently from language to language. We had to 
write different subroutine descriptions for each language. As a result, we had to 
maintain different descriptions for some subroutines. 

1. Debugging the \language Macro 

The \language files required little debugging, and worked as we expected. We 
ran into one problem. Occasionally, some information is needed for subroutine 
descriptions in some languages, but not in others. It was clear that the \input 
statement had to have a corresponding file in each language we were document
ing, so we sometimes needed to create empty files. However, we soon discovered 
that T£X would stop in its tracks when it found an empty input file. To prevent 
this, we had to create a few files with one line: 

\vskip\leadreg 

This method allowed T£X to continue processing the manual. 

The primary limitation of the input files was the inability to insert text of 
less than one paragraph in a subroutine description. 

1988 Conference Proceedings, TEX Users Group 35 



Laurie Mann 

The \languagecase Macro 

Over the next year, the subroutine manuals were revised. New subroutines, and 
a new language (C), were added. The manuals continued to grow, and averaged 
800 pages for the spring 1985 release. 

For the following release, we took an additional step to make the project a 
little more manageable. We decided to develop a way to permit brief insertions of 
language-specific information into paragraphs. To help handle this problem, we 
wrote a new macro, \languagecase. \languagecase is a powerful conditional 
macro that inserts brief amounts of language-specific text into manuals without 
having to use input files. The \languagecase macro takes six arguments: 

\long\def\languagecase#1#2#3#4#5#6{% 
\iflanguageall [BASIC: #1] [C: #2] [COBOL: #3]% 

[FORTRAN: #4] [Pascal: #5] [PL/I: #6]\fi% 
\iflanguagebasic#1\relax\fi% 
\iflanguagec#2\relax\fi% 
\iflanguagecobol#3\relax\fi% 
\iflanguagefortran#4\relax\fi% 
\iflanguagepascal#5\relax\fi% 
\iflanguagepli#6\relax\fi} 

The \languagecase macro uses a series of "language switches." These switches 
"turn on" or "turn off" the appearance of language-specific text in the output. 
Their definitions follow: 

Definition 

\newswitch{languageall}1 

\languageallfalse 
\newswitch{languagebasic} 
\languagebasicfalse 
\newswitch{languagec} 
\languagecfalse 
\newswitch{languagecobol} 
\languagecobolfalse 
\newswitch{languagefortran} 
\languagefortranfalse 
\newswitch{languagepascal} 
\languagepascalfalse 
\newswitch{languagepli} 
\languageplifalse 

Description 

Show all languages in text 
Disregard the \languagecase macro 
Show BASIC in text 
Disregard BASIC in text 
Show C in text 
Disregard C in text 
Show COBOL in text 
Disregard COBOL in text 
Show FORTRAN in text 
Disregard FORTRAN in text 
Show Pascal in text 
Disregard Pascal in text 
Show PL/I in text 
Disregard PL/I in text 

1 The plain files we have developed at Stratus diverge substantially from the 
plain file described in the TJ!;Xbook. \newswi tch is our version of the \new if 
control sequence. 

36 1988 Conference Proceedings, 'lEX Users Group 



Producing Manual Sets Using Single-Sourcing 

The \language case macro is used in text when a writer describes a subrou
tine that has different values in each language. For example, subroutines take 
different numbers and types of scalar arguments, depending on the language. 
Here is how \languagecase is used in text to differentiate language-specific in
formation: 

The operating system subroutines take 
\languagecase{three}{five}{five}{three}{five}{five} 
general types of scalar arguments: ·ari thrnetic, 
character string,\languagecase{}{ pointer, entry,}{ pointer, 
entry,}{}{ pointer, entry,}{ pointer, entry,} and logical. 

The wrapper for the VOS FORTRAN Subroutines Manual (R020) contains 
the \languagefortrantrue switch. This switch tells TEX to pick and print the 
material in the fourth set of braces after the \language case macro. In the VOS 
FORTRAN Subroutines Manual (R020), the paragraph shown above reads: 

The operating system subroutines take three general types of scalar 
arguments: arithmetic, character string, and logical. 

In the VOS PL/I Subroutines Manual (R005), the paragraph reads: 

The operating system subroutines take five general types of scalar 
arguments: arithmetic, character string, pointer, entry, and logical. 

One particular strength of the \languagecase macro is the ability to show 
multiple languages for the purposes of review. In this way, we are able to show 
reviewers each language on the same page. This makes technical review easier: 

The operating system subroutines take [BASIC: three] [C: five] [COBOL: 
five] [FORTRAN: three] [Pascal: five] [PL/I: five] general types of scalar 
arguments: arithmetic, character string,[BASIC: ] [C: pointer, entry,] 
[COBOL: pointer, entry,] [FORTRAN:] [Pascal: pointer, entry,] [PL/I: 
pointer, entry,] and logical. 

The addition of the \languagecase macro means that we can place short 
amounts of language-specific information in single-source files. Material can be 
inserted in the middle of paragraphs without having to resort to input files or 
separate description source files. We do not have to create new input files for 
brief differences from language to language. 

2. Debugging the \languagecase Macro 

The \languagecase macro is used extensively in text. However, \language case 
does not work in all cases. We are running TEX Version .99,2 so we have problems 

2 This is, fortunately, no longer the case! We're now up to 2.0, and have ported 
T)y"'\: from Pascal to PL/I. 

1988 Conference Proceedings, TEX Users Group 37 



Laurie Mann 

with macro memory space. When \languagecase is used to include more than 
two or three paragraphs, we sometimes see the following log message: 

TeX capacity exceeded, sorry 
If you really absolutely need more capacity, 
you can ask a wizard to enlarge me. 

In order for T:EX to process this type of insertion, we put language-specific text 
of more than two paragraphs into separate input files. 

The \language case macro must be used with caution within certain macros. 
For example, \languagecase can create problems within macros that write to 
output files. One such macro (\level twohead) writes material out to the table 
of contents file. A \level tt.Tohead was coded like this: 

\leveltwohead{Using the SQL/2000 SQL Server with the 
\languagecase{}{}{C}{CDBDL}{}{}{PL/I} DB-LIBRARY} 

As a result, the table of contents line in the SQL/2000 C DB-LIBRARY Refer
ence Manual (R150) looked like this: 

Using the SQL/2000 SQL Server with the CDB-LIBRARY 

To recapture the lost space, we need to insert a final \ after the end of the 
\languagecase macro: 

\leveltwohead{Using the SQL/2000 SQL Server with the 
\languagecase{}{}{C}{CDBDL}{}{}{PL/I}\ DB-LIBRARY} 

Here is how the table of contents line should look: 

Using the SQL/2000 SQL Server with the C DB-LIBRARY 

We found it best to insert entire index hits inside the \languagecase macros, 
rather than put the \languagecase macro inside the \index macro: 

\languagecase{\index{basic limitations}}{\index{c limitations}} 
{\index{cobol limitations}}{\index{fortran limitations}} 
{\index{pascal limitations}}{\index{pli limitations}} 

Finally, we found we could not put \input statements inside \languagecase 
macros. 

38 1988 Conference Proceedings, TEX Users Group 



Producing Manual Sets Using Single-Sourcing 

Other Possible Applications for Single-Sourcing 

Over the last few years, we have adopted this system of single-sourcing for a 
variety of related manuals. Our set of Transaction Processing Facility Manuals 
were all written and produced using generic text files with language-specific 
inputs. Additionally, a number of manuals on programming for database systems 
have also been written in this manner. However, this system can be adapted for 
a variety of other purposes. 

1. Documentation for internal versus external users. Documentation for in
house users can contain information that might not be appropriate for cus
tomers to have, but would be beneficial for the in-house users to know. 

2. Different levels for different users. Some manual sets are very similar struc
turally. The main difference is that examples are aimed at different types of 
users, and that additional explanation is added for beginning users. 

3. Teachers' editions of textbooks. Teachers' editions invariably contain more 
examples, answers to problems, ideas for class discussion, etc., which don't 
appear in students' editions, 

4. Maintaining the same documentation for different versions of the same soft
ware. Some companies maintain many releases of software, and the software 
runs a little differently from release to release and from machine to machine. 
By using single-sourcing, changes can be inserted in input files or in condi
tional macros without having to write multiple revisions. 

In conclusion, JEX's conditional capabilities can make maintaining and revis
ing manual sets easier. By using a variety of input files and conditional macros, 
it is possible to generate a family of manuals from the same basic sources, and 
to maintain less source. 

1988 Conference Proceedings, TEX Users Group 39 





Using TEX to Produce Government Standard 
Documentation 

JEAN J. POLLARI 

Rockwell International 
M.S. 153-100 
400 Collins Road, NE 
Cedar Rapids, Iowa 52498 

ABSTRACT 

A military program requires substantial documentation, and 
these documents must be formatted according to strict government 
standards. Rockwell-Collins in Cedar Rapids, Iowa, has developed 
a set of 'J:EX macro packages to support these documentation stan
dards. The documents are typically very large (1000+ pages) and 
involve complex mathematics, tables, and figures. The hardware 
environment consists of a VAX 785, a VAX 8800, a Micro VAX II, 
QMS Lasergrafix 800 and 2400 laser printers, and a Digital LN03 
laser printer (with upgrades). 

Introduction 

There are five primary types of documentation that must be produced for any 
government contractor software project: Requirements Specification, Design 
Specification, Test Plan, Test Procedure, and Test Report. The Requirements 
Specification documents the requirements that software must satisfy in order to 
fulfill the government contract. The Design Specification documents software 
design; it describes, in detail, every module of the software, how these modules 
interact with each other, and how the software is controlled. The Test Plan 
describes the method of verifying that the software satisfies the requirements de
scribed in the Requirements Specification. Detailed instructions to execute the 
test are provided in the Test Procedure, and the final results of the testing are re
ported in the Test Report. The format and content of these documents are very 
specifically defined in Military or Department of Defense Standard publications 
(i.e, MIL-STD-490A, DoD-STD-2167 A). 

The Problem 

For our project, we had to create unique documentation for every software de
liverable that we produced, even though much of the text was common among 
documents. Some of these documents were very large (over a thousand pages 
each.), and many contained complex mathematics. 

1988 Conference Proceedings, 1E;X Users Group 41 



Jean J. Pollari 

We were using a Vvang word processing system to create our documents, 
AutoCAD to generate graphics, and a lot of engineering time. We wanted a 
new system that would automate and simplify the creation of these documents; 
our first step was to identify the problems that we had with our old system and 
compile a wish list of things that we waJ..'~-:J our new system to do. 

1. Some of our documents contained over a hundred pages of complex math 
equations, including matrices, integrals, etc. Our existing ~. ·tern would only 
support a limited subset of mathematical expressions. Our new system had 
to allow us to typeset these equations. 

2. Since we have many different engineers writing sections, we wanted a system 
that would accept source files from different computers (i.e., VAX or IBM 
PC). Our existing word processing system did not have this flexibility; all 
source files had to be created and maintained on one system by the word 
processing staff. 

3. The new system had to support all Military and Department of Defense 
Standard format requirements. 

4. We wanted to use this system for many different types of documentation, 
so we wanted a system that would let us decide upon the format of the 
document, rather than forcing us to use predefined layouts. 

5. The new system had to automatically generate a table of contents, list of 
figures and list of tables with page numbers. 

6. The new system had to automatically number sections, figures, and tables, 
and allow the author to use symbolic references to the section, figure, or 
table number which would be replaced with the correct number when the 
document was generated. 

7. The new system had to allow graphics to be merged with the document text. 
Our old system would not allow this; figures were created using AutoCAD, 
and then cut and pasted onto blank pages reserved in the document. 

8. The new system had to automatically number and indent lists according to 
Military and Department of Defense Standard requirements. 

9. Several portions of our documents share common text. Our existing word 
processing system required that we maintain separate documents, with the 
common text stored in different places. Our new system had to allow common 
files to be shared among documents. 

10. The Requirements Specification contains a Test Verification Matrix (TVM) 
which lists each requirement that must be formally tested. The number of 
the section which co~tains the requirement, a description of the requirement, 
and the method of testing the requirement are all listed on a multi-page 
table. The TVM must be kept consistent with the requirements. If a section 
number ch«nges, it must change in the TVM; if a requirement changes, the 

42 1988 Conference Proceedings, 'lEX Users Group 



Using 'lEX to Produce Government Standard Documentation 

description in the TVM must change; if a requirement is deleted, it must be 
deleted from the TVMO We wanted our new system to generate the TVM 
automatically from the requirements, ensuring that the section numbers and 
requirements to be tested were correct" 

1 L The Test Plan also contains a Test Verification Matrix. The Test Plan TVM 
is identical to the Requirements Specification TVM, except that it has two 
additional columns which identify where each requirement is tested" We 
wanted a way to easily tailor the Requirements Specification TVM so that it 
could be used in the Test Plan. 

12. Our documents often go through several revision cycles. We wanted our new 
system to support revisions to a baseline document, including change bars 
in the margins and modified page numbers. 

13. We needed a document processing system that would accept input from out
side sources. We were developing Requirements and Design Specification 
support systems which would help us to track data and control flow infor
mation, and we had to have a document processor which could use files 
generated by these systems. 

14. Government projects sometimes require that the contractor develop software 
using classified information. This classified information must be included 
in the documentation, and, as a result, the documentation itself becomes 
classified. Classified documents must contain special markings. Every para
graph must be marked with the classification level: (S) for secret, (C) for 
confidential, (U) for unclassified. The top and bottom of the page must be 
marked with the highest classification level on the page. For example, if a 
page contained unclassified, confidential, and secret information, the top and 
bottom of the page must be marked "SECRET." 

Using our old system, we had been typing in the (S), (C), or (U) for every 
paragraph, and then using a hand stamp to mark the page classification. We 
wanted our new system to automatically determine the page classification 
markings from the individual paragraph markings. 

1988 Conference Proceedings, 'lEX Users Group 43 



Jean J. Pollari 

The Solution 

Once we knew what we wanted, we needed to find a product (or products) that 
would satisfy our requirements. Our support environment initially consisted 
of a VAX 785, a MicroVAX II, a QMS Lasergrafix 800 and a Digital LN03 
printer without upgrades. (During our second year with TE;X, we upgraded to 
a VAX 8800, a QMS Lasergrafix 2400, and added the LN03 memory cartridge 
to support TE;X.) Our search concentrated on products that would work in our 
existing environment. With the wish list in hand, we began searching for a 
vendor product. 

Most of the document processing systems today will support the basic con
structs such as tables of contents, lists of figures and tables, etc. The choice 
of products narrows, however, when you add graphics inclusion, and narrows 
even further when you add mathematics support. We had some initial bias to
wards a WYSIWYG system, since it seems easier to learn. The disadvantages 
of WYSIWYG systems, however, became apparent when we began to consider 
implementing such a system for our large documents. The cost of a WYSI
WYG system for 75 engineers was prohibitive, since each engineer would require 
a graphics terminal. We did not want the engineer to be able to decide upon 
the format of his/her section. We wanted one point of control for the format. 
WYSIWYG systems are also very slow, and very few could support documents 
of over a thousand pages in length. 

Once we narrowed the field to batch document processing systems, 'IEX 
became a logical (and inexpensive) choice that would satisfy all of our needs. 
We liked the device independent feature, and the fact that we could enter TE;X 
source using almost any text editor. Since we already had five or six editors, and 
each engineer had his/her favorite, we did not want or need any more editors. We 
really did not care about the incredible precision or beauty of 'IEX's typesetting 
capabilities. We chose 'lEX primarily for its mathematics support and for its 
powerful macro capability. 

We spent the first month learning the basics of TE;X, and attempting to get 
the format that we wanted. Unfortunately, our only resource was the 'JEXbook 
(Knuth 1984). The 'JEXbook is an excellent reference and tutorial handbook, 
but sometimes a human source of information would have saved a lot of time. 

In our first attempt we created a file containing all macros necessary to format 
the Requirements Specification. As we began working on the macro packages 
for other documents, we realized that there was a great deal of commonality 
among the files. At this point we began to partition the macros into stand-alone 
packages which could be used where necessary. The following sections describe 
these packages in further detail. 

44 1988 Conference Proceedings, TE;X Users Group 



Using 'lEX to Produce Government Standard Documentation 

1. Macros for the Document Format 

The document format is defined in a file called LHOUT_MACROS. These macros 
define a four-line header and a two-line footer, with the header and footer on 
opposite sides for odd and even numbered pages. All text is formatted with 
ragged right, and tolerance and badness are both set to 5000, since line breaks 
with ragged right are not very critical. Magnification is set at 1200 to make the 
text more readable. 

The author can now enter text, using any text editor, in any format, as long 
as the proper 1EX- macros are used. 1EX- will typeset the text according to the 
format that we have defined. If we decide to change the format, we just redefine 
the macros. The engineer no longer has to decide what the document should 
look like. He/she only needs to be concerned with the content. 

2. Macros for Section, Figure, and Table Numbering 

The section, figure, and table macro definitions are grouped into a file called 
LEVEL_MACROS. The \levelone{title}{label-name}, \leveltwo{ ... }{ ... }, 
etc., macros automatically number sections. The section number and title are 
inserted in place of the \level... macro, and the section number, title and 
page are written to a table of contents file which can be \input at the end of the 
document. The optional {label-name} parameter allows the author to assign 
a symbolic name to the section number, and then reference the section number 
using the \re:f{label-name} macro. When the file is TBXed, the correct section 
number is inserted for the label name. 

The \table{title}{filename} and \figure{titleHfilename} macros 
work like the \level ... { ... H ... } macros. When 'lEX encounters one of these 
macros, it will fill up the rest of the current page with text, and then place the 
table or figure on the following page with the appropriate number and title head
ing. The table or figure number, title and page number are written to a list of 
tables or list of figures file which can be \input later in the document. The 
second parameter {filename} is mandatory, and contains the file name of the 
figure or table. We create boxed and ruled tables using some special macros that 
are discussed later in this paper. We continue to use AutoCAD for figures, and 
use 'IEX-'s \special{} macro to command our QMS driver program to copy the 
graphics file into the final printer-ready file. The author can reference the table 
or figure number in the text by using the \ref{filename} macro. 

Both the \table and \figure macros use \pageinsert to control placement 
of the input file. Variations of these macros use \midinsert to place a small 
figure or table at the current location in the text, if it will fit. The insertion 
macros have been modified to prevent figures and tables from getting out of 
sequence. 

1988 Conference Proceedings, 1E;X Users Group 45 



Jean J. Pollari 

3. l\1acros for Formatting Tables 

We created TABLE_MACROS to make it easier to build tables using 'fEX. There are 
three types of tables allowed: boxed centered tables, centered tables, and regu
lar tables. The author specifies this using the \begintablebox, \begintable
center, or \begintable macros, and ending the table with a corresponding 
\endtablebox, \endtablecenter, or \endtable macro. For example, to get 
this: 

Year World Population 

8000 B.C. 5,000,000 

50 A.D. 200,000,000 

1650 A.D. 500,000,000 

1850 A.D. 1,200,000,000 

1945 A.D. 2,300,000,000 

1980 A.D. 4,400,000,000 

This table reprinted without 
permission from the TF;Xbook, 
page 246. 

the author types this: 

\begintablebox 
\columnright&\columnright&\cr 
\changecenter{Year}&World Populationt\cr 
\table line 
8000 B.C.& 5,000,000&\cr 

50 A.D.& 200,000,000&\cr 
1650 A.D.& 500,000,000&\cr 
1850 A.D.&1,200,000,000&\cr 
1945 l.D,a2,300,000,000&\cr 
1980 A.D.&4,400,000,000&\cr 
\table line 
\boxspan{2}{4.7cm}{This table reprinted without permission 
from the {\it \TeX book}, page 246.}&\cr 
\endtablebox 

The first line after the \begintable. . . macro is the template line. There 
are four possible templates: \columnleft, \columnright, \colwnncenter, and 
\colu.mnbox{dimension}. The \columnbox{dimension} specifies that all en
tries in that column are to be placed in a box of width {dimension}. 

The T:EXist can over-ride the template for a particular entry in a 
column by using the \changeleft{text}, \changeright{text}, \change
center{text}, and \changebox{dimension}{text} macros. The \left
span{#}{text}, \rightspan{#}{text}, \centerspan{#}{text}, and \boxs
pan{#}{dimensionHtext} macros allow the user to easily span text across # 

number of columns. 

46 1988 Conference Proceedings, 'lEX Users Group 



Using 'lEX to Produce Government Standard Documentation 

4. Macros for Lists 

The LIST_MACROS enable us to automatically number and indent lists. For ex
ample, to create a list the author types: 

\list 
\item This is the first item" 
\subitem This is m subitem. 
\subitem This is another subitem. I can type 
this in any way I want and \TeX\ will reformat it. 
\item This is the second item. 
\endlist 

'fEX will reformat this to look like: 

L This is the first item. 

a. This is a subitem. 

b. This is another subitem. I can type this in any way I want and 'lEX will 
reformat it. 

2. This is the second item. 

With these macros, the author no longer has to worry about renumbering lists 
when an item is eliminated or added, and the numbering scheme for lists no 
longer depends upon the author's preference. 

5. Macros fo:r Commonality 

Our documents are created in a skeleton formaL The highest level skeleton 
file contains the 'lEX formatting commands for a particular document and the 
command to include the text files. The actual text for each section is partitioned 
into separate files. If necessary, the text files may also be treated as skeleton files; 
they may only contain commands to include lower level text files. This ability to 
combine small text files into one document solved the problem of commonality 
for us. An engineer could write one common section, and the section could then 
be \input into as many different places as necessary. 

We have also defined macros to make almost common files truly common 
among the documents. We have defined \ifdocument macros to test for dif
ferent documents. The skeleton file identifies the document type by setting a 
switch, such as \srstrue. The switch \srstrue identifies this as a Software 
Requirements Specification. Later in the document, the author could type: 

\ifsrs Some text that should only appear in the 
SoftYare Requirement Specification. 

\fi 

If the \srstrue switch is set, the text between the \ihrs ... \fi will be included 
in the document; if the \srstrue macro is not included in the skeleton file, the 
statement will not appear. 

1988 Conference Proceedings, TEX Users Group 47 



Jean J. Pollari 

6. Macros for the Test Verification Matrix 

We now generate the Test Verification Matrix in the Requirements Specifi
cation by embedding \vmatrix{description}{code} macros in the require
ments section. The {description} parameter indicates the requirement de
scription; the {code} parameter indicates the method of testing the require
ment. The \ vmatrix macro expands to write a \ vmxentry{section nUI!l
ber}{descriptio:nHcode} macro to a TVM file, using the current section num
ber in the document. Later in the document, this file is read and the \ vmxentry 
macro formats the entries to create the multi-page TVM. 

Since the TVM description immediately follows the actual requirement in 
the text, the problems of missing requirements, incorrect paragraph numbers, or 
changes to the requirements that do not show up in the TVM are eliminated. As 
the engineer is updating the requirements, he/she can update the TVM entry at 
the same time. 

The Requirement Specification TVM file is then copied to be used in the 
Test Plan document. The \ vmxe:ntry macro is redefined to accept two additional 
parameters which indicate the specific test where the requirement will be tested. 
Since the same file is used to generate both the Requirements Specification TVM 
and the Test Plan TVM, they are guaranteed to be consistent. 

7. Macros for Revisions 

Unfortunately, even with 'IEX our documents are not perfect the first time they 
are submitted for review by the customer. They usually undergo at least one 
revision cycle, and changes must be made to the text. These changes must be 
identified with a change bar in the margin, and page numbering must be adjusted 
so that unaffected sections do not change. 

The \revision{filename}{# pages} macro will read in the file specified 
by {filename}, and will format it so that it takes up{# pages}. For example, 
if the T_EXist entered \revision{sectionone}{3}, 'fEX would input the file 
sectionone. If the file took up more than three pages, say for example five 
pages, the pages would be numbered 1, 2, 3, 3a, 3b. If the file only took up one 
page, the pages would be numbered 1, 2, 3, but pages 2 and 3 would say "This 
page intentionally left blank." 

The \changeba.r{# lines} macro puts a change bar in both left and right 
margins for {# lines}. This macro is very primitive; it does not split across a 
page, and it does not account for non-standard spacing between lines. 

8. Macros for Classification Markings 

To eliminate the hand-stamping of page classification markings for classified 
documents, we now use \S, \C, and \U macros to mark secret, confidential, and 
unclassified paragraphs. When the document is TEXed, the \S and \C macros 

48 1988 Conference Proceedings, TEX Users Group 



Using 'lEX to Produce Government Standard Documentation 

will write the page number and classification type to a classification file. The 
output routine reads in the classification file from the previous run to determine 
the classification markings for the current run. This method of determining 
the page classification requires that the document be 'IEX-ed twice, but it is the 
most flexible method that we have found. The \C, and \U macros can be 
used almost anywhere, for example, inside equations, inside tables, etc. 

9. Macros for Verbatim Text 

Occasionally we need to include files that we do noi want 'JEX to format. The 
file VERBATIM_MACROS contains macros which will turn off all of 'J:EX's format
ting capabilities. When the 'J:EXist needs one or more lines of verbatim text, 
they can use the \begintt ... \endtt and \beginsmalltt ... \endtt macros. 
If they want an entire file to be copied in verbatim, they can use the \list
ing{filenarne} and \smalllisting{:filenarne} macros. All of these macros 
use the \tt font; the \small versions use the \cmtt8 font. 

10. Macros for the Requirements and Design Specification 
Systems 

We developed Data Dictionary systems to support the generation of the Re
quirements and Design Specifications. These systems are online, menu-driven 
systems that store information about our software. They were written to gen
erate '!EX-compatible output files, which can be directly \input into the ap
propriate section in the Requirements or Design Specification. The output files 
contain a variety of multi-page tables, '!EX "pictures," and dictionaries. 

11. Macros for Test Plans, Test Procedures, and Test Re
ports 

The Test Plan document defines the formal tests which will be performed on 
the software. Every test is broken into test events. Each test event consists 
of a description of the event, and the expected real time and post-test results. 
The Test Procedure document defines the exact steps that the test operator 
must follow to run the test, and the expected results for the real time and post
test portions of the test. The Test Procedure is used during the formal test to 
record the test results, and to verify that the actual results match the expected 
results. The Test Report document summarizes the results of the formal test, 
and explains any discrepancies. 

The Test Plan macros number test events using the \initevent{title}, 
\navevent{title}, and \testevent{title} macros (the init, nav, and test 
refer to different modes of our software). The numbering, headers, and inden
tation for sub-paragraphs within the test events are controlled by \scenario, 
\realtime, and \posttest macros. These macros ensure that every section has 
consistent indentation and sub-paragraph titles. 

1988 Conference Proceedings, 1E;X Users Group 49 



Jean J. Pollari 

The Test Procedure macros use the same \initevent, \navevent, and 
\ testevent macros to number the events, and also use additional macros to 
format the operator actions and expected results. For example, the following 
text: 

\initevent{Initialization} 
\beginoperator 
\optime 12:00:00 
\opdesc Turn on the receiver. 
\opaction Turn the mode switch on the CDU from OFF to INIT. 
\expected Receiver will go through BIT, and the 

''TEST COMPLETE'' message will be displayed. 
\actual 
\endoperator 

will produce: 

3.4.1.1-11: Initialization 

1. Action Time: 

Description: 

Operator Action: 

Expected Values: 

Actuals or Pass/Fail: 

12:00:00 

Turn on the receiver. 

Turn the mode switch on the CDU from OFF 
to INIT. 

Receiver will go through BIT, and the "TEST 
COMPLETE" message will be displayed. 

The Test Report uses the same macros as the Test Procedure, with the addition 
of some special macros to handle discrepancy reporting. 

50 1988 Conference Proceedings, 1EX Users Group 



Using TEX to Produce Government Standard Documentation 

The l\!Iista.kes 

After working with 'IEX for almost two years, we can now look back and see that 
there were some problems that we could have avoided. 

The first document that we generated using 'lEX was a 1500-page Design 
Specification. We ran a program against the 1000 modules in om software to 
extract and format text information, and then had over 2000 \input commands 
to include these small text pieces into the document. As more experienced 
people could guess, we ran into the infamous "TeX capacity exceeded, so:r:ry" 
message about 45 minutes into the run. We were running 'IEX on our VAX 785 
at a speed of aboui 10 pages per minute, and kept crashing around page 500. 
We were rather frustrated at 4:00 am after the third crash, but eventually we 
T:EXed the document in three pieces to get it to work. We have now taken several 
steps to avoid this problem. We no longer assume that TBX has infinite storage 
capability, so we merge the smaller text files into larger ones that do not put 
such a strain on '!EX's memory capacity. We have also upgraded to a VAX 8800, 
which runs T:EX at about 100 pages per minute (on a dedicated machine), so if 
we have a problem it no longer takes an hour of TBX time to find it. One of 
our local T£Xnicians has also modified the Kellerman and Smith VAX version 
of 'fEX (which we now refer to as SuperT£X) to double the memory capacity. 

One of the hardest lessons to learn was to trust 'lEX's ability to decide upon 
the best format for equations. We often fought to format an equation the way we 
thought it should be done, rather than using 'lEX's way. With a little experience, 
we realized that TEX knew how to typeset equations better than we did, and 
that if we were having a lot of trouble getting something to come out right, we 
were probably doing it the wrong way. 

We had similar experiences with text formatting. We continued to use old 
formats for our documents, simply because a precedent had been set. Some of 
these formats were very cumbersome to enter in a normal document processing 
system, and became nightmares when trying to make 'fBX handle them. For 
example, the original format for Test Procedures defined all operator procedures 
in a six-column table format. We used the \halign construct to format these 
tables, with special provisions for page breaks. Our 'fEXists were tearing out 
their hair over missing \cr or t symbols, and the final result was hard to read 
and even harder to work with. We realized that a different format would solve a 
lot of problems, so we changed the tabular format to a titled paragraph format 
(which 'lEX loved), and the results were much easier to enter, looked better, and 
were loved by all (especially the bald TEXists). 

1988 Conference Proceedings, 'lEX Users Group 51 



Jean J. Pollari 

Summary 

We now use 'lEX to generate all of our government standard documentation. 
The results are impressive; the documents look professional and are in accor
dance with government standards. We have developed other macro packages for 
internal use, including ones for overhead projector slides, letters, and status re
ports. After some initial negativity (usually directed at 'lEX's complexity), even 
some of the die-hard WordS tar and Runoff fans are converted. Our TEXnicians 
now regularly get requests for macros to do things that would be impossible with 
any other document processing system. There are still some· headaches with 'lEX 
(such as the two days I spent trying to get change bars in the margins), but in 
general 'lEX is extremely reliable and flexible. 

'lEX has helped us to reduce the time necessary to generate complete and 
consistent documentation. By using TEX and our other software documentation 
tools, we can spend time on the content of the documents rather than on consis
tency checking and formatting concerns. It is unfortunate to note, however, that 
we can still produce "bad" documents. We can ensure that they are consistent, 
and that they are "pretty," but we still don't have a way to ensure that they are 
well written. Perhaps a future enhancement for 'lEX? 

52 1988 Conference Proceedings, 1E;X Users Group 



Implementing 1EX In a Production Environment: 
A Case Study 

ERIK JUL 

OCLC Online Computer Library Center, Inc. 
6565 Frantz Road 
Dublin, Ohio 43017-0702 

ABSTRACT 

This paper presents a case study based on experiences imple
menting 'lEX in a document production environment. The discus
sion covers aspects of document production that may be affected 
by the introduction of alternative document formatting methods. 
Recommendations are offered which may help current or prospec
tive users to integrate TEX successfully 

Introducing alternative document formatting methods into an existing pro
duction environment requires careful analysis, planning, and implementation in 
order to be successful. 

Alternative typesetting and page makeup technologies affect all aspects of 
document preparation, not just the final printed pages. New production meth
ods raise questions about software, hardware, space allocation and equipment 
location, document analysis, staff training and work assignments, work flow, 
time estimating and production scheduling, integration with existing production 
methods, and cost. 

My comments derive from experience implementing 'lEX in the Documen
tation Department at OCLC Online Computer Library Center, Inc. OCLC 
operates a database of 18 million bibliographic records accessed by more than 
7,000 libraries worldwide that connect to the OCLC Online System to create or 
modify records online and produce offline products such as catalog cards or bib
liographic records on magnetic tape. The Documentation Department supports 
the publication needs of the organization. 

I will describe the production environment into which T£X was introduced, 
factors that contributed to selecting T£X, and implementation of the system for 
document production. Recommendations for current or future 'lEX sites are 
offered. 

Existing Production Environment 

T£X was introduced into a medium-sized Documentation Department that pro
duces a wide range of documents such as user manuals, technical bulletins, re-

1988 Conference Proceedings, T£X Users Group 53 



Erik Jul 

search reports, fliers, brochures, promotional materials, newsletters, and books. 
Documents for internal use such as office forms, the OCLC Standards Manual, 
the Employee Handbook, and internal systems documentation are also produced. 

The department has a staff of 26 including word processing technicians, writ
ers and editors, graphic artists, typesetting technicians, distribution specialists, 
and managers .. 

The Data General CEO office automation system provides dedicated, cen
tralized word processing capabilities accessed throughout OCLC by terminals 
in or near employee work areas. Documents are printed on various devices at 
resolutions ranging from draft~quality dot matrix to 300 dpi letter quality laser 
output. For typesetting, files are transmitted via CEO to the Compugraphic 
MCS 8400 phototypesetter. Typically, type is produced as galley and manu
ally pasted up to make pages; headers and footers are added separately. Page 
previewing allows full page makeup but few documents are typeset in pages. 

Graphic images are created manually or by using various microcomputer
based graphics programs for inclusion with the galley when documents are pasted 
up. In-house duplicating and two-color printing services are available. 

Ventura Publisher by Xerox Corporation provides additional desktop pub
lishing capabilities for use by writers and graphic artists. The software runs on 
Wyse 286 microcomputers with an attached QMS PS800 PostScript printer. 

Selecting 'lEX 
The decision to use TEX as one document production alternative in the Docu
mentation Department was influenced by the following technical considerations: 

1. Existing TEX software 

2. Staff experience using 'lEX in other OCLC units 

3. Existing site license for ArborText Preview software 

4. Existing network of Sun Workstations and file servers 

5. Ethernet local area network 

6. Available system administration services 

7. Large library of digitized fonts 

Others at OCLC had used TEX before its implementation in the Documentation 
Department, and OCLC owns a site license to ArborText's Preview software, an 
implementation of TEX for Sun computers. 

In the OCLC Office of Research, TEX was used in the Graph-Text project. 
The Graph-Text system provides online display and local printing of typeset 
quality pages, including graphics, figures, and tables, produced from publisher's 

54 1988 Conference Proceedings, TEX Users Group 



Implementing lEX in a Production Environment: A Case Study 

typesetting tapes or files created by optical character recognition (OCR) scan
ning. lEX was used because of its typesetting and formatting capabilities and 
output on various low-resolution devices. 

In addition, several OCLC staff created an extensive library of digitized fonts 
using the META FONT software. Fonts were designed for use in the Graph-Text 
project and other potential OCLC products and services. Current fonts include 
two different serif fonts, sans serif, decorative, and Slavic fonts, as well as a 
special character set developed for the Library of Congress. 

In addition to staff expertise and large font libraries, OCLC has an exten
sive computing environment for internal development. When the Documentation 
Department was investigating lEX, existing 'lEX facilities were mounted on Sun 
network file servers. The Sun-3/50 Workstation was selected for use as a 'lEX 
workstation because of its desktop design; large, high-resolution monitor; mul
tiple window-management capabilities; mouse pointing device; 68020 processor 
running at 15 MHz; and built-in Ethernet connections. 

The Sun Workstation provides high-speed processing to effectively create, 
store, and manage 'fEX files. The Sun windowing system enables simultaneous 
display of multiple files such as a document file, font file, macro file, preview 
file, and Sun shell tool window. The Sun-3 Workstation also provides an easily 
operated point-and-click text editor. These tools provide efficient and effective 
data manipulation and greatly facilitate the use of 'fEX. 

By using an Ethernet connection to an existing local area network, the Doc
umentation Department benefited from Sun network file servers and system ad
ministration provided by the OCLC development environment. Network access 
to multiple peripheral devices, such as Pyramid support processors, Sun file 
servers, or shared printing devices reduced the effective per unit cost of the 
workstations. Start-up costs were limited to a diskless workstation and laser 
printer. 

A network configuration provides assured power supply, regular tape back
up and file restoration procedures, monitoring by operations personnel, and the 
added safety of protection against power surges, fire, and other hazards attendant 
to stand-alone systems in an office environment. 

Many general factors made 'lEX an attractive option for the Documentation 
Department: staff expertise and experience with 'lEX over many years; large 
libraries of digitized fonts; existing software and site license; in-house 'lEX, Sun, 
and UNIX system support; and extensive hardware and Ethernet connections. 
Additionally, the Documentation Department saw the possibility of the following: 

1. Reducing the typesetting load and costs 

2. Upgrading certain existing documents from word processed copy to typeset 
laser output 

3. Reducing labor-intensive paste up by graphics staff 

1988 Conference Proceedings, TEX Users Group 55 



Erik Jul 

4. Allowing writers to expand skills to include page composition 

5. Using computer processing capabilities for document preparation beyond 
word processing 

6. Alternative to the peak and valley scheduling in typesetting and graphics 

TEX offered the possibility of reducing the typesetting load and associated 
costs. Savings could be realized by shifting selected documents from typesetting 
to TEX for production. Documents that are frequently revised or short-lived 
such as transparencies, product price lists, and equipment set-up or reference 
cards could be produced adequately using 'lEX laser output. Documents printed 
on a laser printer would reduce the use of expensive phototypesetting film. Page 
makeup capabilities could affect cost savings by reducing manual paste up by 
graphics staff. Other cost savings could be realized by using preview software to 
reduce the paper output of the laser printer and extend the effective life of the 
device. 

Documents produced in word processed copy such as technical bulletins and 
research reports could be "upgraded" to typeset quality. Documents produced 
on stock preprinted with header information could be replaced using laser output 
for header and body copy. 

TEX also provided staff an opportunity to expand skills to include page com
position. The precise typographic controls of TEX are similar to those offered by 
the Compugraphic MCS 8400 and can meet the most stringent requirements. 

In sum, TEX offered the Documentation Department alternative document 
preparation capabilities that could positively impact the work flow of the de
partment, provide a middle ground between typeset and word processed copy, 
and reduce the cost of labor and materials used to produce documents. 

When other technical and departmental factors were added, TEX appeared 
to be a low-risk, low-cost, high-powered, and versatile alternative to the doc
ument preparation in the Documentation Department. Therefore, two Sun-3 
Workstations and an Imagen 8/300 laser printer were purchased and installed. 

Training 

Before the equipment was installed, one writer/editor from the Documentation 
Department received beginning TEX training during a three-day seminar off site. 
The instructor was highly skilled in TEX with experience producing complex 
documents including mathematical textbooks. Training in elements specifically 
related to a production environment, however, was lacking. Controlling basic 
functions such as hyphenation, widows and orphans, hanging indention, two
column output, and running headers and footers could have been emphasized, 
along with the development of macro files containing generalized specifications 
for documents of the same class. 

56 1988 Conference Proceedings, 'lEX Users Group 



Implementing 'lEX in a Production Environment: A Case Study 

Training was scheduled to precede equipment installation by several weeks. 
Installation of the equipment, however, was delayed by several months, so the 
initial value of the training was diminished. Informal training continued in house 
with other, more experienced OCLC staff. Lack of access to equipment and 
limited time hampered these efforts. 

Of concern to managers and other staff was the complexity of 'lEX· Initially 
it was viewed as too difficult for many to learn, and this was considered a draw
back. Training of additional departmental staff was initiated only after document 
production had begun. 

Production 

'lEX seemed to offer much to the Documentation Department but we were not 
yet ready to take full advantage of the system or realize its benefits. When the " 
equipment was installed, substantial work remained before document production 
could begin. File transfer capabilities among existing systems (Data General, 
Pyramid, Sun, VAX, and microcomputers) and data storage (diskette, tape) 
were investigated, and appropriate software was obtained and configured. 

When all was in place, production was still several months away. While 
many potential uses of 1BX had been identified, as had documents that could 
be produced, plans were not as complete in identifying documents that would 
be produced. Moreover, when documents were identified for 'lEX production, 
current production schedules allowed little time to practice 'JBX skills or begin 
the process of moving document production to the 1BX environment. 

New production methods must be integrated with the existing production 
cycle. A careful analysis of existing production schedules and deadlines will help 
determine when a document or document class can be shifted to 'IEX· If pos
sible, choose simple documents without pressing time constraints. Production 
schedules for 'JBX documents should allow for a learning curve. This approach 
will provide experience with a real document, enhance 'fEX skills, reveal weak
nesses in the document preparation methods, provide valuable information for 
future scheduling and time estimating, and help ensure that existing production 
schedules for other documents are not delayed. 

1. Document Specifications and Macro Files 

Before any documents were produced, document specifications were determined 
and sample pages were produced and circulated for review and approval. Macro 
files for each document type were created according to specifications to simplify 
the task of encoding TEX commands. These macro files contain all font and 
page specifications. For example, the simple command \a{} controls all typeset
ting specifications for A-level heads including space above and below, automatic 
numeration, rule lines, font commands, and penalties to prevent headings from 
appearing at page bottom. To the extent possible, all foreseeable typographical 

1988 Conference Proceedings, TEX Users Group 57 



Erik Jul 

specifications are defined and documented in a macro file. This has the obvious 
advantage of ensuring consistency within and between documents of the same 
type, facilitating the adjustment of document specifications by locating the com
mands in a single file, and minimizing the amount of 'lEX coding that needs to 
be entered in the document file. 

Since installation, the OCLC Working Papers and Research Report series 
have been transferred to 'lEX and several such reports have been produced; 
two directories have been produced, a phone directory for internal use and a 
Network directory for external distribution. Macro files govern the format of 
each document type. 

2. Work Flow 

Implementing 'lEX had several unanticipated effects on production work flow. 
Text files for documents are created using microcomputer word processing soft
ware, the CEO system, or a Sun Workstation. Because word processing for
matting and text attribute commands are not needed, writers are instructed to 
remove these commands before saving the file. Files are loaded into the Sun sys
tem from diskette or tape. Documents are generally submitted to the department 
without embedded 'lEX commands. 

For previously word processed documents such as OCLC research reports, 
'lEX adds the additional step of embedding codes in the file. For all documents 
produced to date, codes have been entered by a writer/editor. This method of 
text entry and revision does not effectively make use of the skill, speed, and 
precision of word processing staff, who could enter commands that are marked 
on a hardcopy of a document. This procedure, while intuitively apparent, has 
not yet been implemented. 

A word processing technician and typesetting technician have since received 
fundamental in-house training in Sun editing techniques and the basic concepts 
of 'JEX. Plans call for shifting data entry and text editing to them. In time, 
developing page specifications and macros could also shift to word processing 
staff or other writers. 

While the time to produce documents has not been unreasonable, the distri
bution of effort has not maximized staff capabilities. The largest project to date, 
a 194-page research report containing 150 tables, has taken 143 hours or slightly 
less than one hour per page. An estimated 40 hours remain to produce the fi
nal document. However, a disproportionate amount of time was spent coding, 
formatting, previewing, and fine-tuning the document. Lack of experience with 
'lEX accounts for much of this, but a division of labor among other trained staff 
and more clearly defined document preparation procedures may have provided 
more time to edit, communicate with authors, and revise the document-the 
more traditional tasks of a writer/editor. 

Success in upgrading word processed documents is recognized, but few type-

58 1988 Conference Proceedings, 'lEX Users Group 



Implementing 'fEX in a Production Environment: A Case Study 

set documents have been shifted to 'IE;X. Although certain typeset documents 
such as price lists, forms, and transparencies seem suitable for production using 
TEX and laser output, none has been produced. 

There is far greater willingness to "upgrade" documents than to "downgrade" 
typeset documents to laser output, even if the need to typeset documents is 
suspect. Often such documents are part of a series, and matching other typeset 
documents is important. Often the difficulty is finding the appropriate time in 
the document life cycle to shift production methods. There may also be some 
hesitation in moving files of large or numerous documents from one established 
production system to another because it is unfamiliar and not widely used by 
departmental staff, and may be viewed as less accessible, stable or permanent. 

Recommendations 

Experience has shown that careful attention to the following will ensure greater 
success when implementing 'J.EX in a production environment: 

1. Analyze document classes to determine what documents are candidates for 
production using 'lEX· This will provide the first real indication whether such 
documents exist in your production environment. 

2. Select hardware/software to optimize file management and user interface. In 
our application, the Sun Workstation provides an effective environment to 
process 'J.EX files efficiently. 

3. Analyze work flow to determine staff to receive training. Training may need 
to include not only 'fEX commands and procedures, but also learning how to 
use a text editor, UNIX or another operating system, and procedures specific 
to your production environment. 

4. Obtain 'lEX training beyond the beginning level. Training should empha
size macro design, development of document specifications, and the skills 
necessary to handle the typesetting requirements of your documents. 

5. Provide in-house training for selected staff. Determine who will perform 
specified tasks in the document preparation life cycle and provide appropriate 
instruction. Develop in-house procedures manuals. 

6. Allow time to develop and document style sheets and corresponding macros. 
These should be in place before production begins. Produce sample pages 
for critical assessment and fine-tuning. 

7. Design 'lEX macros to achieve greater simplicity in processing and achieve 
uniformity among documents of the same class. Macro commands should 
be meaningful, facilitate text markup, and minimize key strokes needed for 
coding. 

8. Analyze production schedule to optimize introduction of new production 
methods and allow for start-up time. Determine when a document or doc-

1988 Conference Proceedings, 'lEX Users Group 59 



Erik Jul 

ument class can be shifted to 'lEX for production. Initially, choose simple 
documents that do not have critical deadlines. 

9. If staff resources allow, assign tasks to appropriate personnel. Define who 
will do data entry, text editing, 'lEX coding and processing, and page com
position, previewing, and fine-tuning. 

10. Determine document standards for various stages of production. Production 
using 'lEX can often be reserved for final copy. 

Conclusion 

Our experience producing documents using 'lEX reveals both the benefits and 
pitfalls of implementing TeX as an alternative document production tool. 'lEX 
provides all the typographic controls necessary to produce attractively typeset 
documents even at the relatively low resolution of 300 dots-per-inch. Powerful 
and comprehensive macros simplify the coding process. This allows word pro
cessing technicians to enter the codes without requiring extensive 'lEX training. 
Macro commands also help ensure uniformity among documents of the same 
type. By developing files of macro commands defined by document type or 
function, making global changes to a document format is easy. This approach 
is most effective when documents of various classes are defined such as, in our 
case, research reports, working papers, and directories. 

Because simultaneous access to multiple text or macros files is often desir
able, the file management tools provided by the Sun Workstation provide an 
efficient work environment. The large, high-resolution monitor and previewing 
capabilities seem essential. 

Integration of the technical capabilities provided by both 'lEX and the Sun 
system with other existing document preparation systems, current production 
schedules, and the skills of departmental staff continues with time. As we gain 
experience with 'lEX we are better able to define the tasks involved, determine 
who needs to be trained to perform those tasks, and define the type and the level 
of training necessary. 

Implementing 'lEX in a production environment requires more than just in
stalling the appropriate hardware and software. Integration of the technology 
into the existing environment is essential, and, because many aspects of docu
ment preparation can be affected, careful planning is required. Attention to some 
of the factors I have described may help current or prospective users integrate 
'lEX into a production environment. 

60 1988 Conference Proceedings, 'lEX Users Group 



How and Why a Trade Typesetter Chose T£X 

PETER TONKIN AND ALEX WARMAN 

P. Tonkin 
Trade Graphics Pty. Ltd. 
445 Graham Street 
Port Melbourne 3207 
Australia 

A. Warman 
'JEXworks Pty. Ltd. 
157 Danks Street 
Albert Park 3206 
Australia 

ABSTRACT 

During early 1987, it appeared that changes were starting to 
gain momentum amongst local Melbourne typesetting businesses. 
In response, Trade Graphics began an investigation of desktop pub
lishing and electronic publishing. This revealed that many type
setting businesses were either in financial difficulties because they 
ignored the changes which were taking place or some had become 
high-resolution reproduction bureaux for clients with their desktop 
publishing systems. Trade Graphics made a clear decision that, 
despite the introduction of new desktop and electronic publishing 
systems, the traditional typesetters' craft and expertise would con
tinue as the core of a sound business. 

This led to the development of a strategy which was aimed at 
getting a major increase in capability to improve service to clients, 
internal effectiveness and profitability. In addition, an attempt was 
made to identify potential areas of business which would be most 
fruitful for typesetting work in the future. This would allow the use 
of TEX as a front-end for the existing equipment and to delay the 
choice of a replacement phototypesetter. 

This paper will outline how the strategy was developed and the 
aspects of 'fEX, '!EX-related products such as the range of print 
drivers, and the 'lEX community, which have become part of Trade 
Graphics on-going business plans. 

1988 Conference Proceedings, 'lEX Users Group 61 



Peter Tonkin and Alex Warman 

Changes in Typesetting Businesses During the Early 1980's 

Trade Graphics Pty. Ltd has been a trade typesetting business since 1979. Over 
the years it has had a variety of market niches which it has serviced, ranging 
through advertising material, company annual reports, small booklets such as 
company pricing documents, educational text books, fiction books, and scientific 
academic journals. 

In the early 1980s as microcomputers began to become visible in the com
mercial world, the possibility of using some of this technology seemed to open 
the door to direct capture of clients' data electronically. It was already clear 
that if this could be achieved, there were significant cost savings in avoiding 
re-keying and checking. Further, there was considerable scope for improvement 
in turnaround times; all benefits which could be passed back to the clients and 
win more business or increase the capacity at Trade Graphics. 

1. Modems for Direct File Transfer 

In 1982 the idea of direct capture of clients' key strokes on data files led to trials 
in the use of modems for transmission of client data files from their computers to 
Trade Graphics. If successful, the facility was to lead to a situation where dial
up modems would be available at Trade Graphics 24 hours a day so that data 
files could be transmitted at any time. By 1984 this approach was discontinued 
primarily because of the difficulties with clients' staff who often did not have 
the necessary knowledge and skills to set-up and operate data communications 
equipment for such transfers. 

2. Diskettes for Direct File Transfer 

When it became clear that using modems for direct transfer of client data files 
was not going to be a success, attention turned to trying to get data files on 
diskettes. An initial perceived disadvantage was the need to arrange pick-up. 
This turned out to be less of a problem as diskettes were robust enough to be 
thrust under doors at all hours without problems arising. 

To pursue this approach a Baber disk reader machine was purchased. At 
that time in 1984, the most popular diskette size was 8 inch with 5 1/4 inch 
rapidly coming into vogue. More recently the 3 1/2 inch diskette has joined the 
game. The Baber is produced locally in Melbourne which meant that the experts 
could be consulted if some diskette format proved troublesome. 

Today the Baber reads several hundred diskette formats including different 
size diskettes, different computer brands, different operating systems, and dif
ferent file storage formats used by some software (particularly word processors 
with their own directories). It is being used more and more and has paid its way 
many times over and will continue doing so. The current model of the Baber 

62 1988 Conference Proceedings, 'lEX Users Group 



How and Why a Trade Typesetter Chose 'lEX 

comes with the three diskette drive sizes as standard and retails for between 
$Aus 12,000 and $Aus 15,000. 

While the Baber also has facilities for code translation and systematic data 
manipulation/transformation, these have been little used because of documen
tation limitations for a typesetting business short on detailed knowledge of the 
bits and bytes jargon of computer hackers. 

3. Lowering Workstation Costs 

Another motivation for the focus on direct capture of clients' data files was the 
cost per workstation for the re-keying of material from clients. 

Front-end equipment consisted of 6 Compugraphic Editwriters, a single work
station and phototypesetter combined. In 1981 a Compugraphic MCS front-end 
system with 2 workstations and an 8400 phototypesetter were purchased. In 1984 
a second MCS front-end with 4 workstations and another 8400 phototypesetter 
were purchased. The special nature of the user interface, ie., the file system, 
the text editor, back-up utilities and the connection to the 8400 gave no choice 
for a growing business other than more equipment from a single supplier. This 
is sometimes called the lockeminski effect, which is not an exclusively Russian 
problem! 

The cost of an extra workstation in 1985 was about $Aus 13,000 and by 1988 
this has dropped to about $7,000 per workstation on the MCS front-end. 

In 1984, in an attempt to lower the cost per workstation, Trade Graphics 
turned to the use of Commodore 64s for simple data entry with the use of 
an RS232 interface to transfer data into the Compugraphic front-end systems. 
Using the Commodores with simple text editors gave the choice of entering some 
typesetting commands with the text, or not. 

Consequently this offered lower costs by having keyboard operators who were 
simply typists while the skilled typesetters only added commands at a later stage. 
Hence the skilled craftsmen were able to concentrate solely on the manipulations 
necessary to achieve the desired layout and high quality final effect. 

Another broad staffing problem was involved too; namely that training of 
typesetters had not been moving quickly enough to keep up with the comput
erised typesetting systems. There seemed to be a growing disparity between 
the old highly skilled manual craftsmen and the computerised systems which 
had some limitations compared to the manually produced high quality output. 
The recently trained typesetters did not know enough of the old knowledge to 
bend the new systems where necessary to minimise shortcomings. This provided 
another aspect of the approach to lowering data entry costs in focusing trained 
typesetters specifically on the end product. 

The staffing problems and the limitations of the computerised typesetting 

1988 Conference Proceedings, TEX Users Group 63 



Peter Tonkin and Alex Warman 

particularly affected the look and finished quality of books compared with some 
older book styles. 

4. Insularity in the Typesetting Industry 

During this period of taking the plunge into trying to use new technology, Tonkin 
found it particularly galling that most typesetting business people around Mel
bourne were very reluctant to exchange views and experiences. There seemed to 
have been a suspicion that talking to other typesetters might reveal secrets or 
run the risk of clients being pinched. , 

For a typesetting business like Trade Graphics this made forays into the 
world of microcomputers, modems, and the proliferation of diskette formats a 
fairly lonely exercise in frontier-bashing. 

The companies supplying specialised front-end systems and phototypesetters 
only served to add to this situation. There was little effort put into forming user 
groups which are common in the computer world and other commercial and 
industrial areas. Such groups, if formed, might have pushed for standards in 
certain areas such as connectability of equipment of different brands and some 
sort of front-end uniformity. 

5. Purchasing Computer Equipment Directly from Com
puter Manufacturers 

In the early 1980s it is interesting to observe that very little general purpose 
computer equipment could be purchased direct from the computer manufactur
ers; it could only be bought from the phototypesetter suppliers who would resell 
computing equipment tightly integrated into their own systems. 

This is rapidly changing now and has brought computer manufacturers who 
are used to competing in a vigourous, even cut-throat, market into direct con
tact with printing and typesetting businesses. The desktop phenomena is briefly 
discussed below, but this direct contact has brought considerable price reduc
tions, general purpose software--particularly for operating systems-and im
proved ease of connecting a variety of equipment for use of lower quality printers, 
disk storage, and data transmission. 

Desktop Publishing Makes an Appearance 

1. Effects and Consequences 

In the early 1980s word processing made major inroads into the commercial 
world of the office. Time-sharing terminals and microcomputers rapidly replaced 
typewriters as the tools for producing written material. 

64 1988 Conference Proceedings, 'lEX Users Group 



How and Why a Trade Typesetter Chose 'lEX 

In 1984/1985 the trio comprising the Apple Macintosh computer, the Laser
writer driven by PostScript and using Adobe fonts, and Pagemaker from Aldus 
made a dramatic impact on the word processing market. It gave the gift of 
combining pictures with text, and eye-catching demonstrations could seduce you 
with the impression that you had a superb graphic artist hidden in the little box 
on your desk! 

To the world of the commercial office, only recently weaned off its trusty 
typewriters, this seemed like another revolution in the making. Indeed the 1987 
annual PC Show in Melbourne had desktop publishing everywhere. The im
pression given by many was that the need to send documents out to the local 
typesetter was a thing of the past; you could easily do it yourself. Obviou1J.y 
this rapidly became a great worry to the technologically aware typesetters and 
a great attraction to the office world. 

2. Desktop Publishing Takes a Bite 

By the end of 1986 Tonkin already could observe changes underway amongst 
the local typesetting businesses. The desktop publishing activity was brought 
into being by a large volume computer manufacturer, not by anyone connected 
with the printing/typesetting world. They offered low-cost systems to the clients 
of the typesetters, not to the typesetters themselves (this came a little later). 
There were two major developments: 

1. A number of small typesetting companies went under as they found much 
of their work such as leaflets, brochures, reports, and forms suddenly dis
appeared. 

2. Soon after a high-resolution postscript phototypesetter became available, 
some businesses started offering a reproduction service by purchasing Mac
intosh computers to read Macintosh diskettes containing final copy, which 
had been produced by the client. These businesses were often formed 
by people from a general business background or a computer background 
rather than traditional typesetting. 

It would seem that the insularity of many typesetting business people left 
them vulnerable to rapid changes in technology and consequent business strategy . 
. Some who have reacted seem to have to turned away from their traditional skills 
and become equipment operators for reproduction services. Only time will tell 
if they have made a wise choice. 

Desktop Publishing versus Electronic Publishing 

Meanwhile back at Trade Graphics, by early 1987, Tonkin had become concerned 
about several facets of the medium to long-term future: 

1988 Conference Proceedings, TEX Users Group 65 



Peter Tonkin and Alex Warman 

• the effects of desktop publishing as described above 

e if desktop publishing was the way to go, could his Compugraphic 8400 be 
used as an output device 

• the lack of recognition of desktop publishing by Compugraphic and the 
locked-in feeling with the Compugraphic front-end and photoypesetter 

In April1987, Warman was commissioned to survey computer hardware and 
software, desktop publishing in particular, to specifically address the concerns 
above. As he had used troff on a Unix system and had been looking into the use 
of 'lEX as a possible replacement, these were included in the study. The study1 

was completed in August and included some of the following conclusions: 

1. Desktop Publishing 

e Desktop publishing products such as Pagemaker and Ventura are excellent 
for page composition where graphics and text were to be combined. 

e The desktop publishing products had some limitations of typographic ac
curacy in some areas, for example handling of kerning and a large range of 
typefaces or fonts. 

e Pagemaker and Ventura could handle small documents (up to 100 pages), 
but were likely to be slow and impractical for larger books. 

€1 Pagemaker and Ventura ran on Macintosh or MS-DOS machines which 
meant a high cost per extra screen relative to a time-sharing computer. 

• High-resolution output devices were limited to Linotronics for Pagemaker. 

2. Electronic Publishing 

111 'lEX is a high precision software typesetting system which handles auto
matically kerning pairs in its fonts, ligatures, high-quality hyphenation 
and justification of complete paragraphs. Commands are dearer than tra
ditional two-character commands and document style ensures consistent 
handling of page layout, table of contents generation, pagination, indices, 
bibliographies, etc. 

• 'lEX is far and away the best mathematical typesetting tool. 

1 Consultant Report for Trade Graphics Pty. Ltd., August 1987. 

66 1988 Conference Proceedings, 'lEX Users Group 



How and Why a Trade Typesetter Chose 'fEX 

11 'lEX runs on a wide variety of computers including Macintosh and MS-DOS 
microcomputers as well as time-sharing systems such as UNIX. 

This offered a real choice for front-end equipment and direct from the 
manufacturers, not via OEM (Other Equipment Manufacturer) agreements 
with consequent markups and lockeminski effects. 

e 'lEX's device independent output format has enabled output drivers to be 
commercially available for 300 dpi laser printers and several phototypeset
ters. 

This too moved toward real choice of output devices, almost independent 
of the front-end equipment, and certainly independent of the suppliers of 
the front-end hardware and software. 

Other relevant conclusions were to continue the work on capturing client data 
files and progressing toward managing these files for the clients, and to move 
to the use of 300 dpi laser printers for draft copy, even if there were limited 
typefaces available. 

Commercial Advantages of TEX. in a Typesetting Business 

In late 1987 Trade Graphics made a decision in principle to purchase an MS-DOS 
machine to run JEX. TEX. seemed by far the best tool for the book publishing and 
academic publications while it seemed at least as good as the desktop publishing 
tools for smaller documents, that is apart from the inclusion of graphics. 

ArborText were very co-operative in sending a copy of DVICG for the Com
pugraphic 8400 on the basis that if it were not satisfactory that it could be 
returned. In fact it took six weeks for the local Compugraphic agent to supply 
the cable specifications at the phototypesetter end; but when this information 
was located, the tests ran correctly straight away. 

In early 1988 this triggered a firm decision to use 'lEX at Trade Graphics 
as the front-end system, replacing the Compugraphic MCS system. The 'fEX 
system was to be run on a Compaq 386/20 Desktop under MS-DOS. The Ar
borText output driver, DVICG, would be used to output to the Compugraphic 
8400. The major strategic aspects contributing to this decision were: 

• The availability of 'lEX on a variety of computers would make a fairly 
painless switch from a single workstation, such as MS-DOS, to a time
sharing system ifthe number ofrequired workstations increased sufficiently. 
Workstations could be cheap ASCII terminals on a time-sharing system. 

This is general purpose computer equipment and is directly available from 
the manufacturers rather than from the phototypesetter manufacturers via 
their OEM agreements. 

1988 Conference Proceedings, 1EX Users Group 67 



Peter Tonkin and Alex Warman 

• The availability of output drivers from ArborText for several phototype
setters making choice and competition a reality. 

• The availability of 300 dpi laser drivers with the same user interface as 
the phototypesetter drivers. In addition the Bitstream fonts give a reason
able chance of matching typefaces to the Compugraphic 8400 fonts (Trade 
Graphics use about 250 typefaces). 

An interesting development here is the PIP (Page Image Processor) from 
Autologic which makes the same fonts available on devices ranging from 
300 dpi and 600 dpi lasers to their APS phototypesetters. 

• Excellent quality documentation compared with the normal manuals from 
computer suppliers or phototypesetter manufacturers. 

• The TEX User Group and a lively TEX community sharing information 
which is efficiently circulated by methods such as TeXhax. This in com
plete contrast to previous local experience of insularity amongst typesetting 
businesses. 

• TEX has encapsulated and automated much of the traditional skills of the 
high quality typesetter's craft. This has the potential to restore much of 
the high quality of the old manual skills, if TEX is used by a typesetter 
with the old knowledge. 

• TEX has automated many aspects of document structure which ensure 
consistency throughout a document and allow rapid reprocessing of a doc
ument if changes are suddenly necessary. This is relevant to pagination, 
page layout and numbering, tables of contents, indices, etc. 

• 'lEX for mathematical typesetting. 

Conclusions 

It is not necessary to sing the praises of '!EX's typesetting capabilities to the 
TUG conference. However, it is of interest that some aspects of a typesetting 
environment using TEX make powerful commercial sense. These are the freedom 
to change front-end equipment and the phototypesetters with minimal disrup
tion to the operations. In addition, such a range of choice gives a considerable 
negotiating leverage. Lastly an organisation such as TUG and the TEX commu
nity is vastly different to the insular world from which Trade Graphics is slowly 
emerging. 

68 1988 Conference Proceedings, TEX Users Group 



An Experience 1n Text book Production 

JAMES D. MOONEY 

Dept. of Statistics and Computer Science 
West Virginia University 
Morgantown, WV 26506 
jdm@a.cs. wvu. wvnet.edu 

ABSTRACT 

This paper discusses some recent experiences and lessons 
learned in the production of over 700 camera-ready pages for an 
operating systems textbook, using 'lEX and a Digital LN03-plus 
printer in a UNIX environment. During the development of the 
book, plans changed repeatedly from supplying machine-readable 
copy in various formats to supplying camera-ready copy. Eventu
ally, almost the entire text was produced by TEX camera-ready, 
on a laser printer, during several weeks of intense pressure to meet 
publishing deadlines. Original copy was prepared in a form suitable 
for UNIX nroff, and translated automatically from nroff form to 
TEX form. Output was produced on a DEC LN03 laser printer, and 
the importance of fonts tailored to the device was very apparent. 
Problems were faced in setting tabular material, two-column copy, 
figures, and other special cases, in fine-tuning appearance through
out, and in selectively correcting final output. Solutions are offered 
for a few of these problems. 

Introduction 

A 700-page textbook on computer operating systems (Lane and Mooney 1988) 
was developed by my colleague Malcolm Lane and myself at West Virginia Uni
versity over a two-year period. TEX played a major role in the development of 
this text, and most of the final camera-ready copy was produced using TEX on 
a VAX Berkeley UNIX system driving a Digital LN03-plus laser printer. The 
success of the final result owes much to the power of 'lEX, but the process of 
getting there was sometimes very painful. It is likely that more and more book 
authors will want, or be asked, to use a similar approach in the production of 
their manuscripts. This paper presents our experiences in the hope that the 
lessons we have learned may be of benefit to those who follow. 

Throughout much of the project we planned to use 'lEX primarily for draft 
copy. The final production was to be done by the publisher's in-house type
setting systems. We expected to supply the manuscript on magnetic disks or 

1988 Conference Proceedings, 'fEX Users Group 69 



James D. Mooney 

tapes, to avoid the problems of re-keying, and to develop as simple a method 
as possible to incorporate the necessa:ry typesetting codes. However, discussions 
with the typesetting staff gradually revealed some problems with this approach. 
They were able to accept documents only in simple word processor formats, and 
the typesetter codes were low-level and obscure. Although our formatting re
quirements were modest, concepts such as specific types of lists and even some 
necessary fonts could not be represented directly by these codes. As a result, a 
great deal of extra translation and manual adjustment was likely to be necessary. 

The publishers continued to favor use of their typesetters until deadlines 
began to draw near. It then became apparent that much time could be saved if 
we supplied camera-ready copy. Since we were already using 'lEX with reasonable 
success for draft output, producing final copy seemed like a manageable task. 
I was somewhat doubtful that our overworked LN03s could provide acceptable 
book-quality output, but the publishers examined some early drafts and gave 
their approval. 

I had worked in the typesetting industry before coming to West Virginia Uni
versity, and had since developed a formatting system design of my own (Mooney 
1982). I had followed 'IEX since its inception, done some 'IEX consulting, and 
introduced the system to WVU. I was thus both a more willing and experienced 
hacker, and a more demanding critic of the output I produced, than most book 
authors. But I still cannot claim to be a "'l'EXpert," and problems arose unex
pectedly from aspects of 'lEX which I did not-and perhaps still do not-fully 
understand. 

The use of T£X for working copy had required us to face and resolve some 
problems, but these were minor compared to the problems of producing full 
book-quality output under increasing deadline pressures. By the time of the 
final run, we were alternately praising and condemning TEX- and all the other 
software and hardware we used as we rushed to meet each evening's Federal 
Express deadlines. We faced and solved some problems, we used some creative 
methods and some nai:ve ones, and we learned some lessons that would lead us 
to do some things differently the next time. 

The rest of this paper presents some of the problems we faced and most 
of the lessons we learned. The next section describes our T£X operating envi
ronment, and some ways in which that environment was improved to support 
the textbook project. The subsequent sections describe specific technical and 
operational problems that we encountered, and present some conclusions and 
recommendations for similar projects in the future. 

The WVU TEX. Environment 

We have been using T£X at the WVU Department of Statistics and Computer 
Science since about 1983 on a. set ofVAXes running the Berkeley UNIX operating 
system (currently version 4.3). The output device we have used exclusively is 

70 1988 Conference Proceedings, TEX Users Group 



An Experience in Textbook Production 

the Digital LN03 laser printer. We have one standard LN03 and one LN03-plus, 
each equipped with two memory cartridges. Since no usable UNIX LN03 output 
driver was available until recently, we designed our own driver program. 1 More 
recently we have begun using the dvi2ln3 driver written by Flavio Rose. This 
driver is much faster than our own but is not yet well integrated into the UNIX 
environment, and it was not available for our book. 

Until our final production push we were running a UNIX-T:EX system several 
years old, with the "Almost Modern" fonts. Red tape at both ends frustrated 
our attempts to obtain a more current tape from the University of Washington. 
This problem was overcome just in time with some direct assistance from Pierre 
MacKay. 

We had been looking forward to use of the final Computer Modem typefaces, 
if only to get rid of the distorted W and M of the amtt fonts. To our dismay, the 
gf files of the em fonts supplied on the tape appeared light and distorted on the 
LN03. We regenerated the most important fonts using with LN03 parameters, 
realizing for the first time that our printer had a "write-white" engine. The 
exact parameters used were those published in TUGboat by Stan Osborne. 2 The 
results were more satisfactory, although the improvement over many of the am 
fonts seems to be a matter of taste. Output on the standard LN03 and LN03-
plus was distinctly different, and we elected to use the LN03-plus exclusively for 
final copy. To achieve better resolution, all output was run magnified 20%, and 
reduced during publication. 

The formatting system most commonly used in our department was the nroff 
system available on UNIX.3 My co-author was not familiar with 'IEX· I had 
experience with both systems but found nroff easier to use (with appropriate 
macros) for most routine documents. The processing time required for nroff was 
also much lower than for 'lEX, due in part to our slow output driver. For these 
reasons we found it desirable to be able to work with nroff for familiarity and 
speed, yet convert to 'lEX's more polished output when desired. 

We met this need by developing a procedure using the UNIX script-driven 
editor sed to translate a limited set of nroff macros to corresponding T.EX macros. 
Some examples of the type of translations possible are shown in Figure 1. The 
original intent was to maintain the ability to produce either nroff drafts or 'lEX 
versions from a single source. In practice we soon began using 1EX output for 
drafts as well, and rarely produced nroff output. However, the sed translation 
was very useful in providing extra flexibility when the desired behavior could 
not easily be achieved with 'lEX macros alone. For example, a simple line in 

1 Information on this driver is available from the author on request. Learning 
how to prepare fonts for the LN03 is a story in itself! 

2 See TUGboat, April1987. 
3 nroff's more powerful cousin troff was not used since we lacked a version 

which could drive the output devices we had available. 

1988 Conference Proceedings, 'lEX Users Group 71 



James D. Mooney 

the sed script could be used to replace all spaces in certain display regions by 
non-expandable space characters, without disturbing spaces in other parts of the 
document. Optional macro arguments, not possible with 'I'E;X alone, could be 
achieved in some useful cases. Reasonably intelligent translation of double quote 
characters to the appropriate matched sets of single quotes was also obtained by 
this method. 

We have since extended the method to assist in translating other nroff doc
uments, including pre-existing ones. The same technique can also be applied to 
an "nro!J-like" extended language which allows longer macro names and mix
ing commands and text on the same input line, overcoming nroff's two most 
exasperating limitations. 

Figure 1 - Example Conversions from nroff to 'I£X 

nroff COMMAND 

.DB" 

. DE" 

.PB" 

.2C" 

.TG" 

.so filename" 

.IT "xxx"" 

.FG "title" "n"a 

.FG "title"" 

.H1 "sectitle"" 
space" 
blank line 11 

$ 
"anything"c 

'lEX COMMAND 

\begindisplay 
\enddisplay 
\beginprog 
\begindoublecolumns 
\looseness:::-1 
\input filename 
{\ital xxx} 
\smallfigure {title}{n} 
\pagefigure {title} 
\section {sectitle} 

\blankline 
\$ 
' 'anything' ' 

" Recognized only at beginning of line 
1' Recognized only in display region 
c Not recognized in program display region 

ACTION 

Begin display region 
End display region 
Begin program display region 
Enter two-column mode 
Tighten previous paragraph 
Include a separate file 
Use italic font 
Insert figure, n picas deep 
Insert figure, full page size 
Begin new primary section 
Make space non-expandable 
Accept explicit blank line 
Escape special character 
Insert matching quotes 

We chose not to use I~TE)C for our project primarily due to my preference for 
precise control over formatting details; this is especially important in meeting 
design specifications established by a book publisher. I have found it easier to 
obtain convenience and non-procedural markup using suitably designed custom 
macros. The sed translation provided further flexibility for this process. 

72 1988 Conference Proceedings, 1E;X Users Group 



An Experience in Textbook Production 

Some Technical Problems 

1. Page Layout and Vertical Space 

The biggest headaches we found in applying 1E;X to book production concerned 
efforts to place paragraphs, headings, and displays as we wanted on each page, 
when that differed from the placement 1E;X preferred. Our designers wanted 
no space between paragraphs, and no expansion of the specified space between 
other elements, even if that sometimes required extra space at the bottom of 
the page. We could not persuade 1E;X not to insert extra vertical space in some 
undesirable places. 

We met with some success in the placement of figures, making consistent 
use of the floating capability of the \topinsert and \midinsert commands. 
However, the placement strategy used by these commands sometimes defied un
derstanding. Figures would refuse to appear in what seemed a natural place, 
or would move from a good place to a very different, poor place after a minor 
change. In several cases, two figures appeared on the same page, in the wrong 
order! 

We found few solutions for these problems, although we realized that a deeper 
study of 1E;X internals might have helped if we had the luxury of sufficient time. 
In many cases, physical cutting and pasting was necessary. Later, we determined 
that some of the problems occurred because in our rush, we had failed to install 
the newest version of 1E;X itself, and were actually running with an older version. 

2. Two-Column Material 

Our text had a requirement to set a list of terms in two-column format at the 
end of each chapter. Each list was much shorter than a page, so they would 
either fit within a single page, or start on one and end on the next. 

Knuth's two-column macros4 gave us a place to start, but these macros do 
not contemplate switching from one-column to two-column and back again on 
the same page. Some straightforward revisions were necessary to accomplish 
this; our versions are shown in the Appendix. 

3. Tables and Figures 

The book included a large number of figures. Some of these were line draw
ings, perhaps with some isolated text. Others were purely text except for rules; 
these were primarily tables and program listings. The publisher's graphic art 
department produced most of the drawings. We tried to produce the tables and 
listings, and some simple drawings composed of horizontal and vertical straight 
lines only. · 

4 The Tp;Xbook, p. 417. 

1988 Conference Proceedings, 1E;X Users Group 73 



James D. Mooney 

All figures were to span the full width of a page, but the heights were variable. 
We used the floating figure placement of T.EX as discussed above. Although it 
would have been convenient to run many tables and figures in place, the specific 
problems of formatting each figure led us to produce them all separately and 
paste them in. 

Program listings were generated in a "program display" environment, using 
a simplified set of verbatim commands and the cmtt font. This produced no 
special problems, but we wrestled with a few special characters and wound up 
producing several in the wrong font. We would like to see some version of 
\verbatim as a primitive 'lEX command. 

Tables were a nuisance. Even the simplest tables, easily formatted by hand 
on our terminal screen, could not be kept formatted in the TEX output without 
mastering the intricacies of \halign. The problem is complicated, of course, 
by proportional spacing. Since the only monospaced font is crntt, we set some 
tables in this font when a different font would have been more appropriate. The 
'fEX font library should include a monospaced font with a truly typewriter-like 
design such as Courier; and there should be a simple alignment mode using 
ASCII tab characters and tab stops set individually by position, and requiring 
no special commands at the beginning or end of each line. 

We attempted to produce some simple line drawing figures because their 
spacing requirements were fairly critical and we had some difficulty communi
cating them to the graphic artists. A good example was a set of memory maps, 
in which the height of each region had to be proportional to its memory size. 
A sample is shown in Figure 2. These drawings were built from a collection of 
special-purpose macros developed on the fly, which had to be fine-tuned repeat
edly to fit the available space and to make all the line endings meet. In the final 
text the blank regions were shaded; the shading was added during production 
by the graphic artists. 

Some Operational Problems 

1 Organizing a Large Document 

Our complete book included many megabytes of file storage, and many parts 
needed to be worked on independently. The document had to be maintained 
as a set of separate files. The book included 23 chapters each from 10 to 25 
pages long, plus various appendices and miscellaneous sections. Each chapter, 
appendix or section became a separate file. 

It was never necessary to run the whole book at once. Each chapter was 
edited and printed separately as needed. In the final production all chapters 
were run sequentially, since starting page numbers had to be inserted in each 
chapter after the previous one was done. 

74 1988 Conference Proceedings, 1E;X Users Group 



640K 

1536 

An Experience in Textbook Production 

Figure 2 - A Simple Line Drawing 

BIOS & OTHER 
PROGRAMS IN ROM 
VIDEO & GRAPHICS 

MEMORY 
TRANSIENT COMMAND 

HANDLER 

APPLICATION STACK 

APPLICATION DATA 

APPLICATION PROGRAM 

RESIDENT OS 

COMMUNICATION AREA 

PHYSICAL 

64K 
APPLICATION STACK 

0 APPLICATION DATA 

64K 

256 
0 

APPLICATION PROGRAM 

COMMUNICATION AREA 

PROCESS VIRTUAL 

All chapters were kept in a common UNIX directory together with the neces
sary macro files. Separate directories were used for large special sections such a.s 
the bibliography and glossary. These sections were divided alphabetically into 
several subfiles, and kept organized with the aid of UNIX tools such as the sort 
utility. 

We used no direct mechanisms in 'lEX for generating bibliographies, indices, 
etc. Instead, UNIX tools were used to extract lines of interest from chapter 
files such as headings or boldfaced terms. These were then turned into tables of 
contents, terminology lists, and other necessary groupings by a semi-automatic 
process. 

2 Maintaining Draft and Production Versions 

Although our original plan was to produce draft copies with nroff, we found 
it more helpful to have T:EX output for working copies and also for reviewers' 
copies. However, the review copies had to include extra space between lines. 
This required adjustments to a number of spacing parameters, since there was 
no simple command such as \doublespace. Two parallel sets of macros were 
maintained for draft and production versions. To avoid changing t.he \input 

1988 Conference Proceedings, 1EX Users Group 75 



James D. Mooney 

lines in every file, the desired macro file was renamed to the common name 
bookrnacs.tex before each run. This was made fairly convenient by UNIX shell 
commands; it would have been simpler yet if the \input command understood 
UNIX environment variables. 

The use of separate draft macros made it possible to use more convenient page 
numbers of the form "chapter-page" instead of the sequential numbers required 
in the final text. However, an unexpected difficulty in working with separate 
draft and production versions was correlating page numbers; a reviewer's com
ments about "page 13-9" did not always correspond to the pages we had on our 
desk. Some type of cross-listing of page numbers would have been helpful, but 
probably difficult. 

3 Fine-Tuning the Output 

In the final days of production, it became necessary to make frequent minor 
revisions of most chapters to correct typographical errors and perfect the for
matting. This process was impeded by a combination of problems: we had no 
useable previewer, our output driver was slow, our printers were hard to keep in 
optimum working order, and 'lEX did not always cooperate in fine-tuning and 
reprinting individual pages without affecting others. 

By the end of the project the "terminals" we were using to communicate with 
our VAXes were Macintosh computers simulating VTlOOs. Simple previewers 
available for alphanumeric terminals did not provide enough information. Al
though it seemed likely that a good previewer taking advantage of the Macintosh 
graphics in our context could be developed, no such program was available. As 
a result our only reliable proofs were hardcopy versions. 

The slowness of the output driver has already been mentioned; details are 
beyond the scope of this paper. The 'lEX problems included difficulty in starting 
processing in the middle of a file, with correct page numbers and all processing 
parameters intact. Smart output drivers (smarter than ours) can selectively print 
a specified range of page numbers. It would have helped if 'lEX itself could also 
limit its output in this way. 

The more serious problem was '!EX's insistence on rearranging later pages of 
a chapter after minor changes to an earlier page, even if the changed page still 
ended at the same place. This behavior was difficult to understand or suppress, 
leading to many extra runs to correct later pages that had been satisfactory to 
begin with. 

Some Final Comments 

1 'lEX in a UNIX environment 

An effective software tool must fit well into the working environments in which it 

76 1988 Conference Proceedings, TEX Users Group 



An Experience in Textbook Production 

will be used; it is not reasonable to ask users to adapt to a new environment for 
each tool, however well-designed those environments may be. Most experienced 
computer users prefer their usual editor, for example, to one packaged with a 
new language processor; and tools which use files designed for easy interfacing 
with other software are likely to be more successful for this reason. 

Common UNIX environments are conducive to programs which can operate 
on simple alphanumeric terminals without graphics, and which read a single 
input stream and produce an output stream. In these regards T:E;X is well suited 
to UNIX, much more than to a workstation environment where some form of 
WYSIWYG operation is essential. 

An arsenal of UNIX text processing tools is also useful with T:E;X. The avail
able collection includes spelling and style checkers. Versions of some of these 
have been adapted to recognize the T:E;X command structure. 

T:E;X does not cooperate well, though, with other UNIX conventions, espe
cially aspects of the user interface and file system. Terminal output is verbose 
and not easily suppressed. Use as a filter is difficult, and the hierarchical file sys
tem is not supported. It would be desirable (and expected) to be able to create 
a shell command such as runt ex , so that typing runt ex book. chap*& would 
start background processes to run T:E;X on a set of files and spool the output 
directly to a printer, while the terminal continues to be used in the foreground 
for editing other files. Some of this can be accomplished awkwardly with shell 
scripts; but much of it is blocked by unwarranted assumptions within 'fEX. As 
a small but nasty example, the first period in the filenames given above would 
make them unrecognizable. 

I suggest a modest set of revisions to the 'fEX user interface and that of 
related tools for use in a UNIX environment. These could probably be imple
mented with a straightforward change file. They include the following: 

" Allow recognition of selected options on a T:EX command line. 

• Provide an option (e.g., -q ) to suppress all terminal output except error 
messages, and write these on the standard error output. 

" Provide options to use standard input and output as alternatives to . tex 
and . dvi files. 

• Do not require that input filenames end in . tex or meet any other form 
restrictions. 

Output drivers can work most conveniently in the UNIX environment if in
stalled as filters for the print spooler. This requires only simple modifications; 
an option in the spooling command is already reserved for special processing of 
dvi files. 

1988 Conference Proceedings, 1E;X Users Group 77 



James D. Mooney 

2 The Use of Macros 

A low-level formatting language like that of T.EX or nroff offers grea.t power 
to its users, but it is too easy to get buried in the details required to do even 
simple things. Use of such a language is made palatable by a good macro defini
tion facility and, hopefully, a good library of macro definitions. Like high-level 
programming languages, macros can make it very easy to do complex things, if 
their constructs match what you want to do. 

In most working environments, good macros have to be customized. This 
is not too difficult for reasonably experienced T.EX programmers. For routine 

. reports and documents, macro development can be justified because the same 
formats will be used repeatedly. For a major project such as a book, macros 
developed for the special needs of the project are well worthwhile. 

The spirit of top-down project development can be applied to documents 
as well as programs, and has proved useful in the formatting of our text. The 
strategy I advocate is perhaps more extreme than most: if it becomes clear while 
writing the document that a macro with a certain behavior would be useful, 
assume it ezists and begin using it. The commands in the text of the document 
can then be kept as simple (and non-procedural) as possible, and in the great 
majority of cases the necessary macro can be written more easily than expected. 

Conclusion 

This paper has presented a review of a number of problems we encountered in the 
production of a large textbook. We have pointed out some lessons we learned, 
some possible weaknesses in 'lEX for such projects, and some pitfalls which we 
and others may avoid in future projects. 

To be honest, only about 650 of the nearly 800 pages we produced using 
TEX were actually used in the book. Concerned about the total page count, 
the publishers asked us to reset the appendixes and back matter in a smaller 
size (about 7 point). This would have led both to procedural problems and 
unreadable output from the LN03. In the end, all of the appendices were re
keyed (correctly, as far as we can tell) and typeset by the publisher, saving about 
25 pages . 

. BIBLIOGRAPHY 

Lane, M.G., and Mooney, J.D. A Practical Approach to Operating Systems. 
Boston: Boyd & Fraser, 1988. 

Mooney, J.D. MFS: A Modular Text Formatting System. Proceedings of the 
National Computer Conference, AFIPS Press, 1982. 

78 1988 Conference Proceedings, TEX Users Group 



An Experience in Textbook Production 

APPENDIX: Two-Column Macros 

%================================================ 
% (This is file twocol.tex) 
% 
% doublecolumnout (output routine) 
% 
% 
'/, 

'1. 

For pages ending in two column mode. 
Double column material is in box255 as a single column; 
possible single column material saved in \partialpage. 

% 
\def\doublecolumnout{% 

} 

% set parameters for split 
\splittopskip=\topskip 
\splitmaxdepth=\maxdepth 

% compute goal height for each column 
\goalheight=\pageheight 
\advance\goalheight by-\ht\partialpage 

% split column into boxes 0 and 2 
\setbox0=\vsplit255 to\goalheight 
\setbox2=\vsplit255 to\goalheight 

% ship out partialpage plus columns 
\pageout{\pagesofar} 

% restore any leftovers to main list 
\global\vsize=2\pageheight 
\global\advance\vsize by1pc 
\global\pagegoal=\vsize 
\unvbox255 
\penalty\outputpenalty 

% balancecolumns (output routine) 
% 
% Balance columns at end of two-column mode 
'1. 
\def\balancecolumns{% 

% copy current page to box 0 
\setbox0=\vbox{\unvbox255} 

% set parameters for split 
\splittopskip=\topskip 

1988 Conference Proceedings, 1E;X Users Group 79 



James D. Mooney 

} 

% compute initial goalheight for each column 
\goalheight=\htO 
\advance\goalheight by\topskip 
\advance\goalheight by-\baselineskip 
\divide\goalheight by2 

% balance the columns into boxes 1 and 3 
{\vbadness=10000 \tolerance=10000 

} 

\loop 
\global\setbox3=\copy0 
\global\setbox1=\vsplit3 to\goalheight 
\ifdim\ht3>\goalheight 

\global\advance\goalheight byipt 
\repeat 

% transfer balanced columns to boxes 0 and 2 
\setboxO=\vbox to\goalheight{\unvboxl} 
\setbox2=\vbox to\goalheight 

{\dimen2=\dp3 \unvbox3 \kern-\dimen2 \vfil} 

% place all material on main list 
\global\vsize=\pageheight 
\global\pagegoal=\vsize 
\pagesofar 

% pagesofar 
% 
% Restore partial page and (balanced) current columns 
% to main list~ 
% 
\def\pagesofar{ 

} 

% restore partial page 
\unvbox\partialpage 

% unbox and rebox the columns 
\wdO=\hsize \wd2=\hsize 
\hbox to\pagewidth{\box0\hfil\box2} 

% begindoublecolumns 
% 
% Begin double column mode. 
% 

80 1988 Conference Proceedings, 'lEX Users Group 



An Experience in Textbook Production 

\def\begindoublecolumns{\begingroup 

} 

% store current page so far in \partialpage 
\output={\global\setbox 

\partialpage=\vbox{\unvbox255\bigskip}} 
\eject 

% set output routine for pages that complete in 2C mode 
\output={\doublecolumnout} 

% set page size to remaining column space on first page 
\hsize=\pagewidth 
\advance\hsize by-ipc 
\divide\hsize by2 
\vsize=2\pageheight 
\advance\vsize by1pc 
\advance\vsize by-2\ht\partialpage 

% enddoublecolumns 
% 
% End double column mode 
% 
\def\enddoublecolumns{% 

} 

% adjust columns on final page 
\output={\balancecolumns} 
\eject 

% restore normal output routine and other parameters 
\endgroup 
\vsize=\pageheight 
\pagegoal=\vsize 

1988 Conference Proceedings, 1E;X Users Group 81 





Using TEX to Produce Kennel Club Yearbooks 

ROBERT L HARRIS 

Micro Programs Inc. 
251 Jackson Avenue 
Syosset, NY 11791-4117 

ABSTRACT 

Many dog clubs publish annual collections of pedigrees of dogs 
earning AKC titles. The production of these yearbooks is labor
intensive and tedious. One club, by using a pedigree management 
program and T:EX, has streamlined the process. The interface be
tween the two programs was designed so the editor does not have to 
be a 'IEXpert to produce a T:EX document. Preliminary work shows 
that halftones from scanned photographs can be included with the 
pedigrees in the 'lEX document to eliminate screening and pasting 
at the printers. 

Introduction 

Every person who breeds animals and is striving to improve the quality of the 
animals produced by their breeding programs needs and uses pedigrees. This 
is true whether we are talking about horses, cattle, cats, goats, or dogs. The 
pedigree gives the knowledgeable breeder valuable information about the back
ground of his stock and some insight into the probable traits of the progeny of 
any breeding. While all breeders complete, share, and use pedigrees, I am going 
to concentrate on dog breeders. 

There are three groups of people in the sport of purebred dogs who are inter
ested in pedigrees. First is the breeder. He uses pedigrees to plan his breeding 
program or to select breeding or show stock. He will also give a pedigree to 
a buyer when he sells a puppy or adult stock. Breeders also exchange pedi
grees with other breeders in the search for the perfect stud to complement their 
breeding program. 

Next are the pedigree services. This is a cottage industry that specializes in 
researching the stud books to produce a pedigree for breeders and dog owners 
who want the pedigree of a particular individual but do not have access to the 
breeding records themselves. These services usually charge by the number of 
generations ordered. Many of these pedigrees are typed onto preprinted forms 
that are attractive enough for framing. Indeed, some of the services even offer 
parchment. 

1988 Conference Proceedings, 1E;X Users Group 83 



Robert L. Harris 

Finally, there are the national breed clubs. Each breed of purebred dogs 
recognized by the American Kennel Club has a parent club which is responsible 
for the maintenance of the breed standard and disseminating information about 
the breed to its fanciers and to the public seeking knowledge. The majority of 
the breed clubs publish some type of yearbook recognizing the accomplishments 
of the dogs in their breed during the preceding year. As a minimum, the accom
plishments are the earning of one or more of the titles awarded by the American 
Kennel Club-bench championship, field championship, and obedience titles. 
These yearbooks or annuals usually contain a photograph of the dog, its name 
and vital statistics, and a three-generation pedigree. 

While all three of these groups are involved in the production of pedigrees 
and all three could (and do) use 'lEX to obtain beautiful pedigrees, this paper is 
going to discuss the production of the yearbooks. It shows how the preparation 
of a 'lEX document can be simplified and automated. It also shows how halftones 
can be included in the document. 

The yearbooks range in quality from simple typewritten manuscripts to fully 
typeset pages. Some contain only a few pages each year, while others will be sev
eral hundred pages thick. Historically, the production cycle has been something 
like this: 

• Each month, the American Kennel Club sends to the secretary of the parent 
club a copy of the title acknowledgement it has sent to the owner of the dog. 

® The secretary collects these slips and forwards them to the yearbook editor 
when that person has been appointed by the club's board of directors. 

o The editor sends to each owner an invitation to participate in the yearbook. 
This invitation usually specifies what will be published, the cost (if any) to 
the owner, a form for submitting the required information, and a statement 
of the deadline for receipt of the form and photograph if one is to be included. 

• As the forms are returned, the editor types the information in the stan
dard format used by the club. As noted above, sometimes this becomes the 
camera-ready copy while other times it is sent to a typesetter. 

e When all the for:ins are in (or the deadline has passed) and the editor has put 
the information into the proper format, he takes the forms and photographs 
to the printer who prints and binds the yearbook. 

a~ Finally, the editor sents out the yearbooks to all who are to receive them and 
returns the photographs to the owners. The cycle is ready to start over. 

The editor must type each and every pedigree. That, in the case of a three
generation pedigree, is fifteen names. He must get each name in the correct 
position on the form-both for accuracy and appearance. Hopefully he will get 
the spelling correct as well. There is a significant repetition of names in a large 
number of pedigrees over a short period of time. It is not uncommon for breeders 

84 1988 Conference Proceedings, 'lEX Users Group 



Using 'lEX to Produce Kennel Club Yearbooks 

to flock to a particular stud, particularly if it was a big winner in the show world. 
And, of course, all his ancestors will be the same. 

Computer programs have been available to help the breeder produce his 
pedigrees for five or six years. Most of these programs create and store individual 
pedigrees on diskette. In 1987, we introduced a new pedigree program which we 
named "Peder." It stores the information about a dog and its breeding in a 
database. When the breeder wants a pedigree, Peder searches the database and 
assembles the pedigree at the time of printing. This gives the user the flexibility 
to specify the number of generations to be printed and the ability to correct 
a dog's name or add titles to its name in one place and have the corrections 
automatically reflected in all the pedigrees in which the dog appeared. 

Within two months of when we started shipping Peder, I received a call from 
the Puli Club of America for help with their yearbook. They sent us a copy of 
a few pages from their last yearbook as a sample of what they were producing. 
Among other things, they were having the pedigrees typeset and they wanted 
to continue with that quality appearance. They also wanted to maintain their 
present format, which was not fully typical of a pedigree. 

The editor of the Puli yearbook was, in many respects, typical of the user 
we can expect. She wanted to use the computer to get the job done and did not 
have a lot of time to learn to use complex programs. She was atypical in that 
she was willing to be my guinea pig and put up with more than I could ask of 
most customers. 

After surveying the electronic publishing systems available for the MS-DOS 
platform, I decided that 'JEX was the best-suited product for what I wanted 
to achieve. Products like Ventura and PageMaker require additional software 
(Digital Research GEM or Microsoft Windows) and do not lend themselves 
to being controlled by another program. 'JEX can be started-and completely 
controlled-from within another program. That program can create the input 
for 'JEX, cause TEX to produce the dvi file and finally send the resulting output 
to the printer. I realized that I was going to have to make 'lEX as transparent 
as possible for the novice user. The sheer volume of available commands would 
scare away potential users. TEX can be intimidating to the neophyte. I was 
also intrigued with the possibility of including the photograph as a part of a 
'JEX document to eliminate the need to have halftone plates made and the pho
tographs combined with the pedigree in the print shop. This step by the printer 
has always been a source of error. Very few yearbooks do not have at least one 
misplaced photograph. A printer charges $25.00 or more to screen a photograph 
and prepare a metal plate. 

Integrating Peder and 'JEX 
The person who would be using 'JEX to produce a yearbook is unlikely to be a 
computer wizard, let alone a T£Xpert. He or she would rather be on a circuit, 

1988 Conference Proceedings, 'IE;X Users Group 85 



Robert 1. Harris 

showing dogs. Therefore, I had to make preparing the 'lEX file as easy as possible. 
Ideally, the editor should never have to touch the input file for 'JEX-at least 
for the production of the pedigrees. This was relatively easy. Since Peder is a 
menu-driven program, I added four lines to the menu (Fig. 1). 

LEI6 
DOG-GONE COMPUTERS 

PEDER - THE PIIDIGI!EE SCRIBE 
llay 24, 1988 

(1) AddlEd It do!J prof lie 
(2) Print a pedigree 
(Jl Init!ali2e I'IIIDEII. TeX 
(4) Add a pedigree to PEDER.YeX 
(5) Run TeX uith PEDEB,feX 
(6) Print PEDEJ!,OOI (Epson print.erl 
rn Print table of contents 
(B) Print list of descendents 
Ull l!llit this session 

llhat is !Jour desire'? _ 

Copyright (cl 1987 b<J Micro Prog-raJIIs Inc. 

Fig. 1. Menu for PEDER showing modifications for 'lEX 

The first of the new entries (3) initializes the TEX file. It prompts the user for 
the title year. The last two digits of the year became part of the page number. 
It then creates a 'lEX file with the page numbering, vertical and horizontal sizes, 
vertical and horizontal offsets, and the terminating \bye. While not done for 
the first of the Puli Club yearbooks, this prolog could also set the title page. 
This task is selected by the user to start a new volume at the beginning of 
the year. The initialization information is distributed in a fi~e PEDINIT. TEX. 
Peder creates a file PEDER. TEX (erasing any existing file with the same name) 
and copies PEDINIT. TEX into PEDER. TEX. Because I put the initialization into a 
separate file rather than burying it in the code for Peder, I can easily customize 
it for each club. Also, as the editor becomes acquainted with 'JEX, she can 
modify it to change the design of the yearbook or to add title pages, and other 
"fixed" information. Fig. 2 shows the contents of PEDER. TEX after the user has 
initialized it with this step, but before he has added any pedigrees. 

The second line added to the menu enables the user to add a pedigree to 
the 'lEX file ( 4). For this, I created a style sheet (Fig. 3) that Peder could 
scan. I defined the commercial at-sign ("@") as Peder's substitution character. 
Whenever it is encountered in the style sheet, the program uses the letter and 
number immediately following to define what information from the database is 
to be filled into the style sheet. The letter "D" was defined to mean one of the 

86 1988 Conference Proceedings, TEX Users Group 



\hoffset=-.25in 
\hsize=4in 
\voffset=-.375in 
\ vsize=7. 25in 
\parindent= . 5 in 

Using 'lEX to Produce Kennel Club Yearbooks 

\footline=\hss \tenrm @y--\folio 
\bye 

Fig. 2. PEDER. TEX initialization 

fields from the dog's vita-and is numbered in the same order as it appears in 
the profile used to add dog names to the database (e.g., Dl = dog's registered 
name). The letter "N" was defined to mean the name of one of the dogs in the 
pedigree and was numbered from the top to bottom of the pedigree. The -letter 
"R" was defined to mean the American Kennel Club registration number of the 
dog. The sequence of numbers was the same as the one used for the dogs' names. 

\topinsert \vskip 3.562in \endinsert \vss 
\centerline{\bf Gd1} 
\vskip 6pt 
\centerline {@d4\hss @d2\hss @d6} 
\centerline {Breeder: @d13} 
\centerline {ovner: @d14} 
\vskip 9pt 
{\settabs 3 \columns 

\+ti:Gn1\cr 
\+t@n2\cr 
\+l:l:@n3\cr 
\+Gn4\cr 
\+\indent (Gr4)1:1:Gn5\cr 
\+t@n6\cr 
\+ti:Cn7\cr 
\vskip .26in 
\+l:l:@n9\cr 
\+t@n10\cr 
\+tl:@n11\cr 
\+Gn12\cr 
\+\indent (Gr12)1:1:@n13\cr 
\+t@n14\cr 
\+tl:@n15\cr} 

\ vfill \eject 

Fig. 3. Style sheet for adding pedigrees to PEDER. TEX 

1988 Conference Proceedings, 'lEX Users Group 87 



Robert L. Harris 

Like the initialization file, the style sheet is distributed as a file on the Peder 
diskette. Again, that gives us-or the user-the flexibility to change the design 
of the pedigree without modifying the code for Peder. The style sheet shown in 
Fig. 3 includes registration numbers only for the sire and dam. It could just as 
easily include them for all the dogs in the pedigree and the style sheet for the 
Puli Club does just that. The two pedigrees in this paper illustrate two different 
style sheets. 

The user enters the registration number of the dog whose pedigree is to 
be added to the 'lEX file. Peder then extracts the names of the dogs for the 
pedigree from its database, scans the style sheet, and writes the pedigree in 'lEX 
format to PEDER. TEX. Each time it encounters an attention character, it fills in 
the appropriate areas with the information from its database. As pedigrees are 
added to the file, the \bye is moved to the end ofthe file. As Peder is transferring 
the text to the 'lEX file, it watches for any characters like the "&" used by 'lEX 
for its purposes and adds the necessary backslash. To keep either Peder or 'lEX 
from choking on missing information in the database, Peder inserts the phrase 
"Not given" if either the call name or date of birth is missing. This is particularly 
important for the birthdate since it is entered as all digits in the database and 
expands into the spelled-out month for the yearbook. 

Pedigrees can be added to the 'lEX file one at a time, or in batches, depending 
upon the way the editor wants to assemble the book. Each new pedigree is 
appended to the end of the existing file. 

When the yearbook is completely assembled into a 'lEX file, the user can 
run 'lEX from within Peder by selecting option (5) (the third of the new entries) 
from the menu items. The dialog with 'lEX is shown in a window on the screen. 
Finally, the user can send his dvi file to his output device by selecting option 
(6). While the menu illustrated in Fig. 1 specifically mentions the Epson driver, 
I have generalized the selection in later versions of the program. The user tells 
Peder which driver to use through the DOS set command. 

The style sheet used for the initial attempt with the Puli Club did not take 
full advantage of the power of 'lEX and of the possibilities of this technique. For 
example, we did not generate the table of contents automatically. Since we were 
debugging Peder and Dee Rummel (the yearbook editor) lived in California, I 
wanted to keep the first try as simple as possible. I produced the table of contents 
for her after we completed the rest of the volume. 

It transpired that many Pulik have more than one title. Sometimes the titles 
are earned over a period of years and other times they are earned in the same 
year. When the club publishes its yearbook, it indicates the current title by 
underlining it. If the dog earns more than one title in a year, the current titles 
are flagged with an asterisk. Because these markings only exist for the current 
year, they were not entered into the database. It was not difficult to teach the 
editor how to add the necessary information to the 'lEX file before printing it. 

88 1988 Conference Proceedings, TEX Users Group 



Using 'lEX to Produce Kennel Club Yearbooks 

The production cycle is now reduced to a few steps. First the editor adds 
profiles of the dogs to Peder's database as they are published in the stud book. 
This can be done monthly as the volumes arrive from the American Kennel Club. 
In April 1988, eighty-one Saint Bernards were admitted to the stud book. The 
editor may also update the titles earned by the dogs when the confirmation slips 
arrive from the AKC (ten Saint Bernards in April 1988). The editor initializes 
the 'lEX file for a new yearbook from Peder. As the owners return their forms 
confirming that they want their dogs included in the yearbook, the editor can 
add the pedigrees to the 'lEX file. On the other hand, she can wait until all the 
forms are in and do it as a batch. Dee Rummel has elected to do it this way. In 
one evening, she can add all the pedigrees to the 'lEX file, print them, and have 
them ready to go to the printer. Proofreading the pedigrees takes another one 
or two evenings. 

The results of this first volume have been very satisfying. It has reduced the 
cost of production significantly and the production time to a few days of a part
time volunteer. The initial volume still required the printer to make halftone 
plates of the photographs of the dogs and combine them with the camera-ready 
pages of pedigrees. The second volume is due to be printed shortly. One month 
after completing the 1982 yearbook, Dee Rummel had the copy for the 1983 
yearbook ready for the printer (and then moved from California to Wisconsin, 
injecting a delay into the schedule). 

One fringe benefit of adopting 'lEX for the Puli Club has been the feasibility 
of correctly spelling the names of many of the dogs. The Puli was admitted to 
the American Kennel Club stud book in 1936. After World War II, many soldiers 
brought Pulik home with them. Therefore, it is not uncommon for the name of 
a dog or its breeder to contain accent marks reflecting their Hungarian origin. 
Peder does not care how the user enters names, so it is possible to include 'lEX 
sequences to add the proper accent marks. 

Dee typeset the seventy-one pedigrees in the 1982 yearbook without learning 
any more 'lEX than adding accent marks to Hungarian names, underlining the 
titles, and adding an asterisk to other titles. She is currently learning enough 
about 'lEX to typeset the president's message and preface. Since this is straight 
copy, it is easy to do. 

The stylesheet used by the Puli Club is slightly more complex than the sam
ple shown in Fig. 2 since space had to be made for the registration numbers. 
Specifically, there is a reduced baselineskip between a line containing a registra
tion number and a line containing a dog's name. Also notice that the registration 
numbers are indented in generations one and three but are flush with the dog's 
name in generation two. This matches the format the club has used in previous 
years. 

Fig. 4 shows the output from 'lEX for a pedigree in the format used by the 
Puli Club. 

1988 Conference Proceedings, TEX Users Group 89 



Robert L. Harris 

Ch Peli-Volgyi Fifi 
WB868152 

Sire 

Photograph goes here 

PEBBLETREE'S HANGOS-HUBA CDX 
"Han" 

AKC #WD943872-Dog-Whelped Feb. 7, 1978 
Breeder: Dee Rummel 

Owner: Wilma Peterson & Jan Arnold 

Int Ch Gya.Ji Marci Prim as 
MET7503 

Ivanfareti Pipacs 
MET8543 

Cac Csabaujtelepi Marci 
MET7203 

Gyali M6dos Kormos 
MET6832 

Eszkim6 Astrea 
MET6830 

Int Ch Pusztai Fiirtos Fick6 
MET6694 

Fony6dberki Bogancs 
MET5592 

Serif Betyar 
MET4932 

Szentendreparti Ancsa 
WB868151 

Dgy Csabaujtelepi · Csintalan 
MET4426 

Kira.Jyaki Uki 
MET5883 Dam 

Velencetavi Panni 
MET6827 

Babonyi Pamacs 
MET6059 

Fig. 4. Pedigree from the Puli Club Yearbook 

90 1988 Conference Proceedings, 'lEX Users Group 



Using 'lEX to Produce Kennel Club Yearbooks 

Integrating Halftones into 'lEX Output 

The next logical step will be to add halftones of the dogs to the pedigrees so 
the printer gets completely camera-ready copy with no paste up required. Since 
getting the correct picture with its corresponding pedigree is always a problem for 
the printer and the cost of producing the halftone screens is not insignificant, this 
step will improve the value of the publication while reducing its production cost 
significantly by eliminating the cost of screening. The majority of the pictures 
used in these publications are those taken by professional photographers at dog 
shows to chronicle a particular win. Most photographs submitted by the owner 
will be 8x10 in. color prints. The primary point of interest will be the dog. 
Frequently the photograph will include the handler and the judge. There may 
even be considerable irrelevent, distracting background. The reader of these 
yearbooks will be studying the pictures to examine the conformation of the dog, 
so details like angulation, ear and tail set, depth of brisket, and markings must 
be discernible from the print. If the editor can easily crop the photograph to 
concentrate on the dog, the readers will be better served. 

With the exception of an article or two in TUGboat, I found few literature 
references to printing halftones as part of a 'lEX document. The literature from 
Aldus gave us some direction and an idea of the quality I should be able to 
achieve, but its emphasis was on incorporating halftones into PageMaker doc
uments. A recent issue of Colophon from Adobe contained an excellent, albeit 
brief, discussion of the issues involved in processing halftones for an encapsulated 
PostScript file. 

I started experimenting with scanning photographs and printing the results. 
The first problem was to get the scanner files into a format that could be used 
with 'lEX· Most scanners (and certainly ours-the Panasonic FX-RS505) save 
the image as either a . pcx (PC Paintbrush) or TIFF (tagged information file 
format) file. 'lEX device drivers want a file in the correct format for the output 
device (e.g., either a HP LaserJ et file or a PostScript file). I discovered quickly 
that while PageMaker was accepting TIFF files, there was little other software 
that would work with this format. There also appears to be some confusion 
about the TIFF standard. 

The software (PanaScan) that came with the Panasonic FX-RS505 scanner 
did not support grey scale. Its halftone conversion used dithering (either press 
or spiral). It did allow the user to save all or part of the scanned image. It had 
limited capabilities in other areas-no image sizing or image editing. Hammer lab 
Corporation (New Haven, CT) produces scanner software called Scan-Do. This 
program will control the scanner and then allow the user to touch-up and crop 
the image. It provides (for photographs) both dithered and grey-level formats. 
The grey-level images can only be saved as TIFF files. It requires Microsoft 
Windows (a runtime version of Windows is included). The size of the image can 
be controlled at the time the original is scanned. It uses the full resolution of the 
scanner regardless of the image size, so a reduced image will have more dots per 

1988 Conference Proceedings, 'lEX Users Group 91 



Robert L. Harris 

inch than a full size image. The image editing is quite versatile. The user can 
adjust the size of the "airbrush," match the gray-shade, and use up to eleven 
levels of magnification while editing. One missing feature that would be very 
useful is the capability to rotate the image. 

Since PanaScan or Scan-Do produced only . pcx or TIFF files, it was neces
sary to convert the files to PostScript or LaserJet files. The conversion program 
I looked at was HiJ aak (Inset Systems, Inc., Danbury, CT). This program con
verts files from one format to another for a variety of graphics formats, including 
PC Paintbrush, TIFF, LaserJet, and PostScript (output only). As of release 
l.OB, it does not support grey scale TIFF files, so I was restricted to using PC 
Paintbrush dithered files for input. The conversion process is easy enough. The 
user can control the size of the final image as part of the conversion process. One 
can even convert directly to the printer for making proof copies. However, the 
user cannot crop or convert only a portion of the image. 

The first photograph I scanned was a color photograph of a Saint Bernard. 
The results were totally unacceptable. Even on the screen, the dog was lost in 
the background when using dithering. As a side note, when scanned as a halftone 
with Scan-Do, the image on the screen showed promise. As noted above, I could 
not convert the TIFF file, so I do not know how it looks when printed. 

Next, I tried a black and white photograph of a Dalmatian. The results were 
passable, but certainly not as pleasing as those obtained by traditional plate 
making techniques. There did not seem to be any difference in the quality of 
the printed image if the scaling was done when scanning with Scan-Do or when 
converting with HiJaak. 

Once I had a PostScript file of the scanned photograph, incorporating the 
file into the pedigree was straightforward. I modified the 'IEX macro (Fig. 5) 
distributed by ArborText with their DVILASER/PS PostScript driver. I took 
advantage of the fact that encapsulated PostScript files contain dimension infor
mation. The PostScript standard is 72 divisions per inch which is the same as a 
big point, so the parameters for the macro are given in big points. 

Since I can scale the photographs at the time of conversion using HiJ aak, 
I did not include the scale parameter in the macro. There is an advantage to 
scaling at the time of conversion: the bounding box will be the same for all 
the photographs as long as they have the same orientation. Perhaps a 'IEX 
wizard can figure out a way to read the encapsulated PostScript file, extract the 
bounding box, and insert the values into the macro in the 'lEX file. Then, the 
program could automatically compensate for any changes. 

The prolog was modified to include the macro definition, and the style sheet 
(Fig. 6) was modified to use the macro to incorporate the PostScript file con
taining the dog's picture. The picture file is named using the dog's registration 
number. The production procedure has the added step of scanning and saving 
the photographs of the dogs. The style sheet has become even more complex, 

92 1988 Conference Proceedings, 'IEX Users Group 



Using 'lEX to Produce Kennel Club Yearbooks 

% Macro to use encapsulated PostScript files with TeX. 
% Obtain the lower right and upper left coordinates from the 
% bounding box. 
% Arguments for the macro: 
% #1: name of postscript file 
% #2: lower left x-coordinate 
% #3: lower left y-coordinate 
% #4: upper right x-coordinate 
% #5: upper right y-coordinate 
\def\printpicturei1#2#3#4#5{ 

} 

\no break 
\hbox to \hsize{ 

} 

\hss 
\dimen0=#4bp 
\advance\dimenO by -#2bp 
\hbox to \dimeno{ 

} 

\dimen0=#5bp 
\advance\dimenO by -#3bp 
\vbox to \dimeno{ 

} 

\vss 
\special{ 

} 

ps: :[asis,begin] 
0 SPB 
/picturepoint save def 
/showpage {} def 
Xpos Ypos translate 
#2 neg #3 neg translate 

\special{ 
ps: plotfile #1 asis 

} 
\special{ 

} 

ps: :[as is, end] 
picturepoint restore 
0 SPE 

\hss 

Fig. 5. Macro for adding photographs to pedigrees 

incorporating rules as in a pre-printed form. The resulting pedigree looks like 
the one in Fig. 7. 

Incorporating photographs into documents via electronic publishing is still 
in its infancy. When talking to vendors and software developers, their pri
mary interest is in business graphics-clip art, graphs, logos, and similiar mate-

1988 Conference Proceedings, 'lEX Users Group 93 



Robert L. Harris 

rial. As the scanners and their supporting software become better at handling 
photographs-particularly color photographs-it should be possible to produce 
camera-ready copy with halftones of quality equal to that of the text obtained 
by typesetting with TEX. This first attempt shows a lot of promise. 

Conclusion 

TEX can be used to produce kennel club yearbooks and other pedigrees of a 
quality to satisfy all critics. By marrying it to Feder, we have been able to make 
it possible for a person who never read The IF;Xbook to produce a yearbook. As 
scanners and scanner software improve, we are going to be able to include high 
quality halftones of the dog in the pedigree, eliminating the screening and paste
up at the printers. To date, I have restricted the graphics work to a PostScript 
driver. I want to extend this to the HP LaserJet as soon as I can. 

This application illustrates that it is possible for a person who has not re
ceived any training in 'lEX to extract information from a database and produce 
a 'lEX document. The repetitive production of tabular material is an ideal appli
cation for this technique. The same approach can be used when an organization 
has to maintain control over the design and appearance of the output. 

Acknowledgements 

I would like to give special thanks to Dee Rummel of the Puli Club of America 
for all her help on this project. Working the problems out with her by telephone 
was very trying for her at times-especially when her Tandy 1000 refused to run 
TEX because of a problem in Tandy's version of MS-DOS. Also, thanks to Janet 
Ashbey of Sugarfrost Kennels for providing the black and white photographs of 
the Dalmatian. 

Update 

Following the presentation at the annual meeting, there was a lively discus
sion that focused primarily on obtaining high quality scanned images from pho
tographs. Color scanners and image enhancement programs were mentioned. 
While these items do exist, they are too costly today for the average firm or 
person on a PC budget. 

InSet Systems shipped beta copies of the latest version of HiJ aak to their 
testers in September. It is converting more variants of TIFF files and the quality 
of the PostScript image is much better than those produced from PC Paintbrush 
files. 

94 1988 Conference Proceedings, TEX Users Group 



Using 'JEX to Produce Kennel Club Yearbooks 

\centerline{\namefont Qn8} 
\ vskip . 25in 
\printpicture{Cr8.eps}{27}{536}{315}{765} 
\ vskip . 25in 
$$\vbox{\tabskip=Opt \offinterlineskip \tenrm 

\halign to \hsize{\tabskip=Opt plus1em#t#\hfilt 
· #U\hfilUU\hfilt#U\tabskip=Opt\cr 

ttttt\strut Cn1t\cr 
tttt\multispan3\hrulefill\cr 
uu\vrulet\cr 
ttt\strut Cn2t\vrule\cr 
tt\multispan3\hrulefill\cr 
tt\vrulett\vrulet\strut @n3t\cr 
tt\vrulett\multispan3\hrulefill\cr 
t\strut {\tenrm @n4}t\vrule\cr 
\multispan3\hrulefill\cr 
\vrulet\strut (Cr4)t\vrulet\cr 
\vrulett\vrulettt\strut @n5t\cr 
\vrulett\vrulett\multispan3\hrulefill\cr 
\vrulett\vrulet\strut @n6t\vrule\cr 
\vrulet\vrulet\multispan3\hrulefill\cr 
\vruletttt\vrulet\cr 
\vruletttt\vrulet\strut @n7t\cr 
\vruletttt\multispan3\hrulefill\cr 
\vrulet\strutt\cr 
\vrulet\strutt\cr 
\vrulettttt\strut Cn9t\cr 
\vruletttt\multispan3\hrulefill\cr 
\vrulettt\strut Cn10t\vrule\cr 
\vrulett\multispan3\~ulefill\cr 
\vrulett\vrulett\vrulet\strut Cn11t\cr 
\vrulett\vrulett\multispan3\hrulefill\cr 
\vrulet\strut {\tenrm @n12}t\vrule\cr 
\multispan3\hrulefill\cr 
t\strut (@r12)t\vrulettt\strut @n13t\cr 
tt\vrulett\multispan3\hrulefill\cr 
tt\vrulet\strut @n12t\vrule\cr 
tt\multispan3\hrulefill\cr 
tttt\vrulet\strut Gn15t\cr 
tttt\multispan3\hrulefill\cr}}$$ 

\vtill \obeylines 
\noindent Call name: @d3 \hfill Breed: Cd5 \hfill Reg. Ro: @d2 
\noindent Date of birth: @d4 \hfill Color: @d7 \hfill Sex: @d6 

Fig. 6. Style sheet for producing pedigrees with photographs 

1988 Conference Proceedings, 'lEX Users Group 95 



Robert 1. Harris 

Ch Sugarfrost High Fashion 

Can Ch Road Star's Catouche 
Ch Sugarfrost I 

!Road Star's Frosty Morn 
Ch Melody Steppin' Out 
(NS282475) 

Ch Melody Dynamatic 
Ch Melody Crimson and Clover CDI 

!Calculator's Miss Sincerity 

Ch S ugarfrost 
Ch Te-Ja's Jack Frost CD I 

!Pill Fedler's Sea Witch 
Ch Sugarfrost Top Choice CD 
(NS232414) Ch Delta Dais Mr D 

Ch Sugarfrost Top Choice CD I 
!Heather Runabout of Scotland 

Call name: Fashion Breed: Dalmatian Reg. No: NS783683 
Date of birth: March 18, 1983 Color: White and black Sex: Female 

Fig. 7. Pedigree and photograph using style sheet in Fig. 6 

96 1988 Conference Proceedings, TEX Users Group 



Layout for TEX 

ELIZABETH BARNHART AND DAVID NESS 

TV Guide, National EDP 
Radnor, PA 19088 

ABSTRACT 

A Layout Language and a TJjjX Environment have been defined 
to allow 'lEX to be used in a simple fashion to handle complex 
page-layout problems. The Layout Language is written in APL. 
This article describes how this system works. 

The Start of the Problem 

During the spring of 1987, we started to seriously consider the problem of creating 
the Feature Article pages seen in the glossy section of TV Guide. The page design 
of this section is quite complex. The format changes from two column to three 
column-sometimes in the middle of an article-and contains many runaround 
sections to accommodate the photographs that are included in the article. 

With our own \output routine, we were able to create and output a sample 
article. For the most part it contained a lot of \parshape commands, inter
spersed with the corresponding text. 

The first problem that we encountered was using the \parshape. By design 
it terminated at the conclusion of a paragraph, whenever a \par was envoked. In 
our first try, we got around this problem by creating our own paragraph macros, 
allowing us to create one \par shape per column of type. 

Looking for a Solution 

This solution allowed us to output some, but not all of the styles that occur 
in the Feature Article section. And it had additional problems. The constraint 
of having to use \parshapes and tying them to a particular section of the text 
promised to make revision and correction cycles a nightmare for the production 
personnel responsible for typesetting these pages. It is not unusual for para
graphs of text to be moved around in an article, or for pieces of the text to be 
removed from the middle of a paragraph, as many as half a dozen times per 
article in the course of its creation. This would mean that the \parshape com
mands would also have to be moved each time a Feature Article went through 
revision.Through each correction cycle, each column would have to be trial set 
to determine where the \parshape commands should be moved. 

1988 Conference Proceedings, 'lEX Users Group 97 



Elizabeth Barnhart and David Ness 

The next problem was ·that of changing the number of columns per page and 
the column width mid-article. We spent a lot of time trying to create output 
routines to do this, with little success. 

In June of 1987, Barnhart presented this dilemma to the Grand Wizard in a 
letter that contained copies of a sample article, and the 'lEX code that created it. 
This letter explained our situation, and posed the problem of trying to separate 
the form of a page from the content of the page. Knuth quickly responded with 
a method of separating the \parshape commands from the text of the article, 
and we were on our way to a more practical, productive system. His solution 
also had the added side-effect of allowing us to change column widths at will by 
using one large \parshape command to create the output. 

(The next section contains information from a letter by Knuth to Elizabeth Barn
hart on the handling of large \parshapes. It is reprinted with his permission. 

Knuth's Solution 
Knuth suggested that our problem could be solved by creating one large 
\parshape. He explains: 

One idea is to make use of TEX's \prevgraf feature, by which you can 
continue the \parshape it left off in a previous paragraph. Namely, 
if you say 

\newcount\linesdone 
\def\par{{\endgraf\global\linesdone=\prevgraf}} 
\everypar{\prevgraf=\linesdone} 

... It has the advantage that TEX can do each paragraph individually, 
and people can use things like \looseness to make paragraphs a line 
longer (or shorter, if it's possible). 

Knuth goes on to suggest that a "\pageshape" definition would be the next 
piece needed to create the pages. It consists of each column of the 2-column page 
being put together with 2 pieces (the \putattop and \putatbot). This allows 
you to create a hole in the column where photos or artwork can be dropped in. 
His description of how to define the "page-shaper" was as follows: 

... With this idea in mind, you can give a \parshape for the en
tire article; you don't have to intermix shapes with paragraphs. The 
\parshape could be computed by a separate program, or by a ver
satile word processor, and input from a file. (I recommend putting 
comments in that file, e.g., 'end of left column'.) But you also.need 
~omething like "\pageshape" to complete the layout. For this I would 
suggest an approach along the following lines: 

98 1988 Conference Proceedings, TEX Users Group 



Layout for TEX 

\newread\colshape \newbox\putattop \newbox\putatbot 
\openin\colshape=jobname.shape 
\def\nextcol{\read\colshape to \next 

\expandafter\donextcol\next\\} 
\def\donextcol#1,#2\\{\topofcol{#1}\botofcol{#2} 

\vsize=477pt\advance\vsize by -\ht\putattop 
\advance\vsize by -\ht\putatbot} 

\def\topofcol#1{\g1obal\setbox\putattop=\vbox{#1}\dp 
\putattop=Opt} 

\def\botofcol#1{\global\setbox\putatbot=\vbox{#1}\dp 
\putatbot=Opt} 

\def\contarrow{\vskip-9pt\moveright12pc \hbox{\arrow}} 

The last piece of the process is to create a file that contains the description 
of what the \putattop and \putatbot pieces look like for each column of each 
page. Knuth suggests the following scheme: 

... Now you prepare an auxiliary file, called "j obname. shape" if your 
main text file is "jobname. txt". This file contains lines with two 
entries each, separated by commas; e.g., 

\skp{53}, 
\skp{47}, 
,\vbox to 31\lu{insert caption text here\vfill} 
,\contarrow\skp{22} 

and so on. The first entry tells what goes at the top of the column 
(e.g., '\skp{ 47}' means skip 47 lines); the second tells you what goes 
at the bottom. The entry can be blank if nothing is to be inserted. 
(An entry can extend over more than one line if the '{' is on the first 
line and the '}' comes on the last lfne.) Then your output routine 
invokes \nextcol before doing a column; this sets up two boxes called 
\putattop and \putatbot ... 

The two pieces created by the above coding-scheme are put together with 
the following definition that boxes one column of a two-column page. This 
\columnbox macro is called by the output routine to lay out a 2-column page . 

... The definition of \columnbox should be changed to, e.g., 

\def\columnbox{\vbox{\offinterlineskip\putattop 
\leftline{\pagebody}\vskip-\prevdepth\prevdepth=Opt 
\puttatbot}} 

Now the formatting of columns is completely detached from the copy 
of the article. You don't even have to use DVIMERGE for captions! 
This idea can also be extended to control where rules are placed. 

1988 Conference Proceedings, 1E;X Users Group 99 



Elizabeth Barnhart and David Ness 

Knuth also made some suggestions on handling the placement of the 
continued-arrow that is set to indicate a turnover page. 

Layout Development after Knuth's Input 

As we worked through Knuth's solution, we were able to use it, with some modi
fications, to create some fairly complex Feature Article pages. However, someone 
still had to type in the original-and usually very long-\parshape command. 
Any modification to the shape of the spaces in the article required editing of the 
\parshape command, a C0"1plex and error-prone task at best. Therefore, the 
next step was to develop a way to allow the users to talk "in English" about 
what a page looked like, and then to have an intermediate program that would 
create the \parshape. 

The Next Step 

Early experimentation with Knuth's suggestion indicated two possible problems. 
First, \parshape commands did not appear to accept zero length lines. Given 
the original intent of this command this came as no surprise. In setting a layout, 
however, there are gaps in the flow of text to handle captions, take-out quotes and 
other formatting structures. We decided that this problem could be handled by 
creating a macro that would specify how many lines to take from the \parshape 
and then how many lines to skip. The \parshape then would consist of all of 
the non-zero length lines. 

The second difficulty resulted from implementation rather than from the 
concept of 'lEX· In typesetting a long article we create \par shapes of many hun
dereds oflines.Sometimes our PC-based system is not up to the task. At the mo
ment we seem to be generating obscure errors when we have 'giant' \parshapes. 
It remains unclear to us whether this problem would persist in larger model 
implementations. 

A Layout Language 

This led to the creation of a preliminary version of a layout language and a 
program to generate the 1£X commands that are necessary to implement the 
idea. 

We have been using an old TV Guide article as a test case. It may be useful 
to refer to the Figures that use a simulated "ruled" copy ofthe published version. 
Here is the Layout file that describes the spaces in the article. The commands 
are in upper case letters with numeral arguments; comments are shown in mixed 
case, following a semi-colon. 

100 1988 Conference Proceedings, 'lEX Users Group 



BEGINLAYOUT; Rerun Article 

COLUMNLENGTH 53 
INDENT 0 
COLUMNWIDTH 12. 5 
LEADING 9 
HSIZE 27 

'ARROW' SET 0.75 

Layout for 'IE;X 

BEGINLAYOUT, COLUMNLENGTH, INDENT, COLUMNWIDTH, LEADING and HSIZE 
must be established at the beginning of each Layout file. Think of these lines as 
the 'header'. BEGINLAYOUT starts the process. We then specify the number of 
lines in a normal column and the 'normal' INDENT. These can be changed at any 
point in time, and remain in effect until changed again. The COLUMNWIDTH here 
is established at 12.5 picas. We assume pica measurements throughout, except 
in the LEADING command where leading is established in points. The HSIZE 
command sets the full horizontal size of the page. The SET command is used to 
introduce a constant that is of use to us later. In this case it is the width of the 
'continuation arrow' character, for which we must leave space on some lines. 

Consider the simple page-layout shown in Figure 1. Column one is empty, 
and column two only has 6 lines of text at the bottom. Most of it is a picture 
and some 'display type' that is not expected to be set in this pass. Now look 
below at the layout language to describe this page. 

BEGINPAGE; Page 1 
BEGINCOLUMN; Left 
ENDCOLUMN 
BEGINCOLUMN; Right 

SKIP 47 
PUT 1 AT 8.7 
FILL 

ENDCOLUMN 
ENDPAGE 

The physical elements (pages and columns) have been nested by indenting for 
readability, but this is not necessary. It is, however, our standard procedure since 
it produces files that are easy to read and understand. The layout begins with 
an empty column (no command is given between BEGINCOLUMN and ENDCOLUMN). 
The right column is 47 blank lines followed by a short line and then five full lines 
(i.e., 12.5 pica lines as specified by COLUMNWIDTH). We 'knew' how many lines to 
fill because we keep track of how many lines of the column have been output. 
Saying FILL is equivalent to saying PUT REST AT FULL where REST is the number 
of lines that remain in the column and FULL is the full width of the column. 

Page two, as shown in Figure 2, is very complicated. There is text in both 
columns, in an odd shape, and the bottom of each column is left empty to cut 
in photographs. There is a slanted picture around which text is to be set. There 

1988 Conference Proceedings, 1E;X Users Group 101 



Elizabeth Barnhart and David Ness 

is also a picture at the bottom of the page. The description for the page-layout 
in Figure 2 is shown below. 

BEGINPAGE; Page 2 
BEGINCOLUMN; Left 

PUT 19 SLOPE HANG LEFT 4.9 TO 7.4 
PUT 5 AT FULL 

END COLUMN 
BEGINCOLUMN; Right 

PUT 17 SLOPE HANG RIGHT 7.9 TO 5.6 
PUT 2 SLOPE HANG RIGHT 8 TO 11 
PUT 11 AT FULL 
PUT 1 AT FULL-ARROW 

END COLUMN 
ENDPAGE 

The first SLOPE operation specifies an area 19 lines long, where the first line 
is 4.9 picas long and the last is 7.4 picas. It is hung off the left margin. The lines 
in between will be of the appropriate interpolated length. After this slope there 
are five full lines and then the rest of the column is blank. 

The right column is quite similar except that there are two cut lines, one 
for the side of the picture and one for the bottom. The SLOPE operation specifies 
starting with a line that comes in 7.9 picas from the FULL column width and 
then in 17 steps we shorten down to a line that comes in 5.6 picas from the right 
margin. The slope then changes direction (the bottom of the slanted picture) 
and expands the CDLUMNWIDTH to 11 picas in two steps. The rest of the lines are 
full except for the last line of type, which accommodates the 'continued' arrow. 
Notice that this width is specified by taking FULL and subtracting the width of 
the ARROW. In this way we keep our layout independent of the specific current 
values of either of these quantities. 

BEGINPAGE; Page 3 
BEGINCOLUMN; Left 

PUT 20 AT 8 
FILL 

ENDCOLUMN 
BEGINCOLUMN; Right 

SKIP 20 
FILL 

END COLUMN 
ENDPAGE 

Page three is simple. The layout language is shown above. Most of the page, 
as shown by Figure 3, is 2-column text. There is a square cutout that fills part 
of column one at the top and all of column two at the top. A picture two-thirds 
of the page width is on the top of this page, so we have some narrow text followed 
by some full text in the left column and some blank space followed by full text 
in the right column. 

102 1988 Conference Proceedings, 1E;X Users Group 



BEGINPAGE; Page 4 
BEGINCOLUMN; Left 

PUT 26 AT FULL 
ENDCOLUMN 
BEGINCOLUMN; Right 

PUT 26 AT FULL 
INDENT 4.5 
PUT 26 AT FULL 
PUT 1 AT FULL-ARROW 
INDENT 0 

ENDCOLUMN 
ENDPAGE 

Layout for 'lEX 

Page four is very similar to page three. The abm· '; code describes the lay
out for the page illustrated in Figure 4. In this case ~e want narrow text at 
the bottom of column two to allow for artwork.This is accomplished by setting 
INDENT to 4.5 picas and then specifying 26 lines at FULL (;vhicb is automatically 
adjusted by the amount of the indent). The small cut at the bottom of the 
right column for the 'arrow' to point the reader to the next page is accomplished 
by subtracting ARROW from FULL. Notice that INDENT is reset to 0 by the user, 
otherwise it would continue, even into the next page. 

BEGINPAGE; Page 5 --- Shift to 8 pica Columns 
COLUMNWIDTH 8 

BEGINCOLUMN; Left 
END COLUMN 
BEGINCOLUMN; Middle 

FILL 
ENDCOLUMN 
BEGINCOLUMN; Right 
ENDCOLUMN 

ENDPAGE 

BEGINPAGE; Page 6 
BEGINCOLUMN; Left 

FILL 
ENDCOLUMN 
BEGINCOLUMN; Middle 
ENDCOLUMN 
BEGINCOLUMN; Right 

FILL 
ENDCOLUMN 

ENDPAGE 

ENDLAYOUT;Rerun Article 

For page 5, we switched to another page layout. This is shown by Figure 
5. Here we purposely set some text differently from that in the original article. 
Like climbing Mt. Everest, this was just to prove that it could be done. What 
we have done is shifted to three 8-pica columns from two 12.5-pica columns. On 
page five we only set text in the middle column and on page 6 (Figure 6) we 
set text in both the outside columns. 

1988 Conference Proceedings, 'lEX Users Group 103 



Elizabeth Barnhart and David Ness 

Notice that throughout the examples we have made use of comments. Any 
line can be commented by appending a semicolon and any desired text. The text 
will be displayed on the screen at the time the layout is being processed. We 
have found it useful to indicate progress in the layout activity by appending a 
comment to each BEGIN ... operation, but this is only a local convention. 

The Layout Language 

LEADING n 

'NAME' SET n 

HSIZE m 

This defines the leading of the material to be n points. Leading 
is the distance between baselines. It is assumed. to be in points 
not picas. It is the only measure assumed to be in points, and 
is not adjusted by any SCALE command. 

This defines a NAME that we want to use as a generalized number 
and it sets its value to n. Often this is the amount of an indent 
or the width of a character (like the 'continued arrow'). Once 
SET, NAME can pretty much be used as a number (within the 
rules of APL of course). 

This defines m to be the width, in picas, of the whole pages of 
the material. Columns are collected into pages of this width. 

COLUMNLENGTH n 

INDENT p 

COLUMNWIDTH p 

BEGIN COLUMN 

This command specifies that each column contains n lines. It 
stays in effect until changed. 

This command sets the INDAMT (see below) equal top picas.All 
PUT commands are assumed to be indented automatically by this 
amount. p can be specified as either LEFT p or RIGHT p depend
ing on whether the text is HANG LEFT or HANG RIGHT. LEFT is 
assumed if neither is mentioned. An INDENT RIGHT p will have 
no effect when text is HANG LEFT and vice-versa. Only one 
INDENT can be in effect at a time. 

This command sets the width of a column to be p picas. 

This command initializes the REST variable to COLUMNLENGTH, 

and counts the column on behalf of the ENDPAGE operation. 

104 1988 Conference Proceedings, TEX Users Group 



PUT nl n2 ... 

PUT x AT n 

END PAGE 

n SLOPE t b 

SCALE n 

SKIP n 

ENDLAYOUT 

FILL 

Layout for 'fEX 

This command works with numbers that represent line lengths. 
It generates as many lines of \par shape description as there are 
elements to its right at the line lengths in picas specified by n1, 
n2, .... For example, PUT 8 9 10 will "put" lline at 8 picas, 1 
at 9 picas and 1 at 10 picas. In general AT or SLOPE commands 
are used to generate elements, but lists of elements can also be 
individual numbers. For example, PUT 10 AT 12.5 will put 10 
lines at 12.5 picas. 

This command indicates the end of a page. The system uses 
ENDPAGE to Figure out how many columns there are on any 
page. 

This command describes a sequence of n lines, the first of which 
is t (top) picas long and the last of which is b (bottom) picas 
long. The intermediate lines are of the appropriately interpo
lated lengths. 

This command can be used to scale 'units' used for data entry 
into some particular measure. Its function is easy to see by 
example. Say we are working on graph paper where our columns 
are 10.5 units (on the graph paper) wide. We want to typeset 
these columns at 8 picas. We could give the command SCALE 
8 DIVIDE 10.5 to accomplish this objective. This command 
indicates to APL that all of the measures entered for widths 
should, eventually, be multiplied by 1g.s before being handed to 
'JEX. 

This is equivalent to PUT n AT ZERO. It skips n lines. 

This indicates that the layout has come to an end. 

This is equivalent to PUT REST AT FULL. Thus it fills the rest of 
the column with lines at the current COLUMNWIDTH and INDENT. 

1988 Conference Proceedings, 'lEX Users Group 105 



Elizabeth Barnhart and David Ness 

The following can be used with other commands in roles where they make sense: 

ZERO 

m AT n 

REST 

FULL 

INDAMT 

a DIVIDE b 

a TIMES b 

HANG n ... 

a TO b 

This can be used in place of the numeric 0 where it eases reading. 

This behaves as though the number n had been given m times. 
It is usually used in a context like PUT 10 AT 6. 5. 

This number refers to the 'rest' of the lines in any particu
lar column. The BEGINCOLUMN command sets this number to 
COLUMNLENGTH, and then all of the line-generating commands 
(PUT, SKIP) deduct from it. 

This number refers to the current full width of a column, in 
picas, as established by the last COLUMNWIDTH command minus 
the current INDAMT. 

This number is the amount of the current indent, measured in 
pleas. 

Most of the commands can take numbers, variables and/or 
mathematical operations anywhere in the specification. All that 
is necessary is that the rules of APL be followed. These rules 
are too complex to give here, but suffice it to say that normal 
mathematics is allowed if everything is completely parenthe
sised. Otherwise APL's rules will be followed and this can lead 
the non-APLers into trouble. The DIVIDE operator exists be
cause the APL character for divide cannot easily be typed in 
an ASCII file. The actual + and - characters can be used di
rectly for plus and minus. The TIMES operation allows access to 
multiplication in the same way as the DIVIDE does to division. 

This is a 'noise' word that can be included for readability. HANG 
n. . . is equivalent to n ... 

This is also a 'noise' word. a TO b is equivalent to a, b. If both 
a and b are numbers, it is also the same as a b. 

106 1988 Conference Proceedings, TEX Users Group 



LEFT n .. . 

RIGHT n .. . 

POINTS 

Layout for TEX 

These words are used to indicate 'left'-ness and 'right'-ness. For 
example, INDENT LEFT 5 indicates a left indent of 5, while 
INDEU RIGHT 5 indicates a right indent of 50 In general, LEFT 
is assumed if neither is stated. Thus INDENT 5 is the same as 
INDENT LEFT 5. 

This represents the quantity l2 . Thus if you want to input all 
of your measurements in points instead of picas, just say SCALE 
POINTS and everything will be all right. 

As an example of all of this, the following command makes (good) sense: PUT 
(REST-6) AT (FULL-1) requesting that the rest but 6 of the lines in the current 
column be filled with text one pica narrower than the full column width. 

When strings of numbers are used, as for example in PUT commands, then 
they may, or may not, be separated by commas. However, if a 'variable' like 
REST or FULL is used, then it must be separated from numbers by commas. 

Gruesome but Insightful Stuff 

This section of material should only be read by the courageous. However, if you 
get it, then you will really see how simple all of this stuff is underneath, and be 
able to do very nice things with it. 

The PUT command understands lists of numbers. It does not care how these 
lists of numbers were generated. APL takes care of doing all this stuff for the AT 
and SLOPE commands. In our data representation, most numbers refer to indents 
or line lengths. We use positive numbers to represent indents from the left or 
lines hung from the left (left justified). We use negative numbers to represent 
indents from the right or lines hung from the right (right justified). With this 
idea the implementation of many of these facilities becomes very simple. The 
LEFT operator, for example, is simply a 'do-nothing'. It leaves positive things 
positive. The RIGHT operator simply multiplies things by -1. It makes positive 
things negative. 

When we have some wobbly lines with a square left margin, we can just 
measure them and then say PUT n1 n2 .... We can also say PUT HANG LEFT nl 
n2 . • • to the same effect. When we have a square right margin, things are just 
as simple. We measure the desired line lengths and then say PUT HANG RIGHT 
nl n2 •... The RIGHT makes the numbers negative. The HANG is just noise. 
The PUT recognizes the negative numbers and hangs them off the right margin, 
and we have accomplished our objective. 

1988 Conference Proceedings, TEX Users Group 107 



Elizabeth Barnhart and David Ness 

Operating the System 

Prepare filename .FRM and filename. TEX. The FRM (for 'FoRM') file contains 
the layout description in the layout language described above. The TEX file 
contains the copy. 

Every time the layout changes, execute the command 'LAYOUT filename'. 

This will prepare a new layout format file for 'lEX· 
Every time the text or the layout changes, you then execute a POUR filename 

to prepare a new file for printing. If only the text changes, only the POUR is 
necessary. If the layout changes, bQth the Lil. YOUT and the POUR are necessary. 

A nice little added feature can be achieved by running CHECKFRM filename 
to check the content of the . FRM file. This, following a very nice suggestion made 
by Knuth in his original letter, generates a copy of the layout with horizontal 
rules replacing all text. This allows an easy sight verification of the description 
of the items in the . FRM file (without having to POUR the copy). The Figures 
that accompany this article are examples. 

There is also a DISPLAY program which displays the structure of each page 
on the PC within ii.PL. This environment has some excellent graphics facilities, 
and it makes it possible to display anything from single pages up through 70 or 
more pages of an article. The more pages that are shown, the smaller that each 
of them is, of course, but the shapes and the spaces are quite recognizable even 
when the images are small. 

Internal Details-For those Interested Only 

It does seem, however, that Knuth missed one nice feature for \parshape. It 
would make a lot of sense to be able to give shapes that included some lines 
that were 'zero length', thus indicating vertical spacing. He apparently didn't 
do this, and we have had to do some implementing around this problem. 

The essence of the solution given here is to separate the task of composing 
some material into two major parts: developing the galley (properly shaped, of 
course) of all of the text, and then chopping this galley up into the pages that 
we wish to set. 

Here we use the APL system to perform this function. The layout driver 
is read and processed by APL. This system interprets all of the commands of 
the Layout Language, and constructs the (sometimes very large) \parshape 
command that will cause 'lEX to typeset the appropriate galley. 

APL also prepares two lists for T£X, the fmt list and the pageform list. fmt 
contains expressions of the form (SKIP, TAKE,COLWIDTH) representing how many 
lines should be skipped and then how many lines should be 'taken' from the 
\parshape galley. So that we can set a horizontal strut we also communicate 
the column width, else 'lEX wouldn't know how wide to make an otherwise 

108 1988 Conference Proceedings, 1EX Users Group 



Layout for 'lEX 

empty column. Notice that this list will allow us to get any combination of 
vertical spacing that we need in any column.Notice also that breaks in this 
list always occur at least every COLUMNLENGTH lines, thus easing 'lEX's data 
processing complexity and storage requirements. 

APL also builds the pageforllllist. This list tells 'lEX how many columns are 
on the page that it is about to set. 'lEX then arranges to read the next element 
from the list as it actually outputs each physical page. This is needed so that 
the output routine knows how many boxes to put together to make up a physical 
output page. 

The mechanics of the list processes are borrowed directly from the "Dirty 
Tricks" chapter of Knuth's The Tj;;Xbook. 

Future Directions 

The SLOPE command handles a specific class of layout problems. More compli
cated shapes, at the moment, must be described on a line-by-line basis using 
PUT statements. As soon as we know better how to characterize some of these 
more complex shapes with generality, we will implement further shape-oriented 
operations. 

Further, the opportunity exists to use some combination of mouse, graphics 
tablet and scanner technology to capture the original shape information. All of 
these paths will be investigated. 

We need to work out how to handle gutters, and how to describe and syn
chronize the placement of 'furniture' into the layouts. 

Comment 

APL was used to ease the development process. The prototype implementation 
described here was done in less than two days. 

APL remains an amazingly good language for prototyping. There are also new 
'pocket' implementations-available for about $100-which make the language 
a candidate for actual field use. 

1988 Conference Proceedings, 1E;X Users Group 109 



Elizabeth Barnhart and David Ness 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

Figure 1 

110 1988 Conference Proceedings, T£;X Users Group 



25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

Layout for 'lEX 

19------------------------

32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

Figure 2 

1988 Conference Proceedings, 'lEX Users Group 111 



Elizabeth Barnhart and David Ness 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Figure 3 

112 1988 Conference Proceedings, 1E;X Users Group 



27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

Figure 4 

Layout for 1E;X 

1988 Conference Proceedings, 'lEX Users Group 113 



Elizabeth Barnhart and David Ness 

1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 
10 10 
11 11 
12 12 
13 13 
14 14 
15 15 
16 16 
17 17 
18 18 
19 19 
20 20 
21 21 
22 22 
23 23 
24 24 
25 25 
26 26 
27 27 
28 28 
29 29 
30 30 
31 31 
32 32 
33 33 
34 34 
35 35 
36 36 
37 37 
38 38 
39 39 
40 40 
41 41 
42 42 
43 43 
44 44 
45 45 
46 46 
47 47 
48 48 
49 49 
50 50 
51 51 
52 52 
53 53 

Figure 5 

114 1988 Conference Proceedings, 1'E;X Users Group 



53 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

Layout for 'fEX 

53 

Figure 6 

1988 Conference Proceedings, 1E;X Users Group 115 





Syllabi for lEX and METRFONT Courses 

S. BART CHILDS ET AL 

Dept. of Computer Science 
Texas A & M University 
College Station, TX 77843-3112 
bart@cssun.tamu.edu 

ABSTRACT 

The 'lEX Users Group is sponsoring the development of a set 
of syllabi for courses related to the 'lEX and METAFONT systems. 
These would include goals, prerequisites, course contents, labora
tory problems and sample tests, suggestions for instructors, text(s) 
and references. The present article is meant to stimulate discussion 
in the 'JEX community, and its contents are thus considered to be 
in draft form, open to change and modification. It is hoped that 
this document will encourage better courses and the publishing of 
related 'lEX materials. 

The descriptions and suggestions in this paper are the result of work done by 
two committees, one dealing with 'lEX issues, the other with METAFONT: 

'lEX -Bart Childs, Pierre MacKay, David Ness, 
and Alan Wittbecker 

METAFONT -Doug Henderson, Neenie Billawala, 
and Pierre MacKay 

The reasons for this activity are based on some problems such as: 
1. students without proper background 
2. widely differing backgrounds in "non-beginning" courses 
3. insufficient and inconsistent classes without such structure 
4. students or employers having unreasonable or unrealistic goals for classes 

The following thoughts are guiding principles: 
• Most 'lEX users are not programmers. Unless courses are explicitly for tech

nical personnel, it should be assumed the students are not programmers. 
• The course descriptions are based on the public offering of these courses, 

usually at a university site. The same course should change significantly 
when there is a homogeneous student body that all use one common system 
and editor for the production of a specific style of document. 

• The committees represent a group of 'lEX professionals who have taught un
willing freshmen; worked as consultants to commercial, governmental, and 
educational publishing projects; taught 'lEX courses; ported 'lEX; have given 

1988 Conference Proceedings, TEX Users Group 117 



S. Bart Childs et al 

significant personal time to the 'lEX community; and have a broad under
standing of many of the needs of the diverse elements in the TEX community. 

a The committees offer the disclaimer that the design of a curriculum is never 
easy and have the firm understanding that all curricula are compromises. 
Further, the curriculum is only an initial step and should be revised in the 
future with changing technology. 

The material presented in this article is preliminary in nature. We hope 
it will engender discussion throughout the 1£X community, and an improved 
document will result from your comments and suggestions. 

A brief description of these courses is included along with a schematic de
scription of the proposed courses and their prerequisites; an outline of course 
contents, indicating the various levels of information to be presented at each level 
(Beginner/Intermediate/ Advanced); and a draft of a T_EX questionnaire/self-test 
is discussed. It should help users determine the appropriate course for them to 
attend. 

Course Descriptions 

Prior to commencing the study of 'lEX, one needs to be able to operate an 
ordinary editor. This knowledge and some desire should be all that is necessary 
for the Beginning course. These courses are nominally one week in duration. 
Circumstances may dictate courses being offered in various formats. 

At the end of the Beginning course the student will understand the basic 
parameters which allow 'lEX to produce attractive documents. He or she will 
feel comfortable taking examples from The TE)Xbook for use, but may not yet be 
fully at ease modifying these examples. 

At the end of the Intermediate course students will feel comfortable with 
modifying examples from The TF)Xbook to suit their purposes. They will also be 
able to creatively solve typesetting problems using T:E.<~-

At the end of the Advanced course the student will actually understand 
many of the examples from The TF)Xbook. At this stage of knowledge 'lEX's 
capability as a "text-oriented programming language" can be exploited. 'lEX 
macros are a central part of this course. 

1. Beginning 'JEX 
This course provides a practical introduction for those with limited, or no, ex
posure to 'lEX, and will be composed of about equal parts lecture and hands-on 
sessions, including many practical exercises for each object of study. 

Participants will be introduced to TEX as a series of typesetting instructions, 
in the context of the history of typesetting and word processing. 'lEX is com
pared with other popular formatting systems such as Microsoft WORD, Ventura 
Publisher, and Aldus Pagemaker. 

H8 1988 Conference Proceedings, 'lEX Users Group 



Syllabi for 'lEX and METAFONT Courses 

'lEX concepts to be covered include: simple paragraphs, line' spacing, and 
fonts; special characters and accents; justification and line breaking; and the 
mathematical concepts of superscripts, subscripts, fractions, and equations. 

Each registrant will be given a copy of The T]i;Xbook and Samuel's First 
Grade T]i;X. 

Prerequisite: Familiarity with a text editor is essential. 

2. Intermediate 'lEX 
This course is comprised of equal parts of lecture and laboratory sessions, m
cluding many practical exercises. 

It builds upon the foundation laid at the beginning level. Topics to be covered 
include: more complicated paragraph shapes, paragraphs with labels, hanging 
indention; more complex interaction between glues and boxes; in math mode: 
Greek letters and special symbols, delimiters, displayed equations; controlling 
line and page breaking; simple tables. 

Prerequisite: Beginning 'lEX or equivalent knowledge. 

3. Intensive 'lEX 
This course is a combination of the above two courses in a smaller timeframe at 
a higher level of intensity. 

4. Advanced 'lEX (and Macro Writing) 

This course is designed for all experienced 'lEX users and will have emphasis on 
lectures with some opportunity for hands-on experimentation likely. This course 
is an intensive study of macro writing and designing macro packages. 

Topics will include: detailed explanation of the relationship of boxes (vbox, 
vtop and hbox) and glue; use of registers, especially box registers and counter 
registers; basic concepts of macros; construction of tables using halign, also 
equation arrays in math mode; loading of fonts, magnification, kerning, liga
tures; controlling line and page breaking; delimited and undelimited parameters; 
global vs. local definitions; conditionals, loops, and counters; tools such as let, 
fv,turelet, chardef, cat code, ##s, and begingroup; expansions of macros and 
tokens, and when expansion takes place. Students will design macros in class 
and analyze common constructions, with practice in interpreting already written 
macros so that they may be customized for special applications. 

Prerequisites: Beginning and Intermediate 'lEX or equivalent knowledge. 

1988 Conference Proceedings, 1E;X Users Group 119 



S. Bart Childs et al 

5. Course Titles and Prerequisite Structure 

'fEX.100 (5 days) 
Beginning 'fEX 

! 
'fEX.200 (5 days) 
Interr.nediate 'fEX 

'fEX.400 (3 .. 5 days) 
Output Routines 

! 
1l\TEX.200 (5 days) 
Interr.nediate 1;\T X 

'lEX Courses 

X 
'fEX.300 (5 days) 

Advanced 'fEX 

X 

'fEX.210 (5 days) 
Intensive 'fEX 

'fEX.490 (2 .. 5 days) 
Special Topics and Ser.ninars 

METAFONT Courses 

METAFONT.100 (3 .. 5 days) 
Logos via METAFONT 

! 
METAFONT.200 (5 days) 

Font via METAFONT 

120 1988 Conference Proceedings, 'lEX Users Group 



Syllabi for 'fEX and METAFONT Courses 

The preceding chart shows the relations between the various courses. VVe 
would again like to repeat that this structure should be evolutionary. We expect 
it will change as technology, user requirements, new applications, etc. evolve and 
change. The Special Topics course is in fact set up to deal with specific problems 
and/or applications related to the programs. 

Some possible topics for the Special Topics courses are: 

- distributions -porting 
-drivers - graphics inclusion and necessary changes 

to a driver 
-sources - book production 
-sharing - using color 
- extensions - specialized font topics 
-WEB - graphic systems and METAFONT 
- e-versions - 'l'Jy'( and non-English languages 
-tables - mixing left-to-right and right-to-left languages 

Course Contents by Levels 

In the following section, the proposed contents ofT_EX courses are outlined. In the 
handouts provided at the meeting in Montreal, courses were listed separately, by 
levels. We present them combined here, both to preserve space, and to indicate 
the increasing difficulty/ complexity presented at each level. Course contents for 
T.EX and METAFONT are included; a similar listing of contents for Li\TEX courses 
has not yet been developed. 

The levels are indicated by B: for Beginning, I: for Intermediate, and A: 
for Advanced. 

1. Proposed Contents of 'lEX Courses 

~ Typesetting 
B: typesetting milieu 
B: design and typesetting dimensions 
B: T_EX and WYSIWYG 
I: what you should unlearn (underlines, etc.) 
I: magnification 
A: -open-

1988 Conference Proceedings, T.EX Users Group 121 



S. Bart Childs et al 

• Design 
B: margins, \leftskip, \rightskip, \narrower, typesize, \parindent 
I: penalties and how they affect design; \looseness, \tolerance 
A: database driven design, interface between 'lEX and other worlds 
A: \pagegoal, \prevgraf 

• Programming 
B: public domain, written in PASCAL 
B: how it runs, ASCII keyboard 
B: public domain vs. proprietary versions of 'lEX 
I: 'lEX is a programming language 
A: WEB and internal structure 

• 'lEX and Other Things 
B: comparisons: Waterloo Script vs. 'lEX vs. Pagemaker vs. 11\TEX 
I: -open-
A: -open-

• Markup· Languages 
B : they exist 
B: what is plain.tex, vanilla. sty, ... 
B: primitives vs. macros 
I: plain. texis info source; AMS-1E;X, 11\TEX: what do they do and why 
A: designing your own 

• Spacing 
B: significant/insignificant spaces 
B: tilde, slash, space 
B: \hskip, \vskip, \baselineskip 
I: \vglue, \kern, \hbox, \vbox, \vspace, \vglue, \hspace, \thinspace 
A: letterspacing, side barring 

• Boxes 
B : only in error messages 
I: moving boxes around: \raise, \lower, \rnoveright, etc. 
I: What \hbox and \ vbox are 
I: \hboxr and \vboxr (from Stephan v. Bechtolsheim) 
A: understanding Stephan's \.boxr macros 

• Glue 
B: dimensions 
B : terminology 
I: stretchability / shrinkability 
I: negative glues 
A: output routines 
A: \ vsplit, \ vadjust, \splittopskip, \splitrnagstep 
A: \unhbox, \unvbox 
A: output routines 

122 1988 Conference Proceedings, 'lEX Users Group 



Syllabi for 'JEX and METRFONT Courses 

~ Output Routines / Affecting Output 
B: no mention: \hoffset, \voffset, \footnote 
I: footnotes with numbers 
A: significant but discretionary 

e Macros 
B: macro as shorthand 
I: macro with parameters, delimiters 
A: \unskip commands 
A: combos of macros: \outer, \xdef, \gdef 
A: all macros, particularly structure and exceptions 

e Penalties 
B : notice that they exist 
B: \hyphen penalty 
I: penalties for formatting: \good break, etc 
A: everything- what they really do 

e Rules 
B: \hrules and \ vrules au natural 
I: rules, \struts 
I : rules for boxes 
A : discretionary 

• I/0 Management and Files 
B: comments, documentation etc. 
I : use of the %-sign to avoid inadvertent spaces 
A: writes index, table of contents 

• Modes 
B : primarily mention math mode 
I: horizontal mode vs. vertical mode: what and how 
I : math modes 
I : restricted modes 
A: \ifvmode, etc. 

• Debugging 
B: simple debugging, putting in artificial ends, etc. 
I: purposeful errors: \showthe, \showbox, \show 
A: tracing and \showbox 
A: visible boxes 
A: \tracingall 

Ill Errors 
B: flesh wounds, fatal errors, misunderstandings 
B: when not to worry about content 
I: when errors can be understood 
A: real genuine obscurities 

1988 Conference Proceedings, TEX Users Group 123 



S. Bart Childs et al 

• Tabs 
B: \settabs, \tabalign, \cr 
I: -open-
A: -open-

• Inserts 
B : simple \ topinsert 
I: \midinsert, \pageinsert, interaction of several 
A: -open-

• Chars 
B : no mention 
I: \def\xx{\char ... } 
A: redefine chars 

• Graphics and 'IEX 
B: -none-
!: space for graphics: \boxit 
A: PiC'IEX; other things available 
A: Manual (the font), UTEX circle and line fonts; rounded boxes 

• PotPourri-Anomalies, etc. 
B: -none-
! : - discretionary -
A: 1EX and SGML 
A: .DVI and PostScript 
A: graphics/public available 

• Aligns 
B: can you copy \halign from the book and use it 
I: can you copy an alignment and modify it: \hidewidth, \omits 
I: \strut, \vrule 
A: \valign and \eqaligns 
A: can you create an alignment; alignments and rules 

• Tokens 
B : no mention 
I : no mention 
A: explain tokens 

• Fonts 
B: what is a font? 
B: what does 'IEX need to know about fonts? 
B: what fonts are available 
I: what are sources of fonts? 
I : scaling fonts 
I: font measure vs. font 'ink' . ttm, . pk, and . pxl files 
I: limitations on proprietary implementations 
A: understand what META FONT is 
A: font measure vs. font 'ink' . tfm, . pk, and . pxl files in more detail 

124 1988 Conference Proceedings, TEX Users Group 



• Font Families 
B : no mention 
I: mention 
A: understand and create 

• Commands 
B: -open
I: -open
A: -open-

• Paragraphs 

Syllabi for 'lEX and METAFONT Courses 

B: \parindent, paragraphs, \parskip, blanklines 
I: positive and negative values for parameters: \narrower, \hangindent, 

strange shapes 
A: \parshape, \prevgraf 

• Lines 
B: \centerline, \leftline, \rightline, \line 
I: line/paragraph interactions and meaning 
A: -open-

• Math 
B: display math as paragraph suspender; in-line math 
I: subscript, superscript (incl. use as footnote numbers) 
I: \eqalign and other mathematics typesetting 
A: broken equations 
A: special math spacing - special math fonts 

• Control Structures 
B: {} grouping simple existing \ifs 
I: \begingroup, \endgroup, \if modifying existing \ifs 
I: create \newcount, \newdimen 
A: understanding new... commands 
A: \bgroup, \egroup, \repeat creation of \ifs 
A: \futurelet, \expandafter, \afterassignment, \no expand 

• Syntax 
B : {} surround or follow 
I : spaces that behave unexpectedly 
A: why \obeylines works like it does; \obeyspaces, \verbatim 

2. Proposed Contents of METAFONT Courses 

• Design size vs. magnification 

• Command line processing 
base files: What are they? Why? How (names, etc)? Which? (em 
vs. plain) 

1988 Conference Proceedings, 'lEX Users Group 125 



S. Bart Childs et al 

o Mode choices and default 
proof vs. production: especially unexpected proof, on screen or on paper 
. gf and . tfm files 
print engines 
white vs. black 
necessary adjustments: blacker, fillin, o_correction, gftoxxx interpreters 

• Mode_defs: how and why 
experiments with blacker, etc., using smode and a font subset of selected 
characters 

• Visual effects 
optical illusions 
vertical/horizontal 
curves 
diagonals 
optical corrections 
letter spacing 

" METAFONT as a design language 

• Experiments on preset examples 
coordinates (x,y,z) 
directions and controls 
cycle (relation to filling) 
connections and tensions 
simple pens (draw your own) 

Iii Review of command line options 
and summary of needed utilities, including integration with 'lEX 

• METAFONT book examples 
equations 

• Macros (controlling interaction) 
examples 

• Pens and paths 

e Calligraphic designs 

• Discretion and resolution 
examples and discussions of limitations 

e Proofing utilities and fonts 
proofing and testing (fonttest. tex) 

• Transformations and loops 
borders 

e Edges and filling 

126 1988 Conference Proceedings, TEX Users Group 



~ Organization of Computer Modern 
parameter files 
driver files 

Syllabi for T:EX and METRFONT Courses 

program files: manipulation of parameters and driver variables 

® Individual character programs 
composites 

® Ligatures and kerning 
. tfm font parameters 

'lEX Questionnaire/Self-Test 

In combination with the course descriptions and outlines provided above, the 
questionnaire/self-test is aimed at potential students of TEX courses, to deter
mine their present level of knowledge, and then to better select an appropriate 
course. It is hoped that this will help avoid some of the frustration when students 
register in a course which is either too easy or too difficult, or which presents 
material either not needed, or not yet understandable, given their current knowl
edge. 

A first draft of the questionnaire has been tested on several classes. It is being 
extensively rewritten to ensure that it can also be taken without the presence of 
the instructor. Once completed, this test will be available to the membership at 
large. It is expected that most students will use the test to ensure correct course 
choices; it can then be used again, early and late in a course, to gauge the degree 
of success achieved. 

Bibliography 
Samuel, Arthur L. First Grade TJiX: A Beginner's T]i;X Manual. Stanford: Stan

ford Dept. of Computer Science. Report No. STAN-CS-83-985. 1983. 

1988 Conference Proceedings, TEX Users Group 127 





TEX Tips for Getting Started 

BERKELEY PARKS 

Department of Mathematics GN-50 
University of Washington 
Seattle, Washington 98195 
parks@math.washington.edu 

ABSTRACT 

An introduction to 'fEX for the novice can be an overwhelming 
experience; a user-friendly approach is discussed. It is based on 
plugging the user's own text into a manageable model. 

This approach, not generally addressed in the standard 'fEX 
sources, provides an overview with tips on how to gain an upper 
hand on the mass of 'fEX information available, a manageable fin
ished product model into which text may be plugged, and a compar
ison of different ways provided by 'fEX to handle seemingly similar 
situations. 

Stress is placed on considering a page as a potential table, with 
detailed discussion on a variety of 'fEX ways to create tables. For 
the mathematically-inclined, there is a similar comparison of align
ment choices provided by math mode. 

Using The 'JEX.book 

Our requirements are best met by plain 'fEX (D. Knuth); other users with dif
ferent needs might choose 11\TEX (L. Lamport), or AMS-'IEX (M.S. Spivak). 
Whichever system you decide upon, reading the manual from Page One is es
sential. As overwhelming as this may seem at first, eventually you WILL have 
to do it. There are an increasing number of other resources becoming available 
that also deserve attention. On-line experience, in combination with whichever 
pointers below offer you some comfort, should make the experience easier. When 
you look up an item referenced in the index, read the neighboring paragraph in
formation. Soon you'll find you've read the complete chapter! Be sure to go 
through the exercises; they contain useful fine points. 

Increasing Your 'IEX Vocabulary 

• One good way to learn 'fEX is to compare iine-by-line the printouts of a 
formatted dvi file and its 'fEX coding. 

1988 Conference Proceedings, 'IE;X Users Group 129 



Berkeley Parks 

• Start a samples notebook. Print a copy of the TEX file as well as the TEX 
output file. Label the sample with the key command it demonstrates and file 
in a section that is meaningful. For example, the Math Department loose
leaf binder is subdivided into sections for manuscript formats, niiscellaneous 
formats, hboxes, tables, fancy math. You may have to subdivide sections as 
you accumulate samples. 

• Work with your JEXbook open on your desk. At first you'll need it as a 
crutch; heavy 'l£X. users have been known to wear out a book a year! 

• Attach paper clips to mark the most frequently used pages in your JEXbook 
for quick access (page numbers refer tq sixth printing , 1986): 

pg. 52 commonly used accents 
pg. 147 slightly larger delimiters 
pg. 162 non-italic letters in formulas 
pp. 434-438 Greek letters, operators, relations, signs 

• Refer regularly to the JEXbook index to get comfortable with the variety of 
commands available. As a beginner you may want to photocopy the index 
(pp. 457-481, approx. 25 pages) and speed read it each week until you feel 
familiar with the items included. 

• Make lists on 3x5 cards of the commands you miss most often or use regularly 
but rarely. One category would be the dimension commands-sometimes 
it's confusing to remember the exact structure required for parameters like 
\pageno, \ vglue, etc. 

• Keep a ready reference list of macros, definitions, and abbreviations that 
you have created to meet the needs of your specific subject area. Of interest 
to mathematics-related fields is a MathSci list of symbols and commands 
available from Mathematical Reviews for those instances when you only know 
the symbol by sight. 

Typing Practices for Which to be Thankful 

• Preventing errors is something 'l£X.perts do. If your word processor/editor 
has an on-line spelling checker (as PC-Write 2.7 does), add the 'l£X. control 
sequences (as well as your own \defs). This will safeguard against another 
common source of errors-typos! 

• The most frequent error messages (and sometimes the most devilish to track 
down) are the infamous missing { (or } ) and missing $. When braces 
or dollar signs are required, it's safest to input both opening and closing 
signs first and then backspace to enter the text that should appear between 
them (e.g., in math mode for a fraction, type \over first and then fill in the 
character string). 

130 1988 Conference Proceedings, 'l£X. Users Group 



TEX Tips for Getting Started 

• Visual clarity in your TEX code is extremely important. Even though TEX 
reads the file as one extremely long line when it formats, this is difficult for 
the human mind to follow. You can achieve clarity by staggering sections 
that are bracketed and by beginning display math mode which is surrounded 
by$$ on the next line. You'll be thankful both when you're following up error 
messages and when you're typing complex tables or math display which nest 
groups within groups. This indenting creates no problems for TEX because 
it reads more than one space as one space. 

The complicated formula below is simplified when the source code is stag
gered. This makes finding portions of the formula that require changes or 
corrections much easier. Formulas are built moving from left to right, top to 
bottom. 

$$ 
\int~{{x~2+{y~2}\over 2} 

\over 
{3y_{10}} 

} 

{\sqrt {{a+b}\over 2} 
} 

{{f(x)~{x~2+3x+10}} 

\over 
{\prod~{100}_{i=1} 

{{x~2_i y_i~x} 

\over 
10 

} 
} 

} 

dx 
$$ 

• TEX code permits you to save keystrokes in some cases. In math mode for 
example, \to is interchangeable with \rightarrow. 

1988 Conference Proceedings, TEX Users Group 131 



Berkeley Parks 

Creating Macros for Fewe:r Keystrokes 

One specific category of macros that you create yourself is referred to as defini
tions (\defs ). Those definitions which apply to many files can be stored in a 
separate macro file; those that pertain to a specific file are typically put at the 
top of the current working file. The advantage of including them within the text 
file is apparent-it means you don't have to keep track of auxiliary files. 

Definitions appear within the text in their shortened backslash form and are 
expanded during the formatting process. They replace complicated strings of 
characters that are tiresome to type repeatedly or those in which you frequently 
make typos.1 

Below is the basic format to create your own macros: 

\def\insert your-command-name here{{insert the-actual-def. here}} 

Some macros require only one set of opening and closing braces around the 
definition, but if you get an error message, try adding the second set. 

o Start a file called mymacs for definitions you use repeatedly in many files. 
Type: 

\input mymacs 

as the first line in your 'lEX working file and the program will pull out which 
\defs are needed during the formatting process. When you need to include 
a \de:f stored in your mym.acs file as part of your text, type \your-command
name. 

As an example, the name 'Lipschitz' may often recur. Create a macro at the 
top of the file that looks like the following: 

\def\Lip{Lipschitz} 

It will be typed as \Lip in the body of the file, but each occurrence will 
print out from the dvi file as 'Lipr;chitz' on the hardcopy. 

Error Messages 

Error messages that appear when you T.EX your file can seem mystifying. At first 
you will spend as much time acting on error messages as you do typing the file in 
the first place. In general, about half the error messages are specific-for exam
ple, one might tell you that on line 41 you misspelled a command (Undefined 
control sequence.) or are missing { or } or $; the other half generally may 

1 See Appendix I for a short discussion on abbreviations and defining or map
ping keys-two more ways to use fewer keystrokes. 

132 1988 Conference Proceedings, 'lEX Users Group 



1£X Tips for Getting Started 

be split between 'lEX code with which you are as yet unfamiliar, or weird mes
sages that may be: a) too sophisticated for your level of expertise at this time; 
b) really something totally different from the message (as in \ eqno cannot be 
used in math mode which usually means you missed a brace); or c) not real at 
all because 'lEX has finally given up the fight to compensate for something you 
did earlier in the file that it perceives as unreasonable. Later you will find tips 
within the "garble", but at first, it is less stressful to approach error messages 
with the attitude that the first and last lines are the important ones. Another 
thing to keep in mind is that most of your errors as a fledgling 'fEXer will be 
typos in the command string or a missing $ or {}. 

• As you respond to error messages in the 'fEX file, you sometimes alter the 
line count-i.e., correcting line 41 may mean adding or deleting text so that 
the next referenced error, say on line 87, then will actually be on line 88 
or 86! Therefore, it is helpful in some cases (when your errors are from the 
"easy" category) to correct in reverse order, from the end of the file to the 
beginning of the file, to preserve accurate line number identity. 

Now for the Real Thing 

1. Basic Manuscript Formats 

Including heading, footnotes, abstract, body of text with new sections, 
references ... (see Appendix II). 

2. Perceiving Potential Tables on Every Page 

It's time to re-educate your eye so you can find tables where you may not have 
seen them before becoming a 1E;X devotee! The most common example of this 
phenomenon is references (see Appendix II). The reference section of your paper 
is really a series of columns with the citation number in the far left column and 
the actual cite in the righthand column (which, incidentally, can wordwrap). 
Another example of a table-like layout is a curriculum vitae. The best table 
style to use in both these cases is the \halign mentioned below. 

Tables are built as horizontal lines from left to right, and then stacking the 
horizontal lines until all the table data has been typed. The basic elements 
needed to create a table are the particular "table" command, left and right curly 
braces to begin and end the table, the pound (#) sign which is replaced by the 
actual text, the ampersand (t) sign to indicate column tabs of a specific column, 
and \ cr to indicate the end of each horizontal line in the table. 

Of the four styles of tables listed below, \halign is the most versatile. The 
\eqalign and \matrix or \pmatrix commands are most frequently used for 
math displays but are useful to consider for the occasional text table. 

1988 Conference Proceedings, 'lEX Users Group 133 



Berkeley Parks 

• \set tabs centers the "table" as a whole across page into equal width columns 
or left justifies table as a whole with spacing you specify between columns
limited potential. Note: In the latter case, width of columns is predetermined 
by choosing the widest entry from each column to represent that column in 
the preamble line. 

• \halign left justifies the table as a whole with spacing you specify between 
columns-unlimited potential. Note: 'lEX scans all entries for a given column 
before determining column width. 

The preamble (which you should include in your mymacs file) is as follows:2 

\halign to \hsize{\hfil#\quadt\vtop 
{\parind~nt=Opt\hsize=15truecm 

\hangindent.Oem\strut#\strut 
}\cr 

insert your text, indicating for each table line 

beginning of new column with t and end-of-table line with \cr 

} 

Example for 2-column table: 

Column One Column 2: This macro creates a two-column table in which the 
last column will be 10 truecm wide and wordwrapped, aligning 
the beginning characters in the righthand column. 

Add t# to the preamble for each additional column you wish to create before 
the \ vtop column. If you include more columns, you will have to decrease the 
width of the last column from 10truecm to reflect this change. 

\halign to \hsize{\hfil#\quadt\hfil#\quad 
t\vtop{\parindent=Opt\hsize=8truecm 

\hangindent.Oem\strut#\strut 
}\cr 

insert your text, indicating for each table line 

beginning of each new column with t and end-of-table line with \cr 

} 

2 The sample preamble shown above is for a standard 6.5truein page width; 
15truecm has been changed to 10truecm in the example below to accommodate 
the format of this page. 

134 1988 Conference Proceedings, 'lEX Users Group 



'lEX Tips for Getting Started 

Example for 3-column table: 

Column One Column 2 Column 3: The macro has been modified to create a 
three-column table in which the last column will be 
8truecm wide and wordwrapped, aligning the begin
ning characters of the last righthand column. 

The last column functions like the other columns if there is no text to word wrap. 

• \eqalign centers the table as a whole with alignment of character in column 
following ampersand. 

• \matrix or \pmatrix centers the table as a whole with 'lEX-determined equal 
spacing between columns. Note: \pmatrix creates left and right parentheses 
around the table. 

To center a table vertically on the page, use. the following command: 

\vbox to vsize{\vfil\vbox\vfil} 

* * * 

The examples below demonstrate what different table formats have in com
mon and hbw they differ from each other. Little or no spacing manipulation was 
used to illustrate the basic style of each. You need to adjust column spacing and 
justification using commands like \quad and \hfil. 

• Tables Using \settabs Command3 

To divide page equally into columns which are left justified, use the follow
ing format: 

\settabs # \columns, where # is replaced by number of columns 

starting every line with\+ and ending each line with \cr. For example, 

1 
Richard 
Man 

2 
Jane 
Woman 

3 
Spot 
Dog 

'lEX source code for \settab using number of columns: 

\settabs 3 \columns 
\+ 1 t 2 
\+ Richard t Jane 
\+ Man t Woman 

t 3 
t Spot 
It Dog 

\cr 
\cr 
\cr 

3 See The T]jjX.book, p. 231 [6th printing, March 1986]. 

1988 Conference Proceedings, 'lEX Users Group 135 



Berkeley Parks 

To center a \settabs table horizontally on the page-add an extra column on 
the left and right sides, leaving them empty when entering data. 

For columns with varied maximum width, create a sample line (a preamble) 
with the longest item from each column to determine the appropriate width. 
The print will overlap on neighbouring columns if you do not choose the longest 
string. Because this line is a measuring device, it will not be printed out as part 
of your text. 

1 2 3 
Richard Jane Spot 
Man Woman Dog 

'fEX source code for \settabs creating sample line: 

\settabs \+ Richard t Woman t Spot \cr 
\+ 1 t 2 t 3 \cr 
\+ Richard t Jane t Spot \cr 
\+ Man t Woman t Dog \cr 

• Tables Using \halign Command: Note wraparound option for last column. 

1 2 3 
Richard Jane Spot 
Man Woman Dog 

'fEX source code for \halign with wordwrap: 

\halign to\hsize{#t#t\vtop{\parindent=Opt \hsize=16truecm 
\hangindent.Oem\strut#\strut}\cr 

1 t 2 t 3 \cr 
Richard t Jane t Spot \cr 
Man t Woman t Dog \cr 

} 
} 

• Tables Using \eqalign Command: Use \hboxes or {\rm} for roman letters. 

id no.: 1, 2,3 

name : Richard, Jane, Spot 

type : Man, Woman, Dog 

136 1988 Conference Proceedings, T:EX Users Group 



'fEX Tips for Getting Started 

'fEX source code for \eqalign: 

$$\eqalign{\hbox{id no.}:\quad t 1, 2, 3 \cr 

} 

$$ 

\hbox{name}:\quad t \hbox{Richard, Jane, Spot}\cr 
\hbox{type}:\quad t \hbox{Man, Woman, Dog} \cr 

• Tables Using \matrix/\pmatrix Commands: Use \hbox or {\rm} for ro
man letters. 

1 2 3 
Richard Jane Spot 

Man Woman Dog 

'fEX source code for \matrix: 

$$\matrix{1t2t3\cr 
\hbox{Richard}t\hbox{Jane}t\hbox{Spot}\cr 
\hbox{Man}t\hbox{Woman}t\hbox{Dog} \cr 

} 

$$ 

( Ric~ard J :ne s:ot) 
Man Woman Dog 

'fEX source code for \pmatrix: 

$$\pmatrix{1t2t3\cr 
\hbox{Richard}t\hbox{Jane}t\hbox{Spot}\cr 
\hbox{Man}t\hbox{Woman}t\hbox{Dog} \cr 

} 

$$ 

3. Alignment in Math Display Mode 

There are two standard options for aligning a column in math display mode: 

1) \eqalign (which uses \eqno or \leqno to center the equation number along 
the justified margin) 

2) \eqalignno or \leqalignno (which uses t to indicate 

that the equation number will be at the justified margin on that line). 

1988 Conference Proceedings, 'lEX Users Group 137 



Berkeley Parks 

In both cases, only one column of characters can be aligned (therefore only two 
columns are possible); an a is used to indicate which character will start the 
aligned column. 

The differences between them include: 

\eqalignno \eqalign 
a. more than one line with 

eq. no. at margin 
a. only one eq. no. 

centered on margin 
b. t eq. no. \cr at end of line b. \(l)eqno at endof\eqalign 
c. cannot break onto next page c. can break onto next page 

The standard pattern for two columns with alignment is: 

$$\eqalign{characters t characters \cr 
characters t characters \cr 
characters t characters \cr 

} 

$$ 

Adding \eqno or \leqno after the closing right brace of the \eqalign centers 
the equation number along the right- or left-justified margin, respectively. 

$$\eqalign{characters t characters \cr 
characters a characters \cr 
characters t characters \cr 

\eqno(#) 
$$ 

} 

When the equation number must follow a specific line within the equation, 
\ eqalignno or \leqalignno is used for placement at the right or left margins, 
respectively. This command is used when several lines are numbered individually 
but have a column in common aligned. 

$$\eqalignno{characters t characters t (#) \cr 
characters t characters t (#) \cr 
characters t characters t (#) \cr 

} 

$$ 

• Example 3.31: Sometimes what looks like standard alignment is in fact 
aligned at more than one column. Within the same set of paired $$s you can 
use more than one \eqalign limited only by the maximum \hsize dimension 
of your page. 

138 1988 Conference Proceedings, 'lEX Users Group 



'fEX Tips for Getting Started 

v; = y;/((1 + y;)(l + t[_ 1)), 0::::; i:::; q, 

i 

1 +t; = L(l +Yj), 0 2:: i 2:: q, 
i=O 

; 

U; = I>j(= t 2j/l +t[)), 0 s; i::; q, 
i=O 

R~~ (1 - Ui-1> v;) = exp( -Ll; ( 1 - u;_ 1) /2)G; ( !:..; v;/2), 1 ::; i ~ q , 

G;(z) = 1F1((p; + n;)/2,p;/2;z), 1:::; i ~ q, 

TEX source code for Example 3.31: 

\def\astrut{\vrule height 9.0truept depth 5.0truept 
width Otruept}% 

\def\bstrut{\vrule height 19.0truept depth 12.5truept 
width Otruept}% 

\def\cstrut{\vrule height 17.0truept depth 13.5truept 
width Otruept}% 

\def\dstrut{\vrule height 11.0truept depth 4.0truept 
width Otruept}% 

\def\estrut{\vrule height 10.0truept depth 3.0truept 
width Otruept}% 

$$\eqalign{v_i t =y_i/ ((1+y_i)(1+t-2_{i-1})), \cr 

$$ 

1+t-2_i & =\sum -i_{j=0}(1+y_j), \cr 
u_i t =\sum -i_{j=O}v_j(=t-2j/1+t-2_i)), \cr 
R_{\Delta _i}-{(i)}(1-u_{i-1},v_i) 

t =\exp (-\Delta _i (1-u_{i-1} ) /2 ) 
G_i(\Delta _iv_i/2), \cr 

G_i(z) t ={}_1F_1((p_i+n_i)/2,p_i/2;z), \cr 
} 

\eqalign{\quad t 0\le i \le q\,,\astrut 
t 0\ge i\ge q\,,\bstrut 
t 0\le i\le q\,,\cstrut 
t 1\le i\le q\,,\dstrut 
t 1\le i\le q\,,\estrut 

} 

\cr 
\cr 
\cr 
\cr 
\cr 

* Example 3.32: The example below appears to have two columns with in
dividually numbered lines. This is NOT a \leqalignno. In fact, there are 
three columns aligned (first parenthesis, equal sign, and ~ or 2:: signs), so this 

1988 Conference Proceedings, TJ:;;X Users Group 139 



Berkeley Parks 

is actually an \halign using math \displaystyle within the four columns 
of the table. Notice the spacing differences between lines in this and the 
example above. 

(3.32a) 

i 

(3.32b) l+tr = z:(l+yj), 
j=O 

i 

(3.32c) u; =L:vj(=t2 jfl+t;)), 
j=O 

(3.32d) R~~(l- u;_t, v;) = exp( -<l;(l- u;_l)j2)G;(Ll;v;/2), 1 ::::; i::::; q, 

(3.32e) G;(z) = 1F1((p; + n;)/2,p;/2; z), 

'fEX source code for Example 3.32: 

\halign to \hsize{\quad#\hfil\quadt\hfil # 

&#\hfilt\quad #\hfil \cr 
(3.32a) i $\displaystyle{v_i}$ & $=\displaystyle{y_i/ 

((1+y_i)(1+t-2_{i-1})),}$ 
t $0\le i \le q\,,$ \cr 

\noalign{\bigskip} 
(3.32b) t $\displaystyle{i+t~2_i}$ t $~\displaystyle{\sum 

Ai_{j=O}(i+y_j),}$ 
& $0\ge i\ge q\,,$ \cr 

\noalign{\bigskip} 
(3.32c) i $\displaystyle{u_i}$ 

i $=\displaystyle{\sum -i_{j=O}v_j 
(=t-2j/1+t-2_i)),}$ 

& $0\le i\le q\,,$ \cr 
\noalign{\bigskip} 
(3.32d) t $\displaystyle{R_{\Delta _i}-{(i)} 

(1-u_{i-i},v_i)}$ 
l $=\displaystyle{\exp 

(-\Delta _i(i-u_{i-1})/2) 
G_i(\Delta _iv_i/2),}$ 

i $1\le i\le q\,,$ \cr 
\noalign{\bigskip} 
(3.32e) & $\displaystyle{G_i(z)}$ t $=\displaystyle{ 

{}_1F_i((p_i+n_i)/2,p_i/2;z),}$ 
t $1\le i\le q\,,$ \cr 

} 

140 1988 Conference Proceedings, 'IE;X Users Group 



'IEX Tips for Getting Started 

Examples 3.33-3.35 show some other useful forms adapted to solve common 
alignment problems: 

• Example 3.33: In math display mode a formula may require an end-of
proof symbol justified on the right margin. One way to accomplish this is to 
use \displaystyle within the \line command. 

(3.33) gn(o) x N6- N 

\line{(3.33)\htil$\displaystyle{% 

\htil$\endprf$ 
} 

gn(\delta)\time 1_\delta\to I 
}$ 

I 

• Example 3.34: Math display mode creates a fixed space above and below 
the pairs of double dollar signs and between lines within them. The \line 
and \displaystyle commands provide one way to manipulate these spaces 
while preserving the style. 

(3.34) gn(6) x N6--> N 

\leftline{(3.34)\hfil$\displaystyle{% 

} 

gn(\delta)\times I_ \to H 
}$ 

• Example 3.35: There are several ways to move a formula to the left margin; 
this example uses the \item and \displaystyle commands. 

(3.35) gn(o) x N6- N 

\item{(3.35)} $\displaystyle{gn(\delta)\times H_\delta \to H}$ 

• Example 3.36: Sometimes misused patterns provide useful models. In 
the example below, the ampersands were inadvertently omitted which right 
justified the equations, aligning the last character of each line. 

gn(o) x N6- N 
t/J: 

(X,n)--> o-1 exp(X)(6n) exp(-X) 

1988 Conference Proceedings, 'lEX Users Group 141 



Berkeley Parks 

$$ 
\phi: 

\eqalign{gn(\delta)\times N_\delta \to N \cr 
(X,n)\to \deltaA{-1} {\rm exp}(X) 
(\delta n) {\rm exp} (-X) \cr 

} 

$$ 

Bibliography 

Knuth, D. The T};Xbook. Reading, Mass.: Addison-Wesley, 1986. 
Lamport, Leslie. UTEX. A Document Preparation System. Reading, Mass.: 

Addison-Wesley, 1986. 
Spivak, Michael. The Joy of Tji;X. Providence, RI: American Mathematical 

Society. 

Additional Helpful Publications 

Math. Sci. Review. Appendix D: 'lEX Codes and Symbols. 
Plonsey, Daniel J. A Summary of Common TEX Control Sequences. Dept. of 

Astronomy, University of California/Berkeley. 
Samuel, Arthur L. First Grade Tp;X: A Beginner's TEX Manual. Dept. of Com

puter Science, Stanford University. Report No. STAN-CS-83-985. 

142 1988 Conference Proceedings, 1EX Users Group 



'lEX Tips for Getting Started 

APPENDIX I 
Editors: Defining Keys and Creating Abbreviations 

There are several ways to shorten complicated character strings. Macros (\defs), 
which function as a part of 'lEX were discussed earlier. Some editors also provide 
you with ways to use fewer keystrokes, defining keys and creating abbreviations. 
The advantage is immediate expansion within the text as if you had typed the 
full string. 

•. For the DOS environment, there is key definition software available for pro
gramming combinations of keys to spell out frequently used character strings. 
Within PC-WRITE (Ver. 2.7) for example, the ed.def file allows you tore
define keys with impressively long strings. 

For example, many of our displays include fractions. The 'lEX command to 
create a fraction in math mode requires many curly braces (the most frequent 
cause of grief when debugging TEX errors). The editor allows us to define 
Cntl-Alt-F as {{}\over{}} so all we have to do is fill in the blanks. The 
problem of unmatched curly braces is virtually eliminated. 

• In the UNIX environment, vi editor abbreviations can be stored in a file 
separate from your current working file or entered on the colon command 
line which makes them accessible for that editing session only. On the UNIX 
machine open a file (for example, setkey) and add a line (ab saltf \over}. 
Whenever you type {saltf} followed by a space in your 'lEX file, the abbre
viation will expand on the screen before your eyes! You can create sophisti
cated definitions with the cursor returning to the first } leaving you in insert 
mode. To call up your abbreviations file for the current editing session, at 
the: prompt in vi, type (:source abbreviation-filename}. Shown below 
is part of our setkey file as an example: 

ab saltf ~v {{ } \over { }} ~v~[2F{a 
ab salti {\sl }~v~[hi 
ab sm1 ~vY.date: ~v~~/,author(s): ~v~vY.title:Y. 

~v~v~v \input mymacs.ver068a~v 
ab sm2 ~H~VY.\input authormacs.ver0688~v~v 

\magnification=\magstepl~V\baselineskip=Y. 
18truept~v~v[9-A 

ab saltm sm1 sm2 

• If you are in a network environment, combining key definitions and abbrevi
ation files can prove fruitful. It is possible to preserve continuity for specific 
key combinations, having them spill out the same source code regardless of 
whether a file is being edited in a DOS environment or via Kermit on a UNIX 
machine. 

Consult your local guru! 

1988 Conference Proceedings, 'lEX Users Group 143 



Berkeley Parks 

APPENDIX II 

Model Manuscript 

"Go Ahead, Plug in Your Own Text" 

John Doe* t 

Department of Mathematics 

University of Washington 

Seattle, Washington 

Abstract. In my paper (1], the proof of the main theorem is 

incorrect, as F. K. Chen pointed out to me, but a minor change 

indicated below renders it correct. Actually, the entire proof can 

be recast in a simpler, more transparent form, which allows one 

at once to deduce the stronger form of the theorem available in 

the XYZ case, due to Jane Doe [3]. After correcting the original 

proof, I will outline the streamlined proof and its consequences. 

* Partially supported by NSF grant DMS-880000. 
t Partially supported by NSF grant DMS-889999 and a TUG Research Fellow-

ship. 

144 1988 Conference Proceedings, TEX Users Group 



TEX Tips for Getting Started 

§0. Introduction. 

In recent years there has been a major interest in the theorem of Jane Doe: 

Theorem. Let fr(x) = r:c(1- :c), 0 ~ r ~ 4 be a one-parameter family of 

mapping of the unit interval. There is a positive measure set of those r that fr 

has an absolutely continuous invariant measure (abbreviation: a.c.i.m.). 

The author of this paper uses his earlier ideas from [1] to give another interpre

tation to Jane Doe's recent findings. 

References Using \item Command 

[1.] John Doe, His Paper, Quart. J. Math. Oxford (2) 36 (1987), 435-450. 

[2.] John Doe and John Rainwater, Some Books Collaborated Upon Together. 

Providence, RI: TUG Publishing, 1988. 

[3.] Jane Doe, Reaching the Point of Maturational Readiness and Typing 'fEX 

Files, Bull. London Math. Soc. 17 (1987), 549-553. 

References Using \halign Command with Wordwrap in Righthand 

Column 

[D1] John Doe, His Paper, Quart. J. Math. Oxford (2) 36 (1987), 435-

450. 

[JR] John Doe and John Rainwater, Some Books Collaborated Upon 

Together. Providence, RI: TUG Publishing, 1988. 

[D2] Jane Doe, Reaching the Point of Maturational Readiness and 

Learning to 'lEX Files, Bull. London Math. Soc. 17 (1987), 549-

553. 

1988 Conference Proceedings, 'lEX Users Group 145 



Berkeley Parks 

\magnification=\magstep1 

\baselineskip=18truept 

\hsize=4. 7 5true.in 

\Ysize=8.25truein 

\TglueO. 5truept 

\pageno"'O 

\def\natnuma{{ {\rm 1} \kern -.13em {\rm I} }} 

\centerline{\bf Kodel Kanuscript} 

\centerline{\bf ''Go Ahead, Plug in Your Ovn Text''} 

\big skip 

\centerline{John Doe\footnote{•}{Partially 

supported by JSF grant DKS 8800000.}\ 

\footnote{$\dagger$}{Partially supported 

by ISF grant DKS-889999 and a TUG lesearch 

Fellovship.}} 

\medskip 

\centerline{\sl Department of Kathematics} 

\centerline{\sl UniYersity of Washington} 

\centerline{\sl Seattle, Washington} 

\big skip 

\mid insert 

\narrover\narrover 

\noindent{\bf Abstract.}\\ In my paper [1], the proof 

of the main theorem is incorrect, as r.-x.-chen pointed 

out to me, but a minor change indicated belov renders 

it correct. Actually, the entire proof can be recast 

in a.simpler, more transparent form, vhich allovs one 

at once to deduce the stronger form of the theorem 

aYailable in the IYZ case, due to Jane Doe [3]. After 

correcting the original proof, I vill outline the 

streamlined proof and its consequences. 

\endinsert 

\dil\eject 

\beginsection \SO. Introduction. 

In recent years there has been a major interest in the 

theorem of Jane Doe: 

\bigskip 

\proclaim Theorem. Let $f_r (x)=rx(1-x),\ 0\leq r\leq 

4$ be a one-parameter family of mapping of the unit 

interYal. There is a positiYe measure set of those 

$r$ that $f_r$ has an absolutely continuous inYariant 

measure (abbreYiation: a.c.i.m.). 

146 1988 Conference Proceedings, 'lEX Users Group 



'I£X Tips for Getting Started 

\bigskip 

\noindent The author o£ this paper uses his earlier 

ideas £rom [1] to give another interpretation to Jane 
Doe's recent £indings. 

\big skip 
\noindent {\b£ le£erences Using $\backslash$item 

Command} 

\medskip 
\item{[1.]} John Doe, His Paper, {\sl Quart."J,"!ath. 

Ox£ord} (2) {\bf 36} (1987), 435--450. 

\item{[2.]} . John Doe and John lainvater, {\sl Some 

Books Collaborated Upon Together}. Providence, RI: 

TUG Publishing, 1988. 

\item{[3.]} Jane Doe, leaching the Point o£ !aturational 

Readiness and Learning to \Tel\ Files, {\sl Bull."London 

!ath."Soc,"\bf 17} (1987), 

549--553. 

\bigskip 

\noindent{leferences Using \halign Command vith Vordvrap 
in lighthand Column} 

\medskip 

\halign to\hsize{\hfill\quad 

t\vtop{\parindent•Opt\hsize•10truecm 

\hangindent.Oem\strutl\strut}\cr 

[D1]Uohn Doe, His Paper, {\sl Quart. "J. "!ath .. "Oxford} 

(2) {\bf 36} (1987), 435--460.\cr 

\noalign{\smallskip} 

[Jl]tJohn Doe and John lainvater, {\sl Some Books 

Collaborated Upon Together}. Providence, RI: TUG 

Publishing, 1988.\cr 

\noalign{\smallskip} 

[D2]tJane Doe, Reaching the Point o£ !aturational 

Readiness and Typing \Tel\ Files, {\sl Bull."London Hath."% 

Soc.} {\bf 17} (1987), 549--553.\cr 
} 

\bye 

1988 Conference Proceedings, 'IE;X Users Group 147 





The Art of Teaching 'lEX for Production 

ALAN WITTBECKER 

'lEX Users Group 
P.O. Box 9506 
Providence, RI 02940 
aew@math.ams.com 

ABSTRACT 

Few people who need to use 'lEX for the purpose of typesetting 
aesthetically pleasing documents are interested in the more myste
rious aspects of the program. Fortunately, 'lEX can be presented 
as a powerful formatter for typesetting documents-that is, also as 
a special purpose programming language. 

A production approach in teaching emphasizes those automated 
features of 'lEX that are its strength, such as interword and inter
line spacing, hyphenation, alignments, and mathematical formulas. 
This approach permits immediate use of 'lEX for production with
out the confusion of unnecessary technicalities. 

Information is presented in a manageable form through a ladder 
of complexity from primitive instructions to standard markups to 
custom macro commands. After an introduction to basic instruc
tions for paragraphs, type fonts, and paging, users are introduced 
to a short model of a technical paper, complete with more complex 
instructions for headings, tables, glue, boxes, and simple macro 
commands. The model is simple enough to serve as a template, 
permitting text to be substituted for model text and the document 
to be printed. 

The title of this paper has several interesting etymological coincidences. Art, 
from the Latin ars, parallel to the Greek n:xvo, means the 'application of a 
skill'. 'lEX by design has the same root, referring to the art of typesetting. 
(The word technology, in fact, refers to an industrial art or skill.) Teach means 
'to guide', from the Old English; the process of teaching is education, from the 
Latin educare ('to lead from'). Production, from the Latin producare ('to lead 
forward'), 1 is the goal of using 'IE;X, e.g., (from the Latin exempli gratia meaning 
'for example'), for typesetting text (the word text, by the way, is from the Latin 
texere meaning 'to weave'-the Greeks used the metaphor of weaving to describe 
a meaningful dialogue, which we should start, now). 

1 Thus, they have different perspectives. 

1988 Conference Proceedings, 1E;X Users Group 149 



Alan Wittbecker 

'lEX is not a sudden discontinuity in the history of typography; it is the most 
recent development in a long tradition. 'lEX is one of the most sophisticated 
ways of moving characters around on a page, but it owes much to the system 
developed by Gutenberg (circa 1440-1450). And, moveable type was invented 
at least three times before Gutenberg: at the Palace of Phaistos in Crete before 
1500 B.C. (clay); by Pi Sheng in China around A.D. 1034 (clay); and in Korea 
by 1397 (bronze). Of course, Gutenberg publicized his invention very effectively. 

Many conventions that 'lEX uses also have honorable beginnings. For exam
ple, the Egyptians were using two columns by 1500 B.C., Irish monks were using 
baselines (and other temporary guidelines for the conformity of letter heights) 
by A.D. 350, minuscule letters (later referred to as 'lower-case' by typesetters 
who kept them in drawers below the capitals or majuscules) were given official 
status by Charlemagne in his decree of A.D. 796, le Juene established the point 
system in 1737 for measuring metal type-'lEX uses points for default measures, 
as well as much of the terminology of metal typography ( cf. folio, leading, quad). 

The type designed for 'lEX by Donald Knuth, Computer Modern, was in
spired by Monotype Modern No. SA. It is a vertically regular face with good 
contrast between horizontals and stressed upright strokes; it is considered lighter 
and more open than Times. Times New Roman itself is an elegant style designed 
in 1931. The narrow shape of its letters and tight letter-spacing work well in the 
narrow columns of newspapers. Styles of type are grouped by periods. Computer 
Modern, like Times, is a Modern style of type, characterized by the vertical axis 
of characters and differences in stress (the thickness of strokes). Other Modern 
styles are Bodoni and Didot (the first truly Moder11 style, designed in 1784). 

Old Style types were influenced by the visual properties of writing with pens, 
which were held by hand at an angle (a cant), which gave letters a diagonal axis; 
the fiat edge of the pen made thick and thin strokes, particularly on curves; letters 
also had projecting strokes, called serifs. Caslon, Baskerville, Century Old Style, 
and Garamond are Old Style types. (Young typesetters used to be told to go with 
Caslon when in doubt about an appropriate style.) After Transitional styles and 
Modern, several new styles were developed. In 1815, Vincent Figgins designed 
a slab-serif style called Egyptian; there are numerous Egyptian styles today. In 
1816, William Caslon IV lopped off the serifs on a font (Figgins named it sans 
serif). Sans serif types, like Optima, Futura, and Helvetica, are increasingly 
popular today. Lucida, a recent style designed for electronic typesetting, has 
serif and sans serif faces. 

'lEX in the Publication Cycle 

As tools become more sophisticated, authors are expected to be typists, design
ers, typesetters, then publishers. But, this does not have to be so. The tools 
allow formatting and proofing, but JEX is descriptive (although not completely 
so, it can be made so by macros and styles) and its rules of design are either 
default values or determined by macro packages. 'lEX as a tool has many ad van-

150 1988 Conference Proceedings, 'lEX Users Group 



The Art of Teaching 'lEX for Production 

tages: The author, secretary, editor, typesetter, and publisher all speak the same 
language (if it is 'lEX). The author does not have to understand the mechanics 
(as, for instance, she might with image-setting programs). The style is the same 
for documents, but can be changed at the command level (or macro level). It 
allows for precision, as well as expansion. 

General Production Needs 

What are the needs in a publishing environment? Publishers need to have the 
program presented as a typesetting program. This entails using typographic 
elements in the presentation: publisher's terms, such as quad left and orphans, 
are the language of production. Publishing is a descriptive language and not 
a programming language with procedural mysteries. Fortunately, 'lEX already 
uses some of that terminology. 1E;X needs to be presented as a higher level 
description language for typographic composition. Typographers tend to be 
insular, like programmers, and have a traditional view of typesetting. Hardware 
and software are less than half the game in a production environment. 

'lEX is a typesetting system intended for documents laden with mathematics, 
but it is also a full-function, general purpose composition program especially 
good for long projects in standard formats. 

'lEX is a complex program. Bad thinking and bad planning are magnified 
by it (and by computing in general). Although production staff could learn 
TEX through The TF;Xbook, that method is not fast or efficient. Publishers 
need training with '!EX, and the training should be fast and directly applicable. 
Training is a large, and unavoidable, investment. TEX training must be 

1. Relevant 

2. Simple 

3. Flexible 

4. Efficient 

5. Consistent 

6. High quality 

TEX Course for Production 

This approach considers the people using TEX in their particular production 
context (goals, as well as the other systems in place) and is characterized by 
a top-down perspective, by function, and not so much by the features of 'lEX· 
It starts with what users need to produce pages. Thus, it also addresses by 
omission what to leave for last: How TEX really works, what else can be done 
with TEX. 

1988 Conference Proceedings, 'lEX Users Group 151 



Alan Wittbecker 

1. Comparison with a Worst Course 

What is missing from some 'lEX courses? The intent of the course. An overview. 
A definition of terms. A logical progression through degrees of difficulty. Real 
applications. Exercises and working sessions. Explanations. Follow-up. Prob
ably no one course has ever neglected all these things, but some courses have 
been inadequate. 

2. Provisions of a Better Course 

A better course addresses the needs of the production environment. 

1. Relevance: What is needed? How suitable is it? How suitable is TEX? What 
commands are necessary to produce the pages? How suitable to the needs of 
the users are the commands? How often are the pages produced? How many 
people are there in the cycle of production? How many of them know 'JEX? 

2. Simplicity: How easy is 'lEX to understand? How easy is it to use? How easy 
is it for users to use the commands? Can they start using them immediately? 
Can they understand them? 

3. Flexibility: How easy is it to make changes? How easy is it to alter the 
format? Can the users make changes? Can they use their instruction as a 
basis to learn more? 

4. Efficiency: Can you work quickly? Can text be entered quickly? Can text 
be changed with minimal effort? (Keystrokes versus descriptive markup). 

5. Consistency: Is it the same? Are macros compatible? Are macro packages 
compatible? 

6. Quality: Can standards be maintained? Are style guides available? Is it 
portable to other systems? 

3. Execution of a Course 

1EX courses, now, are divided according to logical levels. The Beginning course 
is production oriented. T:EX is placed in the typesetting environment, historically 
and functionally. 'lEX defaults are related to design principles. 2 'lEX is related to 
word processors, page composition and image-setting programs, and typesetters. 

'lEX is treated as a set of typesetting instructions: Only primitive and plain 
commands are introduced and used to produce various publications exercises. 
'lEX is also presented as a paragraph formatter. Users are shown how to alter 
the shapes of paragraphs, first, then, how to break paragraphs into lines, as 
well as into alignments and mathematical phrases, and finally, how to compose 

2 See Appendix A. 

152 1988 Conference Proceedings, TEX Users Group 



The Art of Teaching lEX for Production 

pages. The special characteristics of lEX-hyphenation, spacing, justification, 
kerning, and fonts-are woven into the progression. Errors are discussed at 
each level. Commands become more complex, as dimensions and parameters are 
added. Macro commands (as definitions) are introduced in appropriate places, 
at line breaks and hanging paragraphs, for instance. Users are encouraged to 
copy instructions and use them to produce real examples. Good habits are 
encouraged, from file management to structured input and comments in text 
and in definitions. 

At the Intermediate level, 'lEX is presented as more than just typesetting 
instructions; it is presented as a programming language. Users break down 
pages, paragraphs, and lines into boxes and glues. They discover that boxes 
can be manipulated in ways that lines and paragraphs can not. 'lEX's spacing 
mechanisms are played with as glue, with stretching and shrinking abilities. The 
modes of'JEX are revealed, which explains how many error messages were caused. 
Alignments and mathematics are reconsidered at a more advanced level. The 
anatomy of macros is discussed. The various kinds of macros are dissected and 
used. Conditionals are introduced. 

Advanced topics begin with a discussion of how 'lEX works on a source file. 
Tokens are introduced. Macros are combined and nested. Users are introduced 
to ways to 'undo' boxes and glue. Advanced commands dealing with expansion 
and futurity are introduced. The role of specials in extending 'lEX is addressed. 
Understanding is emphasized above memorization. 

Summary 

'lEX was long the province of programmers. The courses were dominated by 
people who needed to know how to install 'lEX and write drivers for devices. As 
front ends are developed for 'lEX to be used, programmers will rise again, but 
the era of pioneer hacking may be over. Now, the field is dominated by editors 
and writers who want to know different things about it, principally how to use 
it. These users are oriented towards production. 'lEX courses must address 
the needs of one group without slighting the other. Courses that are designed 
to present different aspects of 'JEX at different levels hold the most promise of 
meeting the needs of both groups. 

Bibliography 
Carter, Rob, Ben Day, and Philip Meggs. Typographic Design: Form and Com

munication. New York: Van Nostrand Reinhold. 1985. 
Morison, Stanley, and Kenneth Day. The Typographic Book, 1450-1935. Chicago: 

The University of Chicago Press. 1964. 
Rice, Stanley. Book Design: Text Format Models. New York: R.R. Bowker Co. 

1978. 
Skillin, Marjorie, and Robert Gay. Words Into Type. New York: Apleton-

Century-Crofts. 1964. 

1988 Conference Proceedings, 'lEX Users Group 153 



Alan Wittbecker 

The Chicago Manual of Style. 13th ed. Chicago: The University of Chicago 
Press. 1982. 

White, Jan V. Editing By Design. 2nd ed. New York: R.R. Bowker Co. 1982. 

Appendix A. General Principles of Design 

• Don't use too many typefaces. 

• Within one typeface, use size and weight to distinguish heading levels. 

e Be conservative with graphic devices, such as rules, boxes, borders, bullets, 
and dashes. 

• Avoid combinations that are hard to read, such as all caps, long sections in 
bold or italic, or lines that are set too long or set too close together for the 
type size. 

• Follow traditional standards for differentiating the elements of a document 
(heads, body, labels, captions, figures, tables, running headers, and specials). 

154 1988 Conference Proceedings, 'lEX Users Group 



Choosing Between TEX and M-TEJX 

SHAWN FARRELL 

McGill University Computing Centre 
805 Sherbrooke St. W. 
Montreal, Quebec. 
H3A 2K6 
ccsf@musica.mcgill.ca 

ABSTRACT 

The question of which 'T£X macro package to use for our type
setting needs has been asked many times since the introduction of 
]}TEX. It is a question that cannot be answered without looking at 
the many factors that can be involved in the production of typeset 
material: who the user is, what their needs are, what type of envi
ronment they work in. These are just some of the aspects that must 
be taken into consideration. In fact, there is no clear cut choice, 
and no matter what one person says, another will say differently. 
However, by taking a closer look at what is involved, and by iden
tifying the advantages and disadvantages of both T:EX and ]}TEX, 
we can make that choice easier for those who wish to pose The 
Question. 

Behind the Scenes 

You might be wondering what prompted me to compose such a paper. 1 Then 
again, you might not really care, in which case you could just skip over to the 
next section (or the next paper!). Anyway, when I was busy putting together the 
events for the Annual Meeting, I felt that it would be a good idea to have that 
extra McGill "flavour" by having someone from the university present a paper. 
I knew that there were some people on campus doing some interesting things 
with 'lEX, so I figured I could count on one of them. At the same time, being on 
the program committee, I saw that we had no papers that had anything to do 
with 11\TEX, so I set out to find a "McGillite" to do a paper on UTEX-which is 
why you're reading this right now. 

I know that this question of choosing the "right" package has been brought 
up many times, and has caused some heated discussions, but I think2 that I 
bring a different perspective to the subject. In most of the previous cases where 
such a discussion has occurred, we usually see an experienced 'lEX user taking 

1 In fact, I would hesitate to call it a paper-nothing concrete, just a bunch of opinions. 
2 Perhaps hope is a better word! 

1988 Conference Proceedings, 'lEX Users Group 155 



Shawn Farrell 

on an experienced I~TEX user, where the proverbial immovable object meets the 
irresistible force and, astonishingly, nothing is resolved. The TEX user will tell 
all his/her people to use TEX because it's better and, of course, Mr./Mrs. Ll\TEX 
will say the same to their crowd. This is a very unfortunate situation that occurs 
with a wide variety of products all the time throughout the computer world. 

However, I would not classify myself as a TEX user, since my involvement 
with 'JEX is one of support and training. That is, I personally have no reason 
to use TEX, since most of the stuff that I write could be done with any old word 
processor, but since I have to support intensive TEX users, I need to have a good 
working knowledge of the system, and so I do use TEX for most of the things I 
do. Since this is what I do for a living, I realize the importance of recognizing 
a wide spectrum of users, who have a wide range of needs to be met. This is 
something that needs to be addressed not only with TEX, but with every piece of 
computer software, and it is difficult to train users to see things from this point 
of view. 

Finally, before I take a more in-depth look at the factors involved in making 
such a decision, I should clarify what I actually am referring to when I say 
choosing between 'lEX and Ll\TEX. When I say Ll\TEX, it is quite clear what I 
mean. 'lEX, on the other hand, can refer to many things: plain 'JEX, or sets of 
macros or macro packages that may be commercially or publicly available. In my 
view, you cannot compare plain 'lEX with Ll\TEX, and in fact you will probably 
not find too many 'JEXers that work in plain.3 So I am actually comparing the 
many faces that TEX can have to the UTEX macro package, and, as I will later 
state, this becomes one of the factors that must be examined. 

Why the Need For a Choice? 

The obvious answer is because both 'lEX and Ll\TEX exist. Obviously, they were 
both designed with specific uses and needs in mind. The key is to identify what 
the user wants to do, and then match their needs to what is available. Unhappily, 
the question of choice between the two systems is one that doesn't really have 
a definite answer. That is, I can not confidently say to you "TEX is better than 
UTEX" or "UTEX is better than T:EX". There are several other situations that 
come to mind that pose the same problem: choosing between PC's and Macs, 
the NFL and the CFL,4 or Big Macs and Whoppers. Perhaps these are silly 
examples, but the scenario in each case is the same. Sure, I have a personal 
preference, but if I choose strictly based on that, then in reality I am wearing 
blinders. This usually results in users of one product saying bad things about 
the other (i.e., 'lEX or Ll\TEX is bad, PCs or Macs are terrible) product without 
really knowing anything about it. The point that I am trying to make is that 
we should be willing to accept the fact that simply because we have the option 
of making a choice (i.e., both products exist) means that there is more than one 

3 No offense intended for those of you who do work with plain. 
4 Canadian Football League. 

156 1988 Conference Proceedings, 1E;X Users Group 



Choosing Between 'IEX and JB.TEX 

market to satisfy. So instead of trying to show how bad one is, we should gear 
our efforts towards making that choice easier for others. 

1. Separate Entities? 

Some say that we should look at 'IEX and JB.TEX as separate, independent sys
tems. While this may be useful in explaining things to a 'IEX newcomer, it is 
also important for them to know that 'IEX and JB.TEX do have an important 
relationship. For without 'IE;X, we wouldn't have JB.TEX, since the JB.TEX macros 
are written with plain 'IE;X. Making a user aware of this is important so that 
they know that they can modify/ create macros if they wish to take the time to 
learn plain 'IE;X. It is often thought that JB.TEX is a separate entity loaded with 
everything (all the features). However, as we know, no piece of software can do 
everything. 

Using the 'lEX System 

I like to think of 'IEX as a programming language, since the concept is quite 
similar to that of writing programs. In actuality, from a text processing point 
of view, 'IEX is a markup language (as opposed to conventional WYSIWYG5 

word processors). That is, you create a file that contains a mixture of text and 
'IEX formatting commands, and so, as the user introduces commands into their 
document, they must visualize how the text will be affected. With a computer 
program, you must try and visualize how data will be affected by various in
structions. Standard word processors let you see changes on the screen as you 
make them, a concept that far more users are comfortable with. Learning how 
to program is quite difficult, and really is only understood by a small percentage 
of computer users. In fact, I would say that only a small percentage of com
puter users6 actually understand how the applications that they use work. Most 
of them work from memory; they know that this command does this and that 
command does that. This is why they cannot solve problems when they arise. 
On the other hand, learning programming languages develops a good approach 
to problem solving. 

When choosing between 'IEX and JB.TEX, this programming language analogy 
becomes important since not everyone can learn how to program. However, if we 
accept the statement above about memory usage, then almost anybody should 
be able to learn to use 'IE;X. So the choice is reduced to either learning the 
language (and in depth, I might add) and creating your own macros, using a set 
of plain-based macros (usually a locally developed package created to address 
local needs only), or using JB.TEX, a standard macro package that addresses a 
wide variety of needs (in fact, most), and is easily accessible to everyone. 

5 What You See Is What You Get. 
6 10-15%, in my estimation. 

1988 Conference Proceedings, 'IEX Users Group 157 



Shawn Farrell 

2. Working Environment 

The environment that the user is working in (or planning to work in) can have a 
direct bearing on which system they should use. It is often said that 'JEX itself 
is usually the first part to be installed and working. This is probably true since 
setting up and running basic 'JEX is often easier than with some of the associated 
macro packages. Keep in mind also the nature of the many different operating 
systems that 1'EX can work under. Some of them handle 1EX quite well, but 
when it comes to U.TEX and reading in style files, some systems can provide 
systems personnel with a formidable challenge. An example of this would be 
MVS where you must work within the system restrictions on the Job Control 
Language. As for working on a PC, both 1'EX and DTEX are readily available, 
so the only restrictions are the limitations of the PC itself (memory, storage, 
operating system, etc ... ). 

3. Macro Writing 

We cannot discuss choosing between systems without some mention of macro 
writing and how it can affect a user's choice. Whether you choose to use U.TEX 
or a 'IEX macro package, you are just using a bunch of macros that somebody 
has written. The degree to which a user understands the concepts and benefits 
of macro writing will probably weigh heavily on their final decision. Macros 
exist to make life easier for computer users, no matter what software they're 
using. They are most often used either to make something that is difficult 
seem easy, or to reduce the number of commands required by a user, usually 
by grouping oft-repeated commands together under one command. Thus they 
serve the dual purpose of removing the user from the low-level intricacies of the 
software, allowing more users to to use and understand the software, and they 
can increase productivity because of the nature of their power (executing many 
commands with just one). It is because of macros that we hear the term "power 
user". 

The ability of the user to understand how macros work goes a long way to 
choosing which system to use. Knuth put most of his effort into the low level (or 
'guts') of 'JEX, and not into macro writing. This may explain why it is difficult 
to create documents using the plain macros. Even the macros he created for 
The TEX-Book (manmac) are not all that useful to most users since they were 
created only with the goal of being used in the book. Since creating 'lEX macros 
is sort of like writing programs, we cannot expect every user to understand how 
they work or how to create their own. In fact, there are a lot of users who have 
no desire to know how the system works, only that they can easily accomplish 
what they have in mind. Many people will say that it doesn't matter, since it is 
"easy" to write and/or modify simple macros. But the bottom line is that there 
are lots of people who can't/don't want to. 

DTEX's macros are advantageous in that they are written for a general pur
pose as opposed to local macro packages, which are most often created for specific 

158 1988 Conference Proceedings, ·TEX Users Group 



Choosing Between 'lEX and 1HEX 

solutions. General macro packages usually are maintained more constantly, and 
thus become more portable. Iii\TEX is designed to work with a wide variety of 
systems, whereas there is no such guarantee for locally written macros. From a 
user's point of view, DTEX offers the chance to start writing right away without 
having to worry about creating any macros. However, this may also be the case 
with local macro packages So, while macro writing may not be for everybody, 
it can be done, and you can customize existing 'JEX/11\TEX macros, but, for the 
most part, it is difficult, and you really have to know what you're doing, or some 
strange things can happen. However, 11\TEX's associated files are very well doc
umented, which can ease the burden of macro modifying. It is also important to 
note that most 'lEX macros can be used with DTEX. 

4. Availability of Public Domain Material 

One of the nicest things about the 'lEX community is the way in which it shares 
solutions and macros. There are hundreds of 'lEX macro packages and 11\TEX 
style files that are available for the taking through various electronic mail repc;>s
itories such as the one for 11\TEX files at Rochester,7 or which can be acquired 
on floppy diskettes at events like the Annual Meeting. Based on the old "why 
reinvent the wheel" concept, users can use many of these files to solve problems 
that they have run into, or to do something which may otherwise seem difficult. 
Basically, the availability of such files allows a wider variety of users to make 
use of more features of 'lEX or 11\TEX, without the need to know how to write or 
change macros. It is simply a matter of letting users know where the files are .. 
and how they can be obtained. 

What About the User? 

As with most software packages, one of the most important factors to take into 
consideration is the nature of the user. You must determine the needs of the 
user, and try to recommend something that will suit their needs and that they 
will be comfortable using. We must also keep in mind that users come in every 
shape and form. That is, with a varying degree of computer knowledge. Not 
every potential user is going to be too keen once they see how 'lEX works. Of 
course, user friendliness is in the eye of the beholder. But I think that far more 
users are more comfortable with a regular old WYSIWYG word processor, since 
this is probably the way they've always worked. Even if they haven't used a 
word processor before, its concepts are still probably easier to learn for a new 
user. 

The first task would be to get the user to actually want to use 'JEX. Once (if?) 
this is done, you should then determine what they want to produce and what 
options they have. For example, if a user needed to produce a lot of tables, and 
there wasn't a good table-making macro package available, then 11\TEX would 

7 Since moved to Clarkson. 

1988 Conference Proceedings, 'lEX Users Group 159 



Shawn Farrell 

probably be better for them. I'm not going to elaborate right here, since I will 
talk about features a little later on. The important thing to recognize is that 
different types of users will adapt more readily to either 'lEX or Ll\.TEX, and we 
must try and find out what they want to do, and what would be easier for them. 
Many users have told me that, while 'lEX may be a little harder to master than 
a word processor, the results are well worth it! 

Advantages and Drawbacks 

As I mentioned earlier, it would be unfair (if not impossible) to compare plain 
'lEX and ]}TEX, since most people would not create documents with plain 1)_;)(.8 

Also, there are not very many macro packages available (for little cost, that 
is) that contain all the features that UTEX does. Therefore, I'll only point 
out the :UTEX features that I consider extremely valuable, and which would 
require extensive '!EX knowledge (and time) to write the equivalent 'lEX macros. 
Basically, 'lEX offers many advantages to the experienced 'IE;X user, while U.TEX 
offers more to the beginner, starting with the premise that, while it is beneficial 
to understand 'fEX in order to better understand ]}TEX, it is not imperative. 

5. Flexibility 

'lEX is very flexible, in that you are in total control, with the ability to change 
anything; U.TEX for the most part does what it was intended to do well, but it 
can be very inflexible when it comes to trying to modify the way it does some 
things. :U.TEX users who understand the 1EX language well will often be able 
to get around this. 'lEX is also more flexible in that you can write macros to 
function any way you want, while with :UTEX you may be restricted by the way 
that U.TEX itself works. A distinct advantage of U.TEX is the ability to alter the 
appearance of the document simply by choosing another style file. This point 
highlights a couple of reasons of why UTEX was developed: 

• :UTEX reduces the page formatting setup overhead that 'lEX requires. This 
may involve knowledge of many 'lEX commands and how 'lEX's output 
routines work, something that not every user can be taught to do. 

o Using U.TEX encourages a logical approach to document preparation, which 
is what Lamport had in mind when he was developing UTEX. 9 The user 
need only worry about the text and not the document layout. Many 'lEX 
documents are cluttered with unnecessary commands to alter formatting. 

8 Except for very small docwnents. 
9 See his article in TUGboat 9(1): 8-10, 1988. 

160 1988 Conference Proceedings, 'lEX Users Group 



Choosing Between 'IE;X and It\TEX 

6. Features 

The features that I feel would be an important reason to select U-TEX include 
the following: 

e Tables 

11 Cross-referencing 

• Automatic numbering 

• Bibliography formatting (with BIBTEX) 

• Handling of large documents 

Trying to set up complex, nice-looking tables with 'IE;X is difficult, even for 
the experienced T:EX user. The U-TEX table-formatting macros make things 
relatively easy, and offer a number of options. This is not to say, however, that 
J~TEX will solve all your table creation problems. A macro package such as 
Michael Ferguson's table-making macros can make even the toughest of tables 
seem quite trivial, and, with a couple of slight modifications, they can be made 
to work with JffiTEX. 

The ability to cross-reference tables, figures, equations, citations and the like 
becomes invaluable in a large document. This is a really handy and easy to use 
feature of U.TEX. The only drawback is having to run two passes of the document 
to match the references, but, hey, you can't have everything! 

It is also nice to be able to have various parts of the document numbered 
automatically. Be it titles, equations or figures, U.TEX provides numbering for 
most aspects of a document. Having everything numbered automatically makes 
it easier to insert, delete or move things around in a document without having to 
worry about the numbering or references. You can also have nested (or different 
levels) numbering, turn the numbering off, or easily alter the value of any of 
U.TEX's counters. In defence of 'lEX, it should be pointed out that you dont't 
need a whole lot of 'lEX knowledge to be able to create macros that use and/or 

.create 'lEX counters for automatic numbering purposes. 

If you create many documents that require extensive bibliographies, the 
BIBTEX system that comes with U.TEX can eliminate most of the work required 
to make bibliographies. BIBTEX allows you to create a bibliographic database, 
with entries that can be accessed by any U.TEX user. BIBTEX is an excellent 
feature and could have some impact on a user's choice of system, but it should 
only be taken into consideration if the documents they are creating require a lot 
of bibliography work. 

U.TEX also handles large files much better than '!EX· This is in evidence when 
large documents are broken up into separate files which U.TEX can selectively 

1988 Conference Proceedings, TEX Users Group 161 



Shawn Farrell 

process. Users who work with large documents most of the time will appreciate 
working with 1\TEX rather than a TEX package. 

Some other features which may be mentioned include indexing and generating 
tables of contents, but there are widely available macros for these that work well 
with both 'lEX and J.J\TEX. 

7. Portability 

Portability becomes an important issue to think about when you want to send 
documents to other people, or when you want to run or print documents at a 
site other than where they were created. In my view, U.TEX offers much more on 
the portability side than T:EX macros. This is because of U.TEX's general nature. 
It comes with a number of associated style and other files, which are all included 
on any standard distribution, so any site running U.TEX should have all the files 
that you need. With locally developed macro packages, you must send a copy 
of the macros along with the document, and, those macros can potentially cause 
problems. They may need to be modified in order to work with another system, 
and then all kinds of problems can occur. 

Another problem that can arise is when macro files are embedded, and in
voked, from within document files. Unless you are told this originally, you will 
need to search the files to see if this occurs. With 1\TEX files, it easy to see this 
just by looking at the \document style command, which is usually the first thing 
in the document. Fonts can pose another problem. The plain 'fEX format file 
does not preload very many fonts; instead they are loaded within the document 
with 1EX \font commands. With 1\TEX, many more fonts are preloaded, so 
this can ease the problem of site differences as to availability of fonts. 

It should be noted, however, that not everything is peaches and cream regard
ing 1\TEX portability. In fact, U.TEX incompatibility is often underestimated, due 
mainly to two factors. One is the 1\TEX version number (the now-famous 2.09), 
and the way updates are handled. Newer versions of U.TEX and its associated 
files are indicated with dates rather than numbers, which makes it difficult to tell 
if you are using the same version as somebody else. Although announcements 
are made periodically, and the upgraded files are available through electronic 
mail repositories, it still requires some poor site person who has to make sure 
that the newer files are acquired and set up, and that users know about them. 
There have been many changes to the 1\TEX files over the years, and so there 
are potentially that many different versions running out there, which can cause 
major headaches. The other problem lies with local "gurus" who modify U.TEX 
style files. If you want to modify the 1\TEX styles, at least give them new names. 

8. Documentation and Support 

The documentation available to make a potential user's life easier while learning 
about 'lEX or U.TEX will probably not influence their choice too much, but it 

162 1988 Conference Proceedings, TEX Users Group 



Choosing Between 'lEX and 1\TEX 

could be important to some people. Some will take more readily to learning, 
while others may need lots of hand-holding types of manuals. Unfortunately, 
not too many of these exist. From a broad-spectrum-of-user point of view, both 
The T']i;XBook and the 1\TEX manual have some major flaws. The 1\TEX manual 
is good as a user manual, but not so The T']i;XBook, although it is an excellent 
reference manual. You can find just about anything about 'lEX that you want 
to, but I wouldn't give it to a user to read to try and learn how to use 'fEX, 
for they would probably give up and find something else! On the other hand, 
the 1\TEX manual is seriously lacking in terms of examples for the various 1\TEX 
commands. 

There are some manuals available within the 'lEX community that can make 
it easier for users to understand and learn about 'lEX and 1\TEX. They in
clude Arthur Samuel's First Grade TJiiX and Michael Urban's An Introduction 
to 1\TEX.10 Stephan v. Bechtolsheim's Another Look at TJiiX will provide the 
user with more 'lEX examples than they can imagine, and I have several other 
similar documents and manuals that I have picked up either from 'lEX or UTE}X 
users I've met at Annual Meetings or through electronic mail. 

As far as support goes, one aspect will of course be local support: to what 
degree is 'lEX supported, and how knowledgable or accessible is the local guru? 
But there are other areas of support such as TEXhax and TEXMag where users 
can make inquiries about almost anything about 'lEX and expect to get an 
answer(s) that can help them solve their problem. One of the ni<;est things 
about 'fEXhax is that 1\TEX users can converse directly with Leslie Lamport, 
the author of 1\TEX. The fact that he takes the time to answer users' inquiries 
is something that one should be grateful for. Of course, most of us know that 
we had better be sure we're not asking him about something that's clearly been 
documented! 

One thing I have noticed about the nature of entries to 'IEXhax is that while 
'fEX questions usually are about wanting to know how to do something, there are 
a lot of gripes and complaints about 1\TEX. I have heard several 'lEX users ask 
"If 1\TEX's so good, then why do a lot of people complain about it in 'JEXhax?" 
However, I think that many of these complaints can be attributed to: poorly 
(at times) documented commands in the 1\TEX manual, not using 1\TEX the 
way it was intended to be used and lazy readers who won't or don't know how 
to write or change macros to satisfy their requirements. These users should be 
thankful that Lamport even takes the time to acknowledge what they have to 
'flame' about. 

Conclusion 

As I said earlier, there is no definite answer to the question of choosing between 
'fEX and 1\TEX. Almost every situation will vary as to how advanced the user is, 

10 Both available from the 'lEX Users Group. 

1988 Conference Proceedings, 'lEX Users Group 163 



Shawn Farrell 

what they want to do, and what essential features they need to have. The key 
is to be able to identify these needs, and then determine which system will give 
the user more benefits. Regardless of what they choose to do, they have made a 
good start by choosing the 'lEX system, so experienced TEX users shouldn't be 
'putting down' 'lEX by saying that one component or another of the system is 
bad or shouldn't be used. This only brings up 'lEX in a negative aspect, which 
is exactly the opposite of how we should be trying to promote TgX. Sure, rough 
edges do exist, but why not try and improve on them instead, and realize that 
we can live both 'lEX and .UTEX. 

Bibliography 
Ferguson, Michael. Table Making with INRSTgX. TF;Xniques Number 2. Provi

dence, R.I.: 'lEX Users Group. 1986. 

Knuth, Donald E. The TF;Xbook. Reading, Mass.: Addison Wesley. 1986. 
Lamport, Leslie. I!J..TEX: A Document Preparation System. Reading, Mass.: 

Addison Wesley. 1986. 
Samuel, Arthur L. First Grade TF;X: A Beginner's TF;X Manual. Stanford: Stan

ford Dept. of Computer Science. Report No. STAN-CS-83-985. 1983. 
Urban, Michael. An Introduction to I!J..TEX. TRW Software Productivity Project. 

1986. [Reprinted by the '!EX Users Group, Providence, R.I.] 

9. Unpublished Sources 
Doob, Michael. A Gentle Introduction to 'lEX: A Manual for Self-Study. Uni-

versity of Manitoba. 1988. 

McPartland-Conn, Marie. A 'lEX Primer. Henco Software. May 1987. 

NRTC 1l\TEX Manual. Northrop Research and Technology Center. May 1987. 
Urban, Michael. A Guide to 'lEX for the TroffUser. TRW Software Productivity 

Project. No date. 
von Bechtolsheim, Stephan. Another Look at T.EX. Latest version: 3.5, July 

1988. 

164 1988 Conference Proceedings, 'lEX Users Group 



Mathematics 'IFXtbook Publishing with Japanese 
lEX 

KAZUHIRO KITAGAWA AND NOBUO SAITO 

Department of Mathematics 
Faculty of Science and Technology 
Keio University 
3-14-1, Hiyoshi, Kohoku 
Yokohama, 233 Japan 
kaz%keio .j unet@relay. cs .net 
ns%keio.junet@relay.cs.net 

ABSTRACT 

'lEX was originally designed to typeset mathematics text. In 
this paper, we will describe a practical experiment to produce a non 
Latin-style mathematics text book using the Japanese 'lEX system. 

Introduction 

In TUGboat 8, no. 1 (1987), an article appeared which very much interested 
us: "Book Publishing Using 'lEX", by Tony Siegman. We have just finished 
publishing a mathematics textbook, here at Keio University, written mainly in 
Japanese, with English mixed in; it is the first textbook to be produced using 
Japanese 'IE;X. The book has about 300 pages, including exercises, answers, and 
supplementary assignments. 'lEX was, and is, preferred by our mathematics 
professors for some of the following reasons: 

1. 'lEX has many good mathematical typesetting facilities 

2. The exercises and extra assignments can be changed at any time, usually at 
least once a year 

3. Other mathematical contents can always be updated at their convenience 

In our case, text sources written in Japanese were prepared, revised and 
rearranged for a couple of these yearly revisions. Originally, text files were 
prepared with Japanese word processors and stored on 8-inch floppy disks; they 
were then converted to DOS files, but some characters were usually lost. At the 
time, 'lEX for PCs didn't exist, but we did have Japanese 'lEX running on our 
UNIX machines; so the DOS files were transferred once again, so that we could 
use 'lEX to produce the high quality output we wanted. 

1988 Conference Proceedings, TgX Users Group 165 



Kazuhiro Kitagawa and Nobuo Saito 

Most of the work is done on SUN and VAX machines by volunteer undergrad
uate students from our department, who usually don't know anything about T:EX 
or UNIX. Fortunately, they have been using PCs and PDP-Us running under 
RTll, which was very helpful when I then taught them T:EX and UNIX. 

'IE;X, A_MS- 'IE;X, or J~TEX 

There are three major T:EX systems: plain 'lEX, AMS-T:EX, and ~TEX. AMS
T:EX, which is similar to 'lEX, adds its own macros after the plain 1E;X macros 
have been loaded, whereas ~TEX is a distinct and separate system. 

In our textbook publishing case, we decided to use AMS-'IEX to prepare the 
source files. Most T:EX users are familiar with both AMS-'IEX and 1\TEX, with 
the former preferred for mathematics. Our decision was based on the following 
points: 

1. AMS-T.EX supports well-designed mathematical typesetting facilities and is 
good for writing mathematical equations 

2. AMS-'IE;X source files are accepted as submissions for publication by the 
American Mathematical Society (AMS) 

3. AMS-T:EX macros follow the same structure as the plain 'lEX macros (there 
is no new syntax to learn) 

4. Since AMS-'IEX is added to plain T:EX, we can use macros from both sys
tems, without running into macro interference (this is not always the case 
with combining 'lEX and 1\TEX) 

5. In 1\TEX, some of the mathematical typesetting facilities supported in 'lEX 
are eliminated 

This is not to say that 1\.TEX is an inferior product, only that it was not the most 
appropriate choice, given our situation at Keio University. Most of our source 
files of mathematical equations are first prepared and maintained by mathematics 
professors and students, and some of them are retrieved from files already written 
in AMS-'IEX. Most of the 'f'EXperts of mathematicians are willing to use AMS
'IEX to write their papers. Considering "human efficiency" (the re-training for 
1\TEX and the reworking of already existing AMS-'IEX files into 1\.TEX source, 
including macros for mathematical typesetting), we selected AMS-T:EX for our 
mathematics textbook publication. 

Macro Package 

Once we had decided to use AMS-'IEX, however, we found that its structured 
documentation facilities, compared with ~TEX, were not adequate for large doc
uments. T'here is no doubt that declarative markup is superior to procedural, in 

166 1988 Conference Proceedings, 1E;X Users Group 



Mathematics TEXtbook Publishing with Japanese 'lEX 

order to maintain and write large documents easily. At best, AMS-TEX provides 
only an am.sppt style for the UNIX world. 

We believe a well-designed and comprehensive macro package is one of the 
most important components to produce books with 'IEX· We have therefore 
developed such a package for T:£X. As we used it, we revised our macros, and 
have also incorporated suggestions from our volunteers and from a publisher, in 
order to make it better. 

The macro package focuses on logical document structure, not on the equa
tions. Basically, it does not conflict with the AMS-'IEX macros, and works well 
with 'lEX on its own. Some of our macros are given as style files from AMS
'JEX, and others are preloaded to plain. tex with am.stex. tex. The following 
are characteristics of our macros: 

1. Structured Document Markup: 

Our macros fully support structured documentation. The markup tags that 
specify document structures start with \beginxxx and end with \endxxx 
(xxx is a string), only slightly different from the \begin{xxx} and \end{xxx} 
syntax in I.i\TEX. Each part of the document must be enclosed by a pair 
of tags; for example, a section starts with \beginsection and ends with 
\endsection. These macros also support spacing, floating, and so on, and 
therefore source files have no commands to specify physical structure, such 
as \ vskip \hskip, etc. 

2. T.EX Parameters Specific to Japanese Fonts: 

In Japan, a typical textbook uses 8, 9, 10, 12, and 17 point fonts, with
out magnification. There are some basic differences, however, between En
glish (Latin-based) and Japanese (Kanji) fonts, which require certain ad
justments to some of the standard 'IE;X paramters (i.e., \baselineskip and 
\par indent). 

Most Japanese fonts have the same height and width, whereas Latin-based 
characters are generally higher than they are wide. As well, the black ratio 
of most Kanji fonts is larger than that of English. When using Kanji fonts, 
the narrow lineskip used for English makes the whole document very difficult 
to read, because of this black ratio. We have widened the baselineskip and 
changed related values from the standard 'IE;X 10pt values, in order to achieve 
the look of regular Japanese books. 

The most difficult problem is indexing and referencing in Japanese. In En
glish, words are sorted by alphabetical order, but Japanese words are sorted 
according to their pronunciation. Sometime even the same Kanji character can 
have several pronunciations, which means the word will be sorted into several 
different positions in the list. Our code follows standard pronunciation, but we 
deal with such cases as different characters with different pronunciations. This 

1988 Conference Proceedings, 1E;X Users Group 167 



Kazuhiro Kitagawa and Nobuo Saito 

problem is intrinsic to Japanese. One solution is to enter such words in phonetic 
form, using Hiragana codes (Hiragana codes are based on sounds, not spelling). 
We designed index macros which take two arguments: one is the citation for the 
index, the other is its pronunciation, as specified by these Hiragana characters. 
The user must therefore specify sorted sequences explicitly with Hiragana, in 
order to indicate the correct pronunciation, which then gives a correctly sorted 
index.1 

Indices which include French, Russian, and so on, along with Japanese are 
the most difficult and complex to sort. The non-ASCII characters of Latin-based 
characters are assigned control codes in 'lEX or they are built by combining a 
few characters. 

Conclusions 

Following this page is an example of a source file containing our macros, along 
with the 'lEX output. Our mathematics textbook, generated with Japanese 
'!EX, was printed on a laser printer, and then xerox copied and bound by a 
commercial firm. However, it would be better to generate the output from a 
phototypesetter; the Dai-Nipon Publishing Company is now preparing to install 
Japanese 'lEX onto their phototypesetter. So, we expect that next year's version 
of our textbook will be improved both in mathematical and in print quality. 

Bibliography 

Siegman, Tony. Book publishing using TEX. TUGboat 8(1): 8-11, 1987. 

Acknowledgements 

We wish to thank our volunteers, Miss Miho Ike, Mr. Hidetoshi Unno, Miss 
Tomoko Ohkawa, Miss Yuri Kiribuchi, Miss Jun Sato, and Miss Hitomi Mit
sumori for their excellent help. 

Professors in the Department of Mathematics at Keio University have given 
us many suggestions, and have checked the book several times. 

Finally, I am indebted to Mr. Hisao Miyauchi at Iwanami Publishing Com
pany for his advice, and to Mr. Jou Okubo at ASCII Publishing Corporation 
who helped convert the original source files into DOS. 

1 The VoRTEX prog~am developed at the University of California/Berkeley 
provides a similar makeindex command which supports option sorting by pro
nunciation; this is very similar to our solution. 

168 1988 Conference Proceedings, 'lEX Users Group 



Mathematics TEXtbook Publishing with Japanese T.EX 

Example:TEX source 

11!H ~-c;, ${\bf R},{\bf R}A2,{\bf R}"3$ (;I)~~Fs,, 

<! t:J K l±$n$7X:JC~~r .. ,(I)5E•~1J.~ td~. 
Chbtt~-~~~"4"~L~(I)·*~O)~O)K~~~~0~. 
~. ~k 1i <::h. b il~ "~" c L ~ O)'flE:fiHUii~O) <!? o I) 
~~0 tc.-€;'"t'<l? o $~1&--<tc 0. 

T~. ~~O)~K. ~~~~}~~~0, k:h.b(l)~, 

~~,-ffi.O)Uii-~7E.Lk$~80Wk5. 

\beginsectionUllH~~r .. , c L -c 0) ${\bf R}"n$} 

$n$ (j(:JC~Iiti~~F .. ,${\bf R}"n$ li, 7-E.K J: ~ 
$$ 
{\bf R}"n= 

\{x=\pmatrix{x"1\cr \vdots\cr x"n\cr} 1\, 
x"1,\cdots,x"n\in\ \kern -0.5em {\bf R}\} \leqno{(2.1)} 

$$ 

\begindef{1.1} 
$x=\pmatrix{x"1\cr \vdots\cr x"n\cr},\, 
y:\pmatrix{y"1 \cr \vdots\cr y"n\cr}$ ~ ${\bf R}"n$ 0) 4 c ~ o. 1: 0) ~. 

$$ x+y=\pmatrix{ x"1+y"1 \cr \vdots \cr x"n+y"n \cr} 
\kern 2em \hbox{($x,y$ 0)~~ $i$ nX:51-~:1Hl~ o. )} \leqno{(A)} $$ 
~, $x$ c $y$ (1){\bf ~} c 0 0, $x+y$ c iii < . \line break 
(B)\quad $a$ ~~~ c L ~, 

$$ ax=\pmatrix{ ax"1 \cr \vdots \cr ax·n \cr} 
\kern 2em \hbox{(~~ $i$ Ja51-~ $a$ m~ 0. )} $$ 
~. $x$ 0) $a$ {\bf mc~~'-mn 2:00, $ax$ c3<. 
flAbii>K, $x+y,\,ax$ ~I'C ${\bf R}"n$ O)jC'"t';l?:Q. 
\enddef 

\beginexercise 
1 <X:JCmrUt ${\bf R}$ '"'t"li, tctiO)tcL~. :O'iJ"•-e~o$~JU:. 

\endexercise 

\endsection 
\endchapter 

1988 Conference Proceedings, 'lEX Users Group 169 



Kazuhiro Kitagawa and Nobuo Saito 

Example:'IEX output 

m 1 J!il:·e, n., R 2 , R 3 O)~r .. 1. is b IC 1i n {9;:7G~r .. 10):i£~:a:~X..fc:O;, t: :11- b l±{l'[lll(:a: 

ff>T" R.," l: L. "CO)~'£ !l 0) t O)ICT~IJ::O'"" tc. A,, ft.>r li <::11-b:O; "~" l: L. "CO)U(Ilil~ 

O)~ol):a:~""tcm~~~:o~:a:~~tc0. T~. ~~O)~K. {l'[~~?rN:a:~0, ~nbO) 

m ~~,-meO)rn~:a::iE~L-tc•:a:m0lli~5. 

§2.1 t~7fj~Fs,t VCO) R" 

n ~~~r .. 1 R" 1±, ;iE~IC J: !l 

(2.1) R" = (• =C) 1•', ,•" ER} 

-c·~-::>tc~:a:.\!3.0lli~ 5. 

A,, R" fl'J lebO:* , ::<:.:h 5-fg l: 19'fftt.o@l;W:a:(9;:0)U!tc:i£~T o. 

•= ()Y= C) 
( xl: yl) 

x+y== : 

x" + y" 

(A) 

z, XC y O)l!Jc00, x+y cl!1'(. 

(B) a z~~ c L. -c, 

(x, y 0)-'i}~ i fit:5H:IJoX.. o. ) 

:a:. X O)afg(::<:.:h7-11!i) c00,ax cW<. a)Jb:b>tc, x+y;ax;lt:KR" O)jf;-(·~o. 

Fc,H! 1.1 I ~:7{;~~ R -c-1±, tctiO?tcL.~ il>fJ'~-e<P:O<JH:JU:. 

170 1988 Conference Proceedings, 'lEX. Users Group 



Approximate lEX for Semitic Languages 

JACQUES J. GOLDBERG 

Department of Physics 
Technion-Israel Institute of Technology 
Haifa, Israel 
phrOOjg@technion. bitnet 

ABSTRACT 

An approximate solution to T.EXing in Hebrew is presented. 
A font family good enough for office quality documents has been 
created. The process of bidirectional text entry is discussed. Be
cause words in Semitic languages are usually short and hyphenation 
unnecessary, a few simple manipulations produce acceptable docu
ments without any change in the 'lEX program proper. They are 
implemented as a preprocessor to 'lEX and a tiny set of macros. 
Freely available on a Bitnet server, this solution will work reason
ably well on any 'lEX installation. 

Why This Work? 

An outstanding virtue of 'lEX that will never be emphasized enough is its univer
sal availability and compatibility on just about any existing computer. Modern 
scientists rarely work alone; with the availability of academic electronic mail net
works, collaboration has turned real-time, and parts of documents are frequently 
simultaneously written at several remote locations on various machines. Using 
T:EX makes merging easy, and all authors instantly see the same text everywhere. 
We thus want 'lEX· 

But some people say T:EX is difficult to learn: they seem to have greater 
difficulty writing what they want in plain English following a \ than memoriz
ing tens of control characters and escape sequences expected by their preferred, 
incompatible, word processor. At our place, the ultimate argument against join
ing the 'lEX world was: "Anyway, we need Hebrew capability for educational 
and administrative office work, and we do not want to deal with several word 
processors!". 

Hebrew 'IEX-ing, in our scientific and technological University environment, 
required the following: 

• A terminal and an editor to input bilingual text 

e A font, perhaps a family (regular, bold, slanted, various sizes) 

e A solution to the problem of mixed right-to-left and left-to-right formatting 

1988 Conference Proceedings, 'lEX Users Group 171 



Jacques J. Goldberg 

• A machine-independent implementation of 'lEX and the DVI drivers for our 
vast range of computers, displays, and printers used for 'IEX.ing at the Tech
nion (DEC-Rainbows, IBM and other MS-DOS based personal computers, 
Macintosh systems, VMS and UNIX VAX machines, an IBM 3081-D VM 
system, Epson and clone printers, many DEC-LN03 and one IBM 3812 laser 
printers, and probably more which I don't know of). 

Text Entry 
The Hebrew alphabet has 22 letters, of which 5 have an extra alternate glyph 
when final (last in a word). The Latin alphabet has 26 letters. One way to 
enter Hebrew text-the one I would prefer if a standard could be introduced
could be to represent each of the 22 Hebrew characters by one Latin character, 
probably in upper case for easier context reading, typed from left to right, that 
is, just as in English. This would not be a phonetic representation but mere 
character coding. The computer could easily be programmed to select the final 
glyph when required. Such Hebrew and mixed language text could thus be typed 
on any terminal with any text editor. Adequate context marking for eventual 
mirroring is discussed below. I experimentally found out that physicists are 
unable to suggest such a convenient encoding scheme: linguists should do it for 
us! 

In the old days of punched card data processing and the so-called BCD cod
ing and its 64 possible values, a convention was introduced in Israel to represent 
Hebrew characters by the same 26 values reserved for English, plus one ofthe spe
cial characters. With 128 values allowed by the ASCII code, Hebrew cohabited 
with the 26 English lower case characters, plus the left quote to make 27. This 
code is now known as "old ASCII". Because, of course, there is "new ASCII", 
following (very late) the birth of EBCDIC and its 256 possible values: there, the 
27 Hebrew characters found a home, expelling however 27 non-standard graphic 
symbols. 

Several manufacturers optionally offer Hebrew glyphs in the display ROM 
of their terminals or microcomputers, matching one of these codes or sometimes 
both. With the new code one can see a b and a .:>. on the screen, but, with the 
old code, where b and .:>. have the same representation, either bb or .:>..:>. will 
be displayed at will, selected by a special local control key. An additional local 
control key (or combination) toggles the mapping ofthe keyboard to either of the 
two sets of codes, to keep the Hebrew keys at their standard national keyboard 
location, a must for fast typing. 

A powerful equipment manufacturer is contributing to this state of anarchy 
by preventing 8-bit character transmission on asynchronous serial lines to its 
mainframes, while using 8-bit coding on its mainframes, personal computers, 
and own mainframe dedicated terminals. Their personal and large computers 
use incompatible code, and the former cannot be used as terminals of their own 
mainframes with the full 256-value code! 

172 1988 Conference Proceedings, TEX Users Group 



Approximate TEX for Semitic Languages 

This is why I selected for myself a Zentec Zephyr terminal ( a DEC VT220 
clone) working in "old ASCII" mode, hooked up through a manual switch to 
either an IBM 3081 under VM, a VAX 785 under VMS, or a self-assembled MS
DOS machine based on the AMPRO LB-186 board (running PC-DOS with no 
graphics display but with a full megabyte of RAM under normal DOS program 
control, which allows resident Personal-REXX on top of heavy TEX jobs). 

With that terminal, at a keystroke, I can display Hebrew or English glyphs 
for lower case and the left quote, and toggle the keyboard mapping from Hebrew 
to English; another keystroke reverses the direction of the sweep on the cathode 
ray tube. 

With such settings, bilingual text is typed in a natural way, typed characters 
are recorded by any regular editor as they come in, and the user reads readable 
English text while typing in English, with unreadable segments visible from the 
other language, and vice-versa. 

It immediately comes to mind that sweep reversal could be avoided by typing 
Hebrew text in push (insert) mode: the current character in Hebrew context 
comes to the left, not to the right, of the previously typed one. One Hebrew 
word could thus be typed in the natural way and, with the 8-bit coding scheme, 
could be displayed in a readable way along with other English text. Such support 
exists on specially equipped PCs, and with modified vi on our UNIX systems. 
This technique however records sequences of words which are controlled by the 
end of each edited line, to which 'lEX is completely transparent: "What you see 
is aU you get!". This could of course be managed by adequate postprocessing. 

A Font Family 

METAFONT was used to make the simplest possible font good enough for aca
demic office work. The REDIS design described by L. F. Toby[3], was selected 
and encoded by E. Atashy, B. BenAbou, F. Melamed and S. Morim, as a Com
puter Science student project assignment. 

The font was generated at several usual sizes, also slanted and bold. Punc
tuation was incorrectly borrowed, through my error, from the Roman family 
of Computer Modern fonts: it is currently being replaced by the punctuation 
designed for sans serif fonts, to which the REDIS design is closer. 

Our kerning is still far from good. This problem is related to the 'JEXing 
technique described below. It turns out to be very difficult for people used to 
Hebrew, to program METAFONT kerning of a glyph following the previous glyph, 
while for the reader it will precede it. 

A better quality font is under development, that will meet textbook printing 
requirements. 

Finally, a Farsi font (or Pharsi, as Semitic languages use the same glyph 
for both sounds, just as in Philistine-Palestine) was written by some of these 

1988 Conference Proceedings, 'lEX Users Group 173 



Jacques J. Goldberg 

authors. It forms the base of a nearly completed Arabic font, as can be seen 
below. 

'JEXing 

Donald Knuth and Pierre MacKay(l) have extensively described the general 
problem of mixing right-to-left with left-to-right texts with 'fEX. They have 
also shown the changes required in TEX and the DVI drivers to implement their 
solution. After the first version of this contribution had been submitted, Larry 
Denenberg told me that he had implemented the required changes in a particu
lar DVI driver for a particular printer under UNIX. I was very happy to hear at 
this meeting that he already completed a DVI-to-DVI filter based on the same 
modifications, which I had suggested him to write instead of having to modify 
all existing drivers. 

Unfortunately, we extensively use microcomputers and peripheral equipment 
for which the source code for the required programs was not available (and quite 
a bit of debugging expected if it were, in order to implement TEX-X:ET). In addi
tion, as soon as we use a special version of TEX or drivers, we lose compatibility 
or become bound to multiple versions and multiple updating. 

Fortunately, 'fEXing mixed language requires two very simple operations on 
text typed in as described earlier: 

a reversing the order of the letters in each Hebrew word independently 

fl placing the next Hebrew word at the left of the previous one, or at the right 
end of a new line of text. 

Unfortunately, good text composition requires hyphenation. 

Fortunately, Hebrew is such that a physicist's approximation to hyphenation, 
to simply ignore it, or agree to hand-hyphenate here and there, turns out to be 
very reasonable: 

o In his 1973 Harvey Prize reception address at the Technion, Prof. Claude 
Shannon showed the following text "THS S TH PRF THT NGLSH S RD
NDNT" to establish written language redundancy. He allowed the audience 
one minute to decipher this line. Nobody understood why the minute, since 
all of us read and write Hebrew without vowels anyway! 

o One hundred years ago, E. Renan(2) explained that Semites could get along 
with words of up to three letters, being anyway unable to express anything 
abstract, philosophical, or scientific! He reported a count of a few thousand 
Hebrew words only, easily obtained by arrangements of three letters, making 
up a limited vocabulary hardly more than a young child might know; this 
was of course used as a proof that Semites were lower grade human beings, 
later re-assigned by others to lower grade animals, to be treated as such. As 

174 1988 Conference Proceedings, 'lEX Users Group 



Approximate 'IEX for Semitic Languages 

an example, compare the following French word (German has better ones) 
with its Hebrew translation, to be convinced that Hebrew seldom requires 
hyphenation: 

anticonstitutionellement = OliJ1nl11?.J:l. 

To insert one or two Hebrew words in an English piece of text is very simple. 
A TEX. group delimited by a pair of curly brackets specifies the font and the 
string to be typed, without even invoking the \reflect macro described by 
Knuth and MacKay[l] if the string is readily typed with the last Hebrew letter 
first, or invoking \reflect if typed in natural sequence (it's sometimes less work 
to type the word(s) beginning from the end than invoking the macro. Words are 
so short!). 

T.EXifying a Hebrew segment requires two steps (we assume the text was 
typed and collected by the editor in natural sequence, not with the push-insert 
technique). Each Hebrew word is first reflected, and then each reflected word is 
supplied to 'lEX as the argument of a macro which will place this word in a box 
extending to its left the current box making up the current line (empty to begin 
with, of course). Context markers indicate areas where words should or not be 
individually reversed, as well as the beginning (empty line) and completion of 
a Hebrew segment. In the current implementation a vertical bar was used to 
toggle Hebrew segment flagging, and the dollar sign to hold word reflection for 
left-to-right inserts inside a Hebrew segment (the reason is obvious: we need 
dual language 'lEX to write equations and math symbols in our material). 

With these very simple operations, fairly good T.EXing has indeed been 
achieved, as shown in the following ad-hoc short example, which could be part 
of a typical educational document: 

.Compton nv=::nn 

O''J::I ':J ,n,JPOJ TIGJlN l:Jl ,nnn'J ilJll' l::J..:J Tl'O'JjJOJ n,OJ?.Dll\JjJ'JNil illlTlil 

Oli::J.lJJ'J ilJl'l~il N'J il':YT'OJljJil nnJil .il'lllJNl JJJTl TlNV'J O''J?.lOD O'OJ?.DllOjJlN 

il'il 'J::J.N .hv- '1 o,nv D'\JJliJ::l OJ'V~lil .,.,nn il,?.lJNil '.:J ilV::liJ iJl ilnJOJil .nNTil 

:il'lllJNill VJTlil ]'::1 liGJjJil Vll' 

p = Ejc 

l::J.jJTl' JJJTlil 0::1 ,:J VJDJ ,n'n ilNlJ TN hv 'JV TllJDJ. n'JJ.jJTlD il,?.lJNil ON 

:ilnOlJil '."J 'JJJ JJJTlil llJ'D'J D'~:YD p'J .TllJ.l:YjJ TllJDJ. 

.'J::IillllN lJ'il ,\ lVN:J 

1988 Conference Proceedings, 1E;X Users Group 175 



Jacques J. Goldberg 

It should again be emphasized that this is a physicist's, approximate, rudi
mentary solution, whose single virtue is to leave 'fEX itself, the widely used 
macro packages, and the DVI-drivers, absolutely unaltered. 

Implementation and Availability 

A first, awkward implementation is running under MS-DOS, VM, VMS and 
UNIX at least, on our site. It is currently being modified, thanks to suggestions 
from users, in particular from Ron Greenberg at MIT who pointed out an easy 
and elegant alternate to my clumsy preprocessor-'lEX interface, which makes the 
method fully transparent to the user and to other macro packages. This report 
was indeed produced with the new version. 

Step one, context sensing, and Hebrew word parsing and reflecting, is imple
mented as a preprocessor to 'lEX, written in C, feeding 'lEX with a temporary 
intermediary file instead of the original (it could as well be performed by inter
preting the original input with 'IEX macros, but the process would be slower, 
and, for me, much more difficult to write). There is one conditional line of code 
in the C program: one of the systems senses the end of the input file differently. 
The edited file is given the filetype . i vr and the intermediary one the filetype 
. tex so that the final DVI file keeps the name of the original. 

Step two, building lines by extending the current box to the left, until its 
size exceeds the allowed line size, in Hebrew mode only of course, is achieved by 
a set of very simple 'lEX macros. To distinguish them from anything else, their 
names all start with \ivr (from the Bible's Avraham Ha'lvri, of course). 

The sequence of operations is therefore almost identical to regular TEXing. 
The . i vr file is first edited, then preprocessed, and the preprocessor . tex output 
file is then submitted to TEX. The document may then be viewed, printed, 
corrected for re-injection in the loop, admired, or thrashed as usual. 

The C source for the preprocessor, the macro package, all the required 
METAFONT input files, and a demonstration input file to be taken as a Users 
Guide, are available free on the Tel-Aviv University IBM compute:: operated 
as a national inter-university computing center. To obtain a copy send an in
teractive message or a piece of mail to LISTSERV AT TAUNIVM with the string 
GET IVRITEX PACKAGE placed either in the interactive message or in the body, 
not subject field, ofthe mail. This service is managed by Mr. D. Sitman; users in 
trouble or in need of executable files (preprocessor, fonts) are kindly requested to 
write to me, not to him-because of compiler copyrights and of the great variety 
of output devices, these binary files cannot be made public. 

Coming Soon 

The updated version of the preprocessor and macro package will shortly replace 
the old one in the network server files. 

176 1988 Conference Proceedings, 1E;X Users Group 



Approximate '!EX for Semitic Languages 

Flexible, customized character translation will be added. 

The existing REDIS Hebrew font is being improved, specially punctuation, 
numbers and other special characters. 

The better BURKO Hebrew font will hopefully follow. 

Missing glyphs in the Parsi and Arabic fonts will be created. 

At this time, there are no Semitic language document organization macros. 
It is my hope that the availability of the basic tools will prompt users to write 
such macros, and needless to say to make them widely available. 

L'Envoi 

Whom should I explicitly thank for having made this work possible? 

• Prof. Knuth for 'J.EX and for METRFONT 

• Prof. Knuth again for having made them universal and free 

• Alan Spragens at the Stanford Linear Accelerator Centre, thanks to whom I 
took my first steps with 'J.EX 

• My dear four students who patiently made the fonts 

• Ben Pashko:ff at the Technion for installing 'J.EX under VMS there 

• Dean Guenther for his patient and efficient help in bringing up 'J.EX and the 
environment on our VM machine 

• Profs. K. Preiss and H. Harari who found some very modest funds to pay 
that part of the font design beyond the original student project assignment 

• The Bitnet crew without whom that work would not have existed 

• All those around me who refused to hear about '!EX, to install it, and to care 
about extending it to Hebrew, which should have been their job, not mine, 
funding included: their determined opposition convinced me that I was right 
to do it. 

I will conclude with a famous fragment by Maimonides included to show a 
piece of Hebrew text: 
iU1.J.1 .i1J1"VNli1 il'JVOO'J ilJVP'J lTT n1:::J'JO l'Tni1'J1 "T10Y'J "T'nY n'VOil l'JOil 

N'J1 .ilOn'Jo N'Jl :J.Yl N'J O"V il'il' N'J lOTil 1n1N:J.1 .... 'JNl"V' 'n"TJ p.J.pOl V"TPOil 

il'il' N'Jl .l!IY:::J 1"1~0 O'J"TYOil 'J:::J1 .il:J.lil nY!I"V10 il'iln il.J.11.Ji1V .nnnn N'J1 ilNJp 

0'Y"TP1 O''Jl"T?. O'O:::Jn 'JNlV' Pil' l:::J'!I'J1 ."T:J.'J.J. O"Vil nN nY"T'J N'JN O'J1Yi1 'J:J po;v 

nN nY"T PlNi1 i1N'JO ':::J lONJ"V .O"TN n:::J '!I:::J ON11.J. nY"T 1?.''10'1 0'01nOi1 O'l.J."T 

.(il:Jl.J.'J un:::JT .J.NT i1o'Jv p 'lOP .J.PY' p'n:vn) .o'O:Jo O''J O'O:J ovil 

1988 Conference Proceedings, 'lEX Users Group 177 



Jacques J. Goldberg 

One final line to show that Arabic fonts are very important to us, and just 
about to come: 

~ .. 
Bibliography 

[1] Knuth, D. and MacKay, P. Mixing right-to-left with left-to-right texts. TUG
boat8(1)14-25, 1987. 

[2] Renan, E. Histoire des langues semitiques. Paris: Calmann-Levy, 1878. 

[3] Toby, L.F. The Art of Hebrew Lettering. Tel Aviv: Schuster, 1987. 

178 1988 Conference Proceedings, TEX Users Group 



TsX 1s l\1 ultilingual 

INRS-TeJ,;communications 
3 Place du Commerce 
Verdun, Quebec H3E 1H6 
MIKE@tel.inrs.cdn 

ABSTRACT 

Although T:EX is multiply unilingual. modifications to T&X were 
required to make it easily usablt in a bilingual or multilingual en
vironment. The requirements were both economic and conrt>ptual. 
This paper discusses the modifications required to achieve an ap
propriately dt>sirable behavior. Typesetting conventions tt>nd to 
be linguistically and geographically idiosyncratic. Some of these 
differences will be discussed along with limitations in the current 
implementation. 

Introduction 

TEX appears to be much more comfortable being muli1-unilmgual than multi
lingual. Although it supports different languages, it seems to do so, gracefully, 
only one at a time. T:E-X. became TEX in order to support, gracefully, several 
languages at a time. The problems of supporting document production, even 
in a unilingual environment occur at many levels. These include, but are not 
limited to: 

s input conventions and methodologies 

o language and special character sets 

e internal textual coordination and consistency requirements 

• external textual consistency conventions 

<~~ document design and "paper saving conventions" 

This list roncentrates only on those items that may be language dependent and 
purposely avoids all those issues involved with either multiple or exotic media. 
Examples of these range from voice annotation to the inclusion of graphic ele
ments. 

For unilingual environments, especially those that have an extensive printing 
history, there already are a set of defaeto conventions for all of the above points. 
llnfortunately. they are usually (never?) codified and appear. at least to some 
outside observers, to have both semantic (syntactic, artistic, phonetic?) and 

1988 Conference Proceedings, 'lEX Users Group 179 



Michael J. Ferguson 

technological origins. Tht> distinction is nnponaut be<aLI~• 1\\ and its mech
anised support systems represent a new \Pdmulogy This n;·\1 ter.hnology may 
not easily duplicate the old technology but will bring IH"'' p<·".~Jbilities. There 
is hope that the new conventions will be moJt harmoniou~ amungst various lin
guistic groups ... but past history suggests that this may not be so. 

Multiple languages do not appear naturally in most do\uments. Exceptions. 
of course, are dictionaries. most appliance and machinery instruction manuals or 
product labels in Canada, or official documents of the European Parliament. The 
"base" language is defi fled hert' to mean the primary language of the document. 
In most. but not all rases, this primary language is easily identifiable. ·JEX was 
designed 1 o happily accept the occasional non- base language word or phrase. 
The tacit assumption was that these inclusions would be typeset according to 
tht base languagt conventions. It does not appear to be designed to handle large 
quantities of text in diffe>rent languages. The primary economic difficulties (both 
monetary and temporal) involve: 

" a ne>ed to have access to a language>-specific set of fonts 

e the storage of the fonts in all their desired forms 

e the inability to automatically hyphenate (for paper saving and document 
design) any word that had a diacritic placed by 'lEX's \accent command 

A number of these problems could be overcome by using METAFONT. Unfortu
nately, neither the temporal nor artistic ability are (were) in sufficiently large 
supply to make this feasible. 

Most of the conceptual difficulties in the multiple language use of T:EX are 
at the document design level. These include the following: 

e there is only a single hyphenation (pattern) table resident at any time 

'* there may be too many diacritic combinations to include all possibilities 
in the font 

" some language conventions change the spelling of fragments of split words 
and allow word splitting at other places 

• some language conventions have semantically dependent ligatures 

s initial and terminating fragments of a word are fixed to be 2 and 3 char
acters, respectively 

e the maximum number of fonts within T:EX is limited 

e JEX's internal working memory may limit the number of simultaneously 
stored, pages resulting in coordination problems 

111 T:EX 's use of a paragraph as a fundamental unit of computation may 
prevent word-dependent processing 

180 1988 Conference Proceedings, 1EX Users Group 



'f_\ 1' Mulrihngual 

One of the difficulties of determining the- real m u ltiLng 11ai cuncept ual difficul
ties in the T£X architecture is that the "rc>quired'' muln-nnihngual requirements 
have not been codified. A codification will probabl.1 .. ccur t•VeJ many years. 
Hopefully the extensions and system described h<"rt. coincidt'ntlv with tht' intro
duction of n<>w t<cdmology, will unify the process. 

If the document designer never allowed word spii1 ting. th<>n th<> conceptual 
difficulty of only one hvphenatwn table would disappe-ar. It is unlikely that this 
will happen. If word splitting is allowed, then textual element roordination, as 
shown in two-column English/French example in a subsequent section, requires 
that a pattern table for each language be resident. Some of the other conceptual 
difficulties listed abovt> are really semi-eronomic. The limitation on the number of 
fonts and number of rharacters in a font would disappear with bytes longer than 
8 bits. Unfortunately, thf character input problem remains. It is easier to specify 
a two- byte or three- byte sequence than one of 210 or 224 characters. Although 
'lEX provides mechanisms to handle all of th<' above' conceptual difficulties, it 
does not do this with all tht> automatic grace that on<' could desire. 

TEX Strategies for Multiple Languages 

'IEX appears to have been designed with the intent of using a different font 
for each different, commonly used, language. METAFONT was conceived as the 
primary tool to support this view. "Unusual'' problems, such as diacritics and 
spelling changes at splitting boundaries, were handled by the 'IEX primitives 
\accent and \discretionary, Unfortunately the use of either method pre
cluded the further splitting of a word. Although an infinite supply of language
dependent fonts might yet appear, the cost of acquisition and storage along with 
potential document interchange problems do not necessarily make this solution 
desirable-. 

TEX Multiple Language Support 

'JE.X comes in two basic varieties. The first, 'lEX, operates on a paragraph
by-paragraph basis and is subjec.t to all the limitations that normal 'IEX has 
because of this mode. The second, 'IEX-W, is able to change languages on 
a word-by-word basis, and simultaneously allows for an enormous increase in 
'lEX's internal memory because it uses 32-bit rather than 16-bit pointers. Both 
'lEX and 'lEX-W use exactly the same font information files, and do all their 
arithmehc using 32-bit integers. Furthermore they retain all the kerning that is 
retained in the original TEX. Finally, 'JE.X passes the "trip'' test while T_E.X- W 
essentially passes the "trip" test. The word "essentially" is used because TEX- W 
writes out the \language value for each letter, along with the font information. 
In the "trip" test, this is always lang=O. This is the only difference in the 
"trip" output. Although TEX-W does not see much use in our environment, it is 
probably necessary for dictionaries and perhaps for the multiple language case 
of the European Parliament. 

1988 Conference Proceedings, 1EX Users Group 181 



Tht-' extensions mcorporat.ed in T}\ '·' td T£X-\1\' allow fl)r th~ following: 

• word~ with diac.ritics are allow<cd Hi thP hyphenation patt;-.rn, and excep
tlUn~. 

• multipk. 1wiependent hyphenation pattern a11d exC"eption sets are allowed 
and arrf'S"f'd bv a change in value of a n~>w pnmit1ve \language 

• tht inpu1 character set ·is extended to about 250 by making all of the 
internal character codes above 127 permanently active 

• different languages may use the same fonts 

• words with diacritics on capital letters, such as CONSIDERIONS, will be 
correctly hyphenated 

• words with a \discretionary may be, by changing the new primitive, 
\dischyph to be non-zero, optionally hyphenated 

• the length of the initial and terminal fragments may be explicitly defined 

Although these modifications do not automatically solve the context-dependent 
ligature problem. or the spelling modification problem, they do give the tools to 
do so. 

As of 1988, both TEX and TEX-W have been in use at INRS-Telecommuni
cations on VAX/VMS systems, without major problems, for about three years. 
With the recent (1987 /1988) port to the IBM-PC/(MS-DOS) by Personal '!EX, 
experience is rapidly being gained with other European languages. In addition 
Tfu.X and TEX-W have been ported to the SPN and converted to C by Justin Bur 
of Universite de MontreaL and IBM-CMS by Dean Guenther of the University 
of Washington. Fran~ois Chahuneau of Berger-Levrault in Paris is coordinat
ing distribution of the non IBM-PC/(MS-DOS) versions in Europe. TEX and 
TEX-W are being ported to several other systems. 

An Example of English/French Side by Side 

This section shows an example of two columns of text, coordinated on a para
graph-by-paragraph basis, with "long" paragraphs split at the bottom of a page. 
The left column is hyphenated according to English rules andthe right by French 
rules. The text is taken from the "Awards Guide" of the Natural Sciences and 
Engmeering Research Council of Canada - NSERC. Note that the text is split 
at the bottom of the page and continued on the next. 

Eligibility and Application 
Procedures 

56 The general eligibility condi
tions outlined in paragraphs 10 to 
12 must be satisfied by the princi-

Admissibilite et modalite de 
demande 

56 Les conditions generales d'ad
missibilite enoncees aux articles 10 
a 12 s'appliquent dans le cas du chef 

182 1988 Conference Proceedings, 'lEX Users Group 



pal investigator and all other aca
demic researchers. Scientists and 
engineers from industrial and gov
ernment sectors who play an active 
role> in the collaboratiw project may 
applv as co-investigators in order to 
stimulate programs of broad inter
est. Tht>se grants ma:' be held cur
rc>ntly with other Council grants. 

57 Before submitting a format ap
plication, researrhns should for
ward a letter of intent that include~ 
the following information: 

the nature of the" special 
opportunity; 

the names of the participat
ing researchers and their ar
eas of expertise; 

the significance of the re
search opportunity: 

an outline of the proposed 
research; 

a preliminary budget; 

the proposed time-frame of 
the project. 

The actual text input for this example is 

\input enfrtwo_tug 
\normalbaselines 
\artnum=55 
\autonumberingon 

lf:.\ ;, \1ultilingual 

de groupe et de tous l<."s autres par
ticipants universitaires. Les scienti
fiques et ingenieurs des s<erteurs gou
vernemental et industric>l qui jouent 
un role" important dans la realisa
tion du proj<et collectif sont admis
sibles comme membres du groupe 
afin d 'encourage! les programmes 
d'envergurt. Les subventions a des 
projets collectifs speciaux peuvent 
etre detenues en meme temps que 
d 'autres su bventiom du C:onseil. 

57 Avant de presenter officielle
melll Ull(" demande de subvention, 
les chercheurs devraient envover une 
lettr<e d 'intentwn au CRSN G conte
nant les renseignements suivants: 

la nature de !'occasion spe
ciale: 

le nom des participants et 
leur champs de competence; 

!'importance de !'occasion de 
recherche qui se presente: 

un apen;u de la recherche 
proposee; 

un budget preliminaire: 

le calendrier prevu. 

\dsh{Eligibility and Application Procedures}{Admissibilit\'e 
et modalit\'e de demande} 
\pp % 
\pn 

The general eligibility conditions outlined in paragraphs 
10 to 12 must be satisfied by the principal investigator 

1988 Conference Proceedings, TEX Users Group 183 



and all other academic researchers. Scientlsts and engineers 
from industrial and government sectors who play an active 
role in the collaborative project may apply as co·investigators 
in order to stlmulate programs of broad interest. These 
grants may be held currently with other Council grants. 

@(Q 

\rpn 
Les conditions g\'en\'erales d'admissibilit\'e \'enonc\'ees 
aux articles10 \'a 12 s'appliquent dans le cas du 
chef de groupe et de tous les autres participants universitaires. 

Les scientifiques et ing\'enieurs des secteurs gouvernemental 
et industriel qui jouent un r\-ole important dans la 

r\'ealisation du projet collectif sont admissibles comme membres 
du groupe afin d'encourager les programmes d'envergure. Les 
subventions \'a des projets collectifs sp\'eciaux 
peuvent \-etre d\'etenues en m\-eme temps que 
d'autres subventions du Conseil. 
I I 

\pp 
\pn 
Before submitting a format application, researchers should forward 
a letter of intent that includes the following information: 
\beginlist 
\li - the nature of the special opportunity; 
\li - the names of the participating researchers and their areas 

of expertise; 
\li - the significance of the research opportunity; 
\li - an outline of the proposed research; 
\li - a preliminary budget; 
\li-the proposed time-frame of the project. 
\endlist 
(!)(Q 

\rpn 
Avant de pr\'esenter officiellement une demande de subvention, 
les chercheurs devraient envoyer une lettre d'intention 
au CRSNG contenant les renseignements suivants: 
\bl 
\li - la nature de l'occasion sp\'eciale; 
\li - le nom des participants et leur champs de 

comp\'etence; 
\li l'importance de l'occasion de recherche qui se 

pr\'esente; 
\li - un aper\c cu de la recherche propos\'ee; 

184 1988 Conference Proceedings, TEX Users Group 



\li - un budget pr\'eliminaire; 
\li - le calendrier pr\'evu. 
\el 
I I 

T£:X i<. Multilingual 

Variations on tht> same production tht>me could involve outputting of text in 
difft>rent languagE's on pages with the same numbPr In this case the text coordi
nation is ind uct>d through tht> requirement that an entire section appt>ar on the 
same numbered page in alllanguag( editions. lnterestinglv enough. although the 
requirements appear to be similar to tht> multi-column coordination above, the 
constraint that the maximum of a sum of section length~ appear on the same 
page induces a difft>rent macro architt-cture. 

TEX and 'lEX-W Modifications to TEX 
The intent with the modifications to T:E;.X was to solve both the economic and 
conct>ptual problems and still maintain the efficit>ncy and elegance of the original 
'TEX. Recent extensions have been a result of the perceived needs of European 
languages other than Freneh and English. The full extent of these needs is not 
yet known. This sedion describes tht> changes. introduced via a WEB change file, 
to the original 1);;X program. 

1 Language-Dependent Patterns and Exceptions 

The key conceptual modific.ation to 1);;X was the allowing oflanguage dependent 
hyphenation patterns and exceptions. The correct set of patterns/exceptions 
are chosen via the value of the new primitive \language. Details of the input 
conventions for patterns can be found in the references cited in the bibliography. 
When an exception is entered, it becomes an exception only for the current 
language. 

We recently had a need to produce a document in Polish. The writer found 
that the French patterns did a much better job than the English patterns but 
that therE' was a tendency to split, incorrectly, "sz" and "rz". Inhibition of 
these patterns was added to the French patterns and a tri-lingual format file was 
made. The increase in pattern table size was negligible. The table compression 
scheme in 1);;X is wonderfully efficient. This, of course, is not a substitute for 
producing a specially tailored set of patterns and exceptions for a language but 
does indicate the power of the system. 

2 Hyphenation ofWords with Diacritics Produced by \accent 

1);;X hyphenates words by sending a string of characters that it thinks may 
be a complete word to the hyphenation procedure. To do this it removes all 
implicit kerning and ligatures and reconstitutes them afterwards while inserting 
the appropriate discretionary nodes. Since it cannot reconstitute anything other 

1988 Conference Proceedings, 1E;X Users Group 185 



than implicit k~nung and ligatur<"'> in thr samf font. i1 rdJJSe' to allc•w any text 
fragment that does not satisfv t.h~se cunditir•ns tc. be a putentialh hvphenatable 
word. T£.\. and Tf',X-\V extend the rer'-'nstitution possibilities by exphcitl,r iden
tihing thost characters that are accents and. recentlY thr>sP hlist nodes that 
were- prr,dured bY the \accent primitivt. Acct"nts or diacritics are identified by 
havin[; an \lccode of l or 2. It is assumed that the character following the 
diacritic i~ the character that is supposed to be accented. Since the subtype of 
an hlist node was not used. the \accent processing now sets the subtype to 
the value of A. Non-accent hlist nodes have subtype value of 0. This allows 
identification of the work done by the \accent processing to be reconstituted 
and hence allows for hyphenation of words that include accented capital letters 
... all of which require that 'IE;X raise the accent. The restrictions with this 
procedure are as follow: 

e both accents and accented letter must be in the same font 

s only single accents are allowed 

e it is assumed that the hlist node has only one character in it 

Ill explicit accent placement modifications will prevent hyphenation 

'l'E;.\. now requires that all characters in a word to be hyphenated to be in the 
same font. This is necessary to allow the kern and ligature reconstitution to be 
successful. 

3 Hyphenation of Words with Discretionaries 

Both TEXs allow for the optional hyphenation of words that already include 
discretionary hyphens. This is invoked by setting the new primitive \dischyph 
to a non-zero value. It is in force for an entire paragraph. The fragment that 
starts and/ or finishes with a discretionary node is hyphenated as if it were an 
entire word. This option is useful, perhaps, in pure English text since a hyphen 
'·-" in a word automatically inserts a discretionary node. Note that there is a 
semantic difference between the hyphen in a compound word and the one that 
is used for word splitting at the end of line. This semantic clash appears to be 
one of the reasons that 'IE;X does not allow this type of word splitting. 

4 Start and Terminate Fragment Lengths 

Two new integer primitives \starthyph and \stophyph have been introduced. 
The values of \starthyph and \stophyph are the minimum number of char
acters allowed in the initial and terminating word fragment respectively. These 
may be set to any positive value. The defaults are the same as in 'IE;X. namely 
2 and 3. 

186 1988 Conference Proceedings, TEX Users Group 



rF\ ;. \1 uhilmgual 

5 Input Character Codes 

Both TitXs allow for the sp~Ccification of input characters thar map to mt<"rnal 
TEX codes that are greatn than 128. All characters so mappt>d are permanenth· 
dt>clared ac-tive This HH'ans that a sequence mav bt defined t.c, represent that 
input rharacter. If a sequence has not been defined, the same ·'invalid character .. 
error messag<' that T£X emits occurs. The single character on th...- DEC VT-200 
series of terminals for tht· ··e" has an octal code of 351. This charaner is given 
a defimtion of \'e. 1"/ht>nevt'r it is input, it is immediat<elv stored internallv 
in 1'£.!\ as its sequen<c-. This allows for mor<e complex possibilities. Suppos<e 
tht' sequ<'nu ''ck'' was a single active character. It could be given the defini
tion "\discretionary {k}{k}{ck}". This also allows for a method to handle 
context-dependent ligatures. However, neither of these- methods an automatic. 
Automatic solutions to the context dependent ligature problem art probably pro
cessor intensive-any ligature is potentially invalid. It is not yet clear wht'ther 

, an automatic method for discretionary spelling and context-dependent ligatures 
is a universal mechanism for a wide range of languages. 

Conclusions and Hopes 

Although TEX and TEX-W have increased dramatically the applicability and 
usefulness of TEX, they do not have all the automatic grace or capabilities that 
could be desired, Some of the obvious defects are as follows: 

e discretionary spelling is not automatic 

e context dependent ligature determination is not automatic 

111 accent positioning cannot be modified without preventing hyphenattion 

e multiple accents are not allowed 

ID explicit "manual" kerning prevents hyphenation 

Unfortunately, it is still not clear whether the solution to these defects is either 
necessary or sufficient for even semi-universal multilinguistic applicability ofJEX. 
An interesting new problem arises in Europe if Turkey is admitted into the 
European Community. 

Bibliography 

M.J. Ferguson, A Multilingual TEX, Pp 65-74 in Proc. of Tp)Y for Sci.entific Doc
umentation, Strasbov.rg, June ]986, Jacques Desarmenien, Berlin, Springer
Verlag, 1986. 

M.J. Ferguson, A Multilingual 'I'E;X, Rapport technique, 87-23, INRS-Telecom
munications, May 1987. 

M. Spivak, Multilingual Tj;X Manual, Mill Valley, Calif Personal JEX, 1988. 

1988 Conference Proceedings, TEX Users Group 187 





Experiences with T:EX in Finland 

KAUKO SAARINEN 

Computing Centre 
University of Jyvaskyla 
Seminaarinkatu 15 
40100 Jyvaskyla 
Finland 

EARN/BITNET: Saarinen@FINJYU 
INTERNET: Saarinen@JYLK.JYU .FI 

ABSTRACT 

TEX does not hyphenate words if there are accents, which pre
sents problems in Finland where the three national languages all 
require diacritics. Multilingual 'lEX and other methods to solve 
problems due to national languages will be discussed. An overview 
of experiences with T:EX at the University of Jyvaskyla is also pre
sented. 

The National Languages of Finland 

There are three national languages spoken in Finland: Finnish, Swedish, and 
Lappish. The Swedish-speaking minority is about 6% of the total population of 
5 million inhabitants. In the very north, beyond the Arctic Cirle, there is a small 
number of inhabitants speaking Lappish. The vast majority ofthe country speaks 
Finnish. A common feature of the national languages is frequent use of accents. 
Especially the characters a 0 a A 6 A (a A in Swedish only) are heavily used. 
In fact, when a Finn sees a national character, such as a, no accent is seen. For 
any Finn a is a single letter and its meaning and pronounciation is different from 
a. For instance, the Finnish words saari and siiiiri have the meanings 'island' 
and 'leg', respectively. It is clear that every word processing system in Finland 
must be able to handle national characters correctly. 

1 Problems and Solutions in Using 'lEX in Finland 

Most problems using standard T:EX are due to the national characters with dia
critics, which are frequently used as stated above. These characters can be easily 
produced by 'lEX using accents. However, there is a problem with hyphenation. 
The standard 'lEX does not hyphenate words containing the characters above if 
they are made using accents. 

1988 Conference Proceedings, TEX Users Group 189 



Kauko Saarinen 

There is still another problem due to national characters. Using a seven-bit 
ASCII character set, the characters a 0 a A 0 A normally replace characters 
{ I } [ \ ] on Finnish and Swedish keyboards. For this reason, 'lEX control 
characters are usually changed to / < > instead of\ { }. The change is easily 
done for plain 'lEX and for AMS-'lEX as well, but there are severe problems 
with U.TEX, where \{, \I, \}, \[, \\, and\] are reserved combinations. Use of 
the UTEX package has been fairly limited so far due to these difficulties. 

1.1 Attempts to solve the hyphenation problem 

The hyphenation problem has been solved at the University of Jyvaskylii and 
at the Swedish University of Turku by making special fonts which contain extra 
characters. The method is a difficult one as device drivers must be modified 
also, but it works fine. However, this method is dangerous if 1E;X input files, and 
especially DVI files, are transferred from one site to another. Another possibility 
to solve the hyphenation problem is to add all possible discretionary hyphens \
to 'lEX input files using a preprocessor. This method is working well, but it 
requires extra effort and processing time. Still another possibility is to modify 
the 'lEX source programme. Finnish hyphenation rules are then added to 'lEX 
somewhere. The source programme of 'lEX must be available to do the job and 
this is not possible if you are using the commercial PC 'lEX, for example. 

1.2 The Multilingual 'I£X solution 

The Multilingual version of 'J:EX, or 'JEX, has been in use on PCs since the 
beginning of 1988. The very first tests of TEX were surprising. As a test case, 
'lEX and U.TEX with four language patterns-Finnish, Swedish, English and 
French-were compiled into a single . fmt file in order to see how 'lEX would 
work. Then the U.TEX local guide of some 30 pages was processed on a PC with 
640 KB of memory. The result was a success! 

'IEX contains many useful features compared to 'lEX· The most important 
features are language-specific patterns, switching from one language to another, 
and the fact that words containing accents can be hyphenated. 

New useful commands have also been added, such as \dischyph, \stophyph 
etc. for controlling hyphenation. 'lEX requires that there be at least 3 letters 
in the last syllable of a word in order to hyphenate it. Using the command 
\stophyph=2 of'IE;X this value can be changed to 2, which is suitable for Finnish. 
In Finnish, the last syllable of a word often consists of 2 letters. Another useful 
setting is \dischyp=1. If you write a discretionary hyphen\- in a word processed 
by standard 'lEX, the word will not be hyphenated elsewhere. If you wish to 
allow hyphenation in every legal place of a word you must explicitly add all 
discretionary hyphens, which can be frustrating. Giving a value of 1 to the 
previous parameter, TEX can hyphenate words elsewhere also. So, you may give 
hints for hyphenation if there is a difficult part in a word. This feature is very 

190 1988 Conference Proceedings, 'lEX Users Group 



Experiences with 'IEX in Finland 

useful, at least in Finnish. Hints for hyphenation are most often needed at the 
word boundaries of compound words. 

There still remains a problem common to both versions of 'IEX· The problem 
is the position of umlaut accents. A local typesetting expert said that there is no 
strict rule as to where the umlaut accents should be positioned. After looking 
at output from 1EX he added that in general, there seems to be too much 
space between a letter and an umlaut compared to the general convention in 
Finland. The result looks worse when higher magnification is used. A study of 
old newspapers revealed that umlauts were positioned higher in the past. Of 
late, they have been moved to a lower position-it's a pity for T.EX! 

It is said in 'lEX manuals that kerning is disabled when using accents. Local 
users of 'lEX seem to be satisfied with the kerning of '!EX, as was the typesetting 
expert. 

In order to hyphenate any language, hyphenation patterns are needed. Ex
isting patterns must be found somehow and if you are using an exotic language, 
say Finnish, they must perhaps be written locally. 

It is essential that 'lEX is based on standard fonts, which is important for 
compatibility and for transferring DVI files. If there are the same CM fonts on 
PCs and on the VAX/VMS mainframe, DVI files can then be transferred from a 
PC to a VAX. The transferred files can then be output further on laser printers 
run by the mainframe. If transferring is done with Kermit, as in Jyvaskylii, DVI 
files must be slightly modified before processing them by a device driver of a 
laser printer. 

An example is given below to demonstrate the superiority of 'lEX in process
ing Finnish. At first there is an input file processed by PC 1E.;X. Only a partial 
listing of the output log file is given containing all the Overfull. . . warnings. 
Then the same text is processed by the Multilingual version of PC 1E.;X. 

An· example of differences between 'f:EX and '!EX 
This is TeX, Version 2.0 (PCTeX 1.50, (c)Personal TeX, Inc 1986) 
(preloaded format=plain 88.6.11) 11 JUN 1988 09:34 
**&plain test1 
(test1.tex (\pctex\texinput (\pctex\texinput\twelve.tex) 
Overfull \hbox (8.4722pt too wide) in paragraph at lines 33--43 
Overfull \hbox (6.8662pt too wide) in paragraph at lines 33--43 
Overfull \hbox (7.51944pt too wide) in paragraph at lines 60--67 
[1] 

Overfull \hbox (5.0932pt too wide) in paragraph at lines 84--93 
Overfull \hbox (25.99554pt too wide) in paragraph at lines 111--124 
Overfull \hbox (7.04027pt too wide) in paragraph at lines 135--144 
Overfull \hbox (24.28075pt too wide) in paragraph at lines 145--151 
[2] 

1988 Conference Proceedings, '!'EX Users Group 191 



Kauko Saarinen 

Overfull \hbox (17.91219pt too wide) in paragraph at lines 179--189 
[3] 

Output written on test1.dvi (3 pages, 10300 bytes). 
This is TeX, Version 2.1 (preloaded format=mlplain 88.2.29) 
11 JUN 1988 09:31 
(Multi-Lingual PCTeX 2.10, (c)Personal TeX, Inc 1987. S/N 20158) 
**&mlplain test2 
(C:\OMA\TEST2.TEX (C:\PCTEX\TEXINPUT\JYLKPC.TEX 
-Conv. JYLK-PC complete-) (C:\PCTEX\TEXINPUT\TWELVE.TEX) [1] [2] [3] 
Output written on C:\OMA\TEST2.DVI (3 pages, 10396 bytes). 

Voila! Regardez l'exemple s'il vous plait! C'est si bon avec 'JEX! 

2 Experiences with 'lEX at the University of JyvaskyHi 

After elaborating on the problems due to umlaut accents, an overview of other 
'lEX-related affairs at the University of Jyviiskyla is presented. TEX history, user 
profiles, previewing of DVI files on the screen and PC TEX distribution, among 
other things, are discussed. 

2.1 'lF,X history at the University of Jyvaskyla 

TEX has been in use for quite a long time at Jyviiskyla. The main points are 
listed in chronological order. 

• The first version TEX78 of TEX was running on UNIVAC 1100 in 1983. A 
wheel printer was used as an output device. There was no serious use due to 
the simple output device. 

• TEX has been in use on VAX/VMS since the end of 1985. The output device 
was a single QMS LASERGRAFIX 800 laser printer. 

• The first TEX course was held in February 1986 with about 20 participants. 

• The first PC TEX was bought in the autumn 1986 and the Campus site license 
agreement was signed 1987. 

• Multilingual PCTEX has. been in use since the beginning of 1988. 

2.2 User profiles 

A typical user of the AMS-TEX package is a mathematician. Our mathemati
cians tried other text processing programmes before. However, the use of these 
programmes was soon history after getting TEX. At the Faculties of Mathemat
ics and Statistics, secretaries also use 'IEX· However, there are many other users 
also, for example, at the Faculty of Humanities. Students naturally are eager to 
use TEX a lot. I suspect sometimes that they believe that the impressive output 
of their papers will guarantee a better response from their teachers. Users other 
than mathematicians have generally used plain TEX so far. 

192 1988 Conference Proceedings, TEX Users Group 



Experiences with 'IE:;X in Finland 

Different languages have been processed. At least the following ones have 
been processed and probably in the listed order: Finnish, English, Swedish, 
French, German, Spanish, and Russian. There are patterns available for each of 
these except for Spanish and Russian at the moment. Russian has been used by 
a couple of users. The cyrillic fonts and macros for using them were bought from 
the American Mathematical Society. The Finnish hyphenation patterns written 
locally are fairly concise and straightforward compared to many other languages. 
They are by no means perfect but seem to work fairly well for practical purposes. 
If someone needs the Finnish patterns, I'm ready to send them to anyone using 
electronic mail. 

Using Multilingual PC'IE:;X and the extended ASCII character set, the lim
itations concerning I~TEX are removed and, as a result, the use of I~TEX is as 
easy for Finnish as for English. It is expected that use of 11\.TEX will grow. 

2.3 Previewing DVI files on PCs 

A very user friendly feature when using 'IE:;X on the PC is the possibility of 
viewing DVI files on the screen. There are two different viewing programmes 
available at the University of Jyvaskyla. The commercial MAX view is used and 
the Campus license agreement is signed for it. MAX view is a flexible programme, 
because it can use any fonts installed for your printer, and does not need any 
extra fonts. 

The other viewing programme has been made in co-operation between the 
Universities of Jyvaskyla and Helsinki. The locally written viewing programme 
contains better zooming possibilites than those of MAX view but special fonts 
are needed. The reason for making their own viewing programme was, originally, 
that there was a PC with a nice graphics card, but no commercial programme 
available for this particular graphics option. 

2.4 Hints for distribution of PC 'lEX 
Installation of PC 'IE:;X can be quite difficult for an end user if installation must be 
done using the original diskettes, which have been bought commercially. There 
are choices of different output devices, graphics etc. It is more user friendly to 
make a basic installation first and then distribute it for end users. 

Due to little experience with the MS-DOS system, an attempt to distribute 
PC 'lEX using MS-DOS commands such as BACKUP and RESTORE was tried. 
These commands are easy to do but there are problems with different levels of 
MS-DOS and also with different machines of the same level of MS-DOS. This 
method simply does not work in practise. A better way to distribute PC 'lEX 
diskettes is to make the basic installation first and then make a batch queue that 
copies all the needed files from diskettes onto the hard disk of PC. This method 
works fine and updates can be made easily. 

1988 Conference Proceedings, 'IE:;X Users Group 193 



Kauko Saarinen 

2o5 Mixed views of interest 

Jyvaskylii is a nice small town with about 70 000 inhabitants and 270 kilometers 
north of Helsinki. The town is surrounded by lakes and forests and in the middle 
of the city there is a large hill. The very beautiful University campus is located at 
the west end of the hill. There are 6000 students at the University of Jyvaskyla. 
'lEX is being run on a VAX/VMS mainframe and on PCs. 'lEX will be installed 
on the new Sun mainframe computer also. Laser printers with a resolution of 
300 dots per inch have been used as output devices so far. The well-known 'lEX 
manuals are used and there is alocal'JEX manual in Finnish of about 70 pages. 
At the moment, two enterprising students are writing manuals for PC 1EX and 
11\TEX in Finnish as summer work. 

Summary 

'lEX is widely used at many universities throughout Finland, even though it is 
not so easy to learn. However, it's often surprising to see how rapidly people 
can learn to use 'JE.-"'C when they have enough motivation and that motivation 
is-the professional-looking output! In practise there is not a good alternative 
for 'lEX at the moment for writing professional-looking mathematics. 

And last, but not least it's nice to point out that this article was prepared 
using 'lEX on a PC. The program coordinator for this year's Annual General 
Meeting, Dean Guenther, sent T:EX macros of the proceedings to me using e
mail. After preparing the article, it was sent back using e-mail again-how 
small our planet really is today! 

Acknowledgement 

Some details of the article are based on discussions with Dr. Ari Lehtonen, who 
is an advanced 'lEX user himself, working in the Department of Mathematics at 
the University of Jyvaskyla. 

Bibliography 

Knuth, Donald E. The TF;Xbook. Reading, Mass.: Addison-Wesley. 1984. 
Lamport, Leslie. Jb..TEX -A Document Preparation System. Reading, Mass.: 

Addison-Wesley. 1986. 

Spivak, Michael. PC T£X Manual. Mill Valley, Calif.: Personal 'JEX. 1985. 
Spivak, Michael. The Joy of T£X. Providence, RI.: American Mathematical 

Society. 1986. 
Spivak, Michael. Multilingual Ti;X Manual. Mill Valley, Calif.: Personal 'lEX· 

1987. 

194 1988 Conference Proceedings, TEX Users Group 



Using the Emacs Editor to Safely Edit TEX Sources 

STEPHAN V" BECHTOLSHEIM 

Integrated Computer Software, Inc. 
2119 Old Oak Drive 
West Lafayette, IN 47906 
(317) 463 0162 

ABSTRACT 

In this paper we will discuss the use of a programmable editor 
like Emacs to safely edit 'lEX sources. We will argue that by us
ing this editor it is possible to dramatically reduce the number of 
errors made entering 'lEX codes together with text in a file. It is 
possible this way to achieve a comfort in editing 'lEX sources which 
approaches the quality of WYSIWYG systems without inheriting 
their limitations. 

Introduction 

The title of this paper has changed somewhat compared to the one listed in the 
program because I decided that focussing on the editing of 1EX sources with 
Emacs was enough of a subject to deal with. Lynn Price will discuss the issue 
of translating SGML into 'lEX etc. 

This paper tries to explain the advantages of using the Emacs editor to 
edit '!EX sources. For those '!EX users who know this editor this paper will 
probably not offer anything new. On the other hand, for '!EX users who are 
not programming wizards and who would like to learn something new, hopefully 
this paper will show that using a sophisticated editor such as Emacs does help 
enormously when entering and correcting '!EX sources. 

I would now like to discuss some general principles which are important for 
the later discussion of a 1EX mode for the Emacs editor and the relationship 
between 'lEX and WYSIWYG systems. 

1. WYSIWYG systems have problems inherent to their design: the main prob
lem is the generation of consistent document layouts. These systems are 
getting better; in general, though, programmable systems like '!EX are more 
powerful and versatile. 

2. WYSIWYG systems look flashy but they cannot solve the problem of writing 
either: they may look as flashy as a James Bond movie, but to write in an 
organized and well-structured way is something they can't solve either. 

3. Other than deciding what typesetting system to use, choosing a text editor 

1988 Conference Proceedings, TE;X Users Group 195 



Stephan v. Bechtolsheim 

is the most important decision you make when generating documents: if it 
takes one hour to generate a document with 'fEX (or with any typesetting 
system for that matter), then observe that you will spend about 55 minutes 
of this hour in the editor changing the text. The remaining 5 minutes are 
used to execute 'fEX and print your document. Therefore, if only for this 
timing reason, it is extremely important that you use a flexible and powerful 
editor which supports editing 'fEX sources. 

4. Prevention is better than correction: if you can prevent a heart attack in the 
first place you save yourself much more than if you have one and have to go 
through all types of surgery, etc . .So if you can prevent an error in 'fEX you 
do yourself a big favor. 

5. The trivial and minor errors are the most frequently occurring and the most 
annoying ones: if you could avoid only the "silly errors" like omitting closing 
curly braces then this would already help you a lot, more than anything else. 
Therefore, we will discuss methods to prevent silly errors when the text is 
entered into the computer. 

6. Some of T.F;X's instructions are used much more frequently than others: for 
instance, curly braces occur much more frequently than \relax. Therefore 
it is worth thinking about the more frequently occurring control sequences 
more than about those which are used less frequently. 

Considering all the reasons just listed should convince you that using the best 
available editor is simply a very smart idea. 

The Emacs Editor 

Let us now discuss the Emacs editor. We will specifically refer to the GNU 
Emacs editor. At the end of this paper you will find information of how to get 
this editor, etc. Let me first discuss the LISP interpretor built into this editor. 
There are two areas of this interpretor to be looked at: 

1. Because of this LISP interpretor you can write regular LISP programs in 
this editor which have nothing to do with editing text. Let us give some very 
simple LISP programming examples here: 

; variable: number of apples. 
(defvar apples 0 "Number of apples") 

(setq apples (+ apples 1)) ; Increment it. 

; Define a LISP function to add apples. 
(defun Increment-Number-Of-Apples (number) 

) 

"Add NUMBER to the current number of apples." 
(setq apples (+ apples number)) 

196 1988 Conference Proceedings, TEX Users Group 



Using the Emacs Editor to Safely Edit TEX Sources 

; Call previously defined LISP function. 
(Increment-Number-Of-Apples 5) 

2. This LISP interpretor is augmented by various editing primitives. So one 
can actually write programs which edit text as we will see in the examples 
below: 

(forward-char 5) 
(backward-char 5) 
(forward-char -5) 
(insert-string 

(format "Letter mailed 
(goto-char (point-min)) 

(goto-char (point-max)) 
(find-file "xx.tex") 
(set-buffer "xx.tex") 
(recanter) 
(delete-other-windows) 

(split-window-vertically) 

(other-window) 

Go five characters forward. 
Go five characters backward. 
Same. 
Insert the given string. 

at %s\n" (date))) 
Go to the beginning 
of the buffer. 
Go to the end of the buffer. 
Find specified file for editing 
Switch to specified buffer 
Redraw screen 
Make current window the only 
one on screen. 
Split current window in two 
windows 
Select the next window 

Observe that so far we have not discussed editing in the traditional sense. We 
have only explained how a user could write editing programs, programs which 
change text. 

Some LISP Functions of an Emacs 'lEX Mode 

We will now present some simple LISP functions as they would occur if part of 
a 'IEX mode for the GNU Emacs editor. The following discussion will serve two 
purposes: 

1. We will discuss methods in general to improve the safety of editing 'IEX 
sources. 

2. We will discuss how our ideas can be implemented using the Emacs editor. 

Curly Braces 

One of the easiest ways to avoid problems with forgetting to enter closing curly 
braces is to enter curly braces always in pairs. In other words, when you enter 
an opening curly brace you enter the closing one right away and then you position 
the cursor between the two curly braces. Here is a LISP function to do exactly 
that: 

1988 Conference Proceedings, 'lEX Users Group 197 



Stephan v. Bechtolsheim 

(defun TeX-Curly-Braces 
(insert-string "{}") 
(forward-char -1)) 

The next trick is to invoke this function automatically when an opening curly 
brace is entered. This is done with the following instruction: 

(define-key TeX-mode-:map "{" 'TeX-Curly-Braces) 

From now on, entering an opening curly brace on the keyboard will call the 
function TaX-Curly-Braces. Typing an opening curly brace will no more just 
insert an opening curly brace into the text. The define-key LISP instruction 
makes this link for the opening curly brace only effective when 'lEX sources are 
being edited. 

A similar type of construction can be applied to parentheses and square 
brackets. It is my personal experience that once you install this feature it is 
something you won't want to be without. 

Superscripts and Subscripts 

For superscripts and subscripts the automatic insertion of curly braces can be 
enforced too. Here is how this is done for superscripts: 

(defun TaX-Superscript 
(insert-string "-{}") 
{forward-char -1)) 

,_, causes "-{}" to be inserted. 
(define-key TeX-mode-map .. -.. 'TaX-Superscript) 

Dollar Sign 

It is natural to use the same type of treatment for the dollar sign. This time 
though we will be a little more sophisticated: a dollar sign anywhere in the line is 
taken as an instruction by the user to enter an inline math mode equation-two 
dollar signs are entered and the cursor is positioned between the two. So far 
this is exactly along the lines of the treatment of an opening curly brace. Now 
we will deviate slightly: this doubling of the dollar sign does not happen if the 
dollar sign is preceded by a backslash, because this is the usual way in 'I'jy"'C to 
print a dollar sign. Furthermore, a dollar sign entered at the beginning of a line 
is interpreted as the start of a mathematical equation in display math mode. In 
this case two double dollar signs have to be entered with an empty line between 
the two double dollar sign groups. Here is a little LISP program implementing 
the above ideas: 

198 1988 Conference Proceedings, TEX Users Group 



Using the Emacs Editor to Safely Edit 'lEX Sources 

(defun TaX-dollar () 
"$handling in TeX: $generates$$ unless escaped(\$). 
If at the beginning of a line enter display math mode." 
(interactive) 
(if (char-equal (preceding-char) ?\\ ) 

(insert-string "$") 
(if (bolp) 

(progn 
(insert "$$\n\t\n$$\n") 
(forward-line -2) 
(end-of-line)) 

(insert-string "$$") 
(forward-char -1)))) 

Bind the above function to $. 
(define-key TeX-mode-map "$" '!eX-dollar) 

Here is another variant of this same LISP function you could use in Jb..TEX 
where the environments math and displaymath can be used for inline and display 
math mode: 

(defun TaX-dollar () 
(interactive) 
(if (char-equal (preceding-char) ?\\ ) 

(insert-string "$") 
(if (bolp) 

(progn 
(insert "\\begin{displaymath}\n\t" 
(insert "\n\\end{displaymath}\n") 
(forward-line -2) 
(end-of-line)) 

(insert-string "\\begin{math} \\end{math}") 
(forward-char -11)))) 

You see that it is very easy to reprogram the editor-just pick your favorite 
version of !eX-dollar to generate a 'lEX source according to your style. 

Font Change Functions 

Because font changes occur very frequently and one of the things we wanted to 
do was to help input frequently occurring 'lEX instructions. Let us see what 
we can do in the case of font changes. Here are three little functions which are 
bound to ESC -B for Q.oldface, ESC -r for italics and ESC -r for typewriter font. 
A font change can now be entered very quickly: 

1988 Conference Proceedings, 'lEX Users Group 199 



Stephan v. Bechtolsheim 

(defun TaX-boldface () 
"Boldface text." 
(interactive) 
(insert-string "{\\bf }") 
(backward-char 1)) 

(defun TaX-italics () 
"Italics text." 
(interactive) 
(insert-string "{\\it \\/}") 
(backward-char 3)) 

(d.efun TaX-typewriter () 
"Teletype style." 
(interactive) 
(insert-string "{\\tt }") 
(backward-char 1)) 

(define-key TeX-mode-map "\e\Ab" 
(define-key TeX-mode-map "\e\Ai" 
(define-key TeX-mode-map "\e\At" 

'TaX-boldface) 
'TaX-italics) 
'TaX-typewriter) 

Automating the Handling of the Italic Correction 

Observe that in the above example the italic correction is always inserted by 
TeX-italics regardless of whether it is needed or not. There should be no italic 
correction in the case of a period or comma following the closing curly brace of a 
group terminating a font change to italics. So we will now provide a little LISP 
function which, if necessary, removes the italic correction from the text: 

(defun TeX-period-comma () 
"Take out italic corrections before periods and commas." 
(interactive) 
(save-excursion 

(forward-char -3) 
(if (looking-at "\\\\/}") 

(delete-char 2))) deletes \/ 
(insert-char last-input-char 1)) ; inserts '·' or 

(define-key TeX-mode-map 
(define-key TeX-mode-map 

More Sophisticated Ideas 

.. It 

" " J 

'TeX-period-comma) 
'TaX-period-comma) 

' ' J 

The previous section showed one of the simplest examples for LISP functions in 

200 1988 Conference Proceedings, 'lEX Users Group 



Using the Emacs Editor to Safely Edit 'lEX Sources 

a 'lEX mode I could think off. Now let us discuss what else can be done. We will 
here elaborate on one idea and that is the idea of supporting inputting environ
ments of 11\.TEX into documents. Here are the functions our LISP procedure will 
perform: 

1. \begin{ ... } and \end{ ... } are entered in pairs followed by positioning the 
cursor between the two constructs. One of the nice side effects is that this 
way the nesting of environments is always correct. 

2. The spelling of the environment's name is checked. If an illegal environment 
name is entered it is rejected. There will be no illegal environment name 
when the document is being processed. 

3. For certain environments like enumerate the LISP function might also gen
erate a couple of \i terns properly indented. So your screen, after having told 
Emacs to enter an enumerate environment, looks as follows: 

\begin{enumerate} 
\item 
\item 
\item 

\end{enumerate} 

4. One can easily define a LISP function Insert-Item which will insert a new 
\item properly indented on a line by itself. 

5. Environment name completion can be used: if a partially determined envi
ronment name (for example, e is sufficient for the enumerate environment 
because no other environment starts with e) then the editor will insert the 
complete enumerate. 

How to Proceed From Here 

Assuming I have been able to convince you that using the GNU Emacs editor is 
indeed a good idea, let us now discuss how you proceed from here. This editor 
runs on a variety of machines, but it does not run on PCs or on Macintoshes. 
These machines are simply too small. There are Emacs implementations which 
run on PCs, but what I have seen so far they don't deserve the name Emacs: 
they are far less general, and of course part of the limitations are limitations 
imposed by MS-DOS. 

Also observe that while there are other Emacs versions around, GNU Emacs 
from the Free Software Foundation is by far the best and most reliable version 
of this editor. 

The GNU Emacs software can be picked up via :ftp from prep. ai. mit . edu. 
It is also possible to order a tape (1/2") or a SUN 1/4" cartridge by writing to 
the following address: Free Software Foundation, 675 Mass Avenue, Cambridge, 
MA 02139. The cost is around $150.00. The editor is freely redistributable; that 

1988 Conference Proceedings, 'lEX Users Group 201 



Stephan v. Bechtolsheim 

is, it is illegal to charge any fees to redistribute the editor. Actually you are 
encouraged to pass the editor on to other people. 

This editor comes with a 'lEX mode, but Nelson Beebe from the University 
of Utah has developed a 'lEX mode which is probably much better worked out 
than any other 'lEX mode for this editor. He is attending this conference and he 
may give his opinion about the state ofthe various 'lEX modes for GNU Emacs. 

Finally a warning at the end: Emacs is a very powerful editor, but it is 
also a rather complex piece of software. It requires maintenance as does any 
large program; it requires training and support. So if you decide to show non
programmers this editor you must know that it will take time and patience on 
your part to train people using this editor. 

Conclusion 

In this paper we have tried to explain that with the help of a powerful editor 
such as Emacs, it is possible to preserve the flexibility of a programmable system 
while editing 'lEX sources very conveniently. It is possible to dramatically reduce 
the number of errors generated. It is also possible to implement functions which 
are normally only available in a WYSIWYG system. 

202 1988 Conference Proceedings, 'JEXUsers Group 



Using SG ML and TEX for User Documentation 

LYNNE A. PRICE 

Hewlett-Packard Co. 
3200 Hillview Ave. 
Palo Alto, CA 94304 

ABSTRACT 

The Standard Generalized Markup Language (SGML), defined 
in International Standard (ISO) 8879, is a notation for representing 
documents and making their inherent structure explicit. The open
ended list of SGML applications includes document interchange, 
formatting or typesetting, loading databases for information re
trieval, stylistic or linguistic analysis, and computer-aided trans
lation. The combination of SGML and 'lEX is a natural one. This 
paper reviews the philosophy of SG ML and then describes a partic
ular environment where SGML and 'lEX are used together, giving 
specific examples of how processing is shared between the SGML 
application and 'lEX macros. 

Principles of SGML 

The Standard Generalized Markup Language (SGML) evolved from macro-based 
word-processing and text-formatting tools. Like a 'lEX macro package, it en
courages a writer to use descriptive markup, identifying structures within a 
document, rather than procedural markup, specifying processing. For exam
ple, "this is a section heading" is preferred to "center this line in boldface". As 
the word "generalized" implies, documents prepared with SGML can be pro
cessed in various ways. Descriptive markup allows authors to concentrate on 
content rather than appearance [2]. Since the syntax of an SGML document is 
independent of any processing performed, no recoding of the document source 
file is needed to submit an existing document to a new application. The same 
markup used to prepare a book index, for instance, might also be used by an 
information retrieval application to locate text relevant to selected terms. 

SGML is defined in International Standard (ISO) 8879 [3], adopted in Oc
tober 1986. It views a document as a hierarchy of structural elements. For 
example, a manual may be composed of front matter, some chapters, optional 
appendices, and an index. Similarly, a chapter may be a series of sections, while 
a section is composed of text and optional figures, tables, lists, and so on. 

No finite set of structural elements can account for the vast flexibility permit
ted in written texts. SGML therefore provides features for defining types of doc-

1988 Conference Proceedings, 'lEX Users Group 203 



Lynne A. Price 

uments and then coding particular documents that belong to the defined types. 
Possible document types include reference manuals, journal articles, memos, and 
letters. A document type is formally defined with a document-type defini
tion that itemizes the structural elements permitted in documents of that type 
and defines the contexts in which each element can occur. Most SGML users 
concentrate on creating and maintaining documents that conform to existing 
document-type definitions and hence do not need to learn the syntax for speci
fying new definitions. 

Document-type definitions frequently distinguish elements that are formatted 
in similar fashion. For example, newly introduced terms and titles of books 
may both be typeset in italics. However, logically they are different structures. 
Markup that distinguishes between them allows software to support maintenance 
of glossaries and bibliographies. 

The document-type definition can control context-sensitive interpretation of 
parts of a document. For instance, an asterisk may be interpreted as a code 
for the multiplication symbol inside a mathematical formula but as a footnote 
indicator elsewhere. Context-sensitive knowledge of valid document structure 
also permits various abbreviations of SGML constructs, called markup mini
mization. If it is known, for example, that every chapter begins with a chapter 
title, the SGML processor can recognize the first words in a new chapter as the 
title whether or not the writer has explicitly coded them as such. 

Most SG ML markup consists of identifying the beginning or end of structural 
elements. The most common convention (which can be overridden) is to mark the 
beginning of an element with the element name enclosed in angle brackets and to 
mark the end of an element similarly, but with the element name preceded with 
a slash. These delimiters are illustrated in the following (deliberately verbose) 
example: 

<glossary> 
<title>Glossary of Animals</title> 
<entry><term>Aardvark</term> 

<definition>The first animal listed in a 
dictionary.</definition></entry> 

<entry><term>Cat</term> 
<definition>A domesticated <xref>feline</xref>. 
</definition></ entry> 

<entry><term>Dog</term> 
<definition>A domesticated <xref>canine</xref>.</definition> 

</entry> 

</glossary> 

This example assumes that the document-type definition specifies rules for 
creating glossaries. Glossaries in this context are assumed to have titles and 

204 1988 Conference Proceedings, JEX Users Group 



Using SGML and 'lEX for User Documentation 

to contain multiple entries. Each entry has a term followed by a definition. 
Definitions may contain cross-references to other terms in the glossary. 

The document-type definition may also specify context-sensitive text-entry 
conventions. For example, glossaries may be defined so that the title and terms 
never extend past the end of a line and that entries are separated by blank lines. 
With these definitions, SGML treats the following exactly like the more complete 
form shown above: 

Glossary of Animals 

Aardvark 
The first animal listed in a dictionary. 

Cat 
A domesticated <xref>feline</xref>. 

Dog 
A domesticated <xref>canine</xref>. 

Combining 'lEX with SGML 

Although SGML allows multiple applications to be performed on a single source 
file, document formatting is the most common application. 'lEX is a natural 
choice for the back-end of an SGML-based formatting system. Several inde
pendent reports of environments where the two are used together have been 
made [1, 6, 8]. The complementary nature of the two languages is such that 
TUG has maintained liaison with the SGML standards community in the United 
States since 1982 and TUGBoat regularly publishes liaison reports. 

Even when no applications other than formatting are planned, some experi
enced 'lEX users prefer to code their documents in SGML, which can be auto
matically translated to 'JEX, rather than using 'lEX for the original source file. 
Such an approach enables the markup minimization features discussed above. 
In addition, SGML's knowledge of context automates some forms of error check
ing. Many 'lEX users can sympathize with someone who inadvertently omits the 
closing brace after an emphasized phrase and generates several pages printed in 
a boldface font or who neglects to close an indented list and discovers the rest 
of the document in narrow columns. An SGML parser, referencing the appro
priate document-type definition, knows that an emphasized phrase cannot span 
multiple paragraphs and that an indented list cannot cross a chapter boundary. 
When such markup occurs, the effect can be limited to a single paragraph or 
chapter and appropriate error messages issued. This context checking is an in
herent property of SGML rather than something that must be laboriously built 
into individual macros. 

1988 Conference Proceedings, 'lEX Users Group 205 



Lynne A. Price 

Various techniques for defining SGML applications have been used in con
verting SGML documents to 'lEX [5, 9]. One such system, called MARKUP, is 
described briefly below [7]. It should be noted that these tools typically simplify 
conversion of documents conforming to a particular SGML document-type def
inition into the form required by a particular 'lEX macro package; they do not 
automate preparation of any SGML document for an unspecified book design. 

MARKUP and the HP Tag Project 

User guides and reference manuals for Hewlett-Packard computers, software, 
and electronic instruments are produced by staff members located throughout 
the world in more than fifty independent writing departments. SGML supplies 
a means of standardizing markup conventions throughout the company, thereby 
allowing interchange of files without requiring replacement of all existing text 
processing software and the corresponding hardware. A shared markup technique 
also provides a vehicle for discussion among writers in different groups. 

Over the last two years, the company has developed an internal SGML stan
dard for documentation markup and implemented supporting software. HP Tag 
is an SGML document-type definition that describes the structure of Hewlett
Packard user documentation. The first application of HP Tag is typesetting 
with 'fEX. This package, available on two different computer systems, is used 
for English documents as well as manuals written in other languages. Its first 
production release was made available to documentation groups in February of 
1988, and there are now over 250 users. 

Programs have also been written to load HP Tag documents onto CD ROM 
for interactive retrieval and to prepare material for input to computer-assisted 
translation. Plans for the next several months include conversion of HP Tag 
documents to and from WYSIWYG systems as well as enhancement of existing 
applications. Areas receiving particular attention include revision control and 
increased support of illustrated material. 

A general-purpose SGML parser and application generator called MARKUP 
facilitates development of HP Tag applications. As are the HP Tag applica
tions, MARKUP is an internal tool rather than a Hewlett-Packard product. 
MARKUP applications are specified in a notation similar to that of traditional 
parser generators such as yacc [4]. The MARKUP programmer completes a ta
ble which indicates the processing to be performed for each instance of every 
element included in the document-type definition. Table entries specify actions 
to be taken at the beginning of the element, within it, and at its end. These 
actions are triggered whether the element is delimited by explicit tags or implied 
by the minimization conventions. 

When the MARKUP application generates a 'lEX source file analogous to the 
original SGML input, the actions usually consist of the 'lEX markup correspond
ing to the SGML construct. For example, the string {\it might be generated at 

206 1988 Conference Proceedings, 'l'_EX Users Group 



Using SGML and 'lEX for User Documentation 

the beginning of a book title, an introduced term, or a variable component in a 
computer command, while } is generated at the end of these structures. When a 
quotation mark occurs within normal text, the 'lEX open-quote convention ' ' is 
generated; when a quotation mark occurs within a quote element, the close-quote 
sequence ' ' is output. Similarly, \bye is generated at the end of the document, 
whether or not the writer bothered to enter an end-of-manual tag. 

When necessary, actions can also be entered as C code to be executed when 
the corresponding structure occurs. Examples of the use of C code in the 
MARKUP application definition are given below. 

Style of the Generated 'lEX Coding 

The style of 'lEX macros used in the HP Tag project is illustrated in the following 
example. The SGML form of the input is shown first: 

The ++red pencil++ is among the most versatile of 
editing tools. And versatility is essential, for the tools 
and for the editor. Jan White--in his valuable handbook 
<book>Editing by Design<\book>--writes of the varied 
skills needed to "organize the material in such a way that its 
! ! significance!! stands out." 

The 'lEX input automatically generated from this paragraph has a different 
style than the same material would if manually coded: 

\beginpar The % 
\pushfont\termtext 
red pencil\/\popfont{} is among the most versatile of 
editing tools. And versatility is essential, for the tools 
and for the editor. Jan White\EMDASH{}in his valuable handbook 
% 
\pushfont\booktext 
Editing by Design\/\popfont{}\EMDASH{}writes of the varied 
skills needed to ''organize the material in such a way that its 
% 
\pushfont\emphtext 
significance\/\popfont{} stands out.''\endpar 

Although HP Tag observes the same convention 'lEX does of separating para
graphs by one or more blank lines, in the generated file, paragraphs are explicitly 
delimited by the \beginpar and \endpar control sequences. Many control se
quences are preceded by % and a line break to ensure that the generated line does 
not exceed 'IE;X's input buffer and can be comfortably viewed on an 80-column 
screen. Macros such as \popfont and \EMDASH are followed by empty braces 
to prevent inadvertent concatenation of a control sequence name with any fol
lowing text. Font changes are made through a font stack controlled by macros 
\pushfont and \popfont. In this way, font changes can span 'lEX groups. 

1988 Conference Proceedings, ·'lEX Users Group 207 



Lynne A. Price 

The HP Tag 'lEX macros are not parameterized as they would be if the calls 
were user-written instead of automatically generated. Options are explicitly 
coded rather than allowed to default. For example, the chapter title is normally 
printed on the outside margin of the page footer, but the user can specify a dif
ferent footer if the chapter title is too long to fit in available space. User-invoked 
macros should be designed for the usual case. The chapter macro needs one pa
rameter, the chapter title. To override the default page footer, the user can call 
a second macro. Since the HP Tag macros are automatically invoked, however, 
the chapter macro can have two parameters, the chapter title and the footer 
specification, even though the values are usually identical. This repetition is not 
tedious to the user, since he enters the chapter title only once. Furthermore, 
there is no risk that two copies intended to be identical will in fact differ. 

Early versions of the MARKUP application used fewer macros than the cur
rent one. Consider, for example, the TEX code used to start a list. A macro is 
not necessarily needed for this purpose. Macros are used to give a convenient 
label to sequences of instructions that are needed repeatedly. In this case, the 
code is isolated in the start-list cell of MARKUP's definition table. MARKUP 
invokes it when needed and, in effect, it has already been given a logical name 
(start-list). However, debugging is simplified when macros are used; the TEX 
source file generated by MARKUP is more readable when it contains macro 
calls. Furthermore, the macro approach allows one developer to concentrate on 
writing and debugging macros while someone else implements the MARKUP 
translation scheme. 

Errors in an HP Tag file are reported by the MARKUP application. It is 
intended that reports of overfull and underfull boxes be the only error messages 
produced when 'lEX processes a file generated by the HP Tag convertor, as long 
as the original HP Tag source file was structurally correct. Minimizing 'lEX errors 
is especially important because authors are not required to be able to use 'lEX or 
to understand most of its messages. However, detecting errors in the translation 
phase forces messages to be written in terms of the user's view of the document 
rather than referring to internal details of the formatting implementation that 
the user probably will not understand. 

Allocating Tasks to 'lEX and MARKUP 

The processing required to typeset an HP Tag document is divided between the 
HP Tag to 'lEX conversion application and a TEX macro package. In some cases, 
such as counting items in a list or chapters in a manual, it is rather arbitrary 
whether the work is done with 'lEX or C code. Formatting-related tasks, of 
course, are reserved for 'lEX· The C interface is used to maintain data on cross
references, to replace data characters that have special meaning to 'lEX with 
control sequences that cause those characters to be printed, and to translate 
8-bit accented letters to corresponding sequences of accents and letters. 

208 1988 Conference Proceedings, TEX Users Group 



Using SGML and 'lEX for User Documentation 

The ability to supplement formatting instructions with a conventional pro
gramming language has enriched the type of processing performed. C makes 
some processing easier to do and allows some actions that cannot be done with 
TEX. For example, when a new term is introduced in an HP Tag document, the 
HP Tag to 'lEX translator outputs '!EX control sequences to print the term in 
a contrasting font. It also saves the term in a table. If the manual contains a 
glossary, terms from this table are compared to glossary entries. A warning is 
issued to the author identifying any terms entered in the table but not defined in 
the glossary. In the future, terms identified in the text may be used to generate 
a draft of the glossary from a database of standard definitions. The application 
may verify that glossary entries are in alphabetical order, using the collating 
sequence appropriate to the language in which the book is written. Similar tech
niques might be applied to generate and alphabetize a potential list of related 
documentation from the manuals mentioned throughout a text. 

The current application also uses C code when a period or comma occurs after 
an emphasized phrase or book title. The HP Tag environment prints the punc
tuation in the same font as the preceding material whether the author has placed 
it within the element or after it. A consistent style is thus produced throughout 
a set of manuals regardless of whether the writers have considered this issue. 
This consistency is enforced by the MARKUP application which delays generat
ing the 'lEX instruction to return to the original font until determining whether 
punctuation has occurred. 

Other types of consistency are enforced through the HP Tag document-type 
definition. SGML makes them available immediately with no special attention 
by the programmer developing an application. For example, HP Tag specifies 
that an ellipsis can be entered as 3 periods, optionally separated by spaces ( " ... " 
or " ... "). Whichever convention an author uses in a particular instance, all 
HP Tag applications will generate the same results. Similarly, a pair of adjacent 
hyphens, possibly preceded or followed by spaces, is always interpreted as an em
dash. (This convention deviates from the normal em-dash convention of 'lEX·) 
As illustrated in an earlier example, the HP Tag to 'lEX conversion program 
translates these sequences to the control sequence \EMDASH which outputs an 
em-dash and prohibits a preceding line break. 

Conclusions 

In summary, using 'lEX as a back-end to SGML provides authors with all the 
formatting power of 'fEX but with a simpler markup scheme. SGML's context
driven input stream enables markup minimization and checking for context
related errors. Error messages are phrased in terms of the structure of the 
document instead of unsuccessful attempts to process it. Applications other 
than formatting can be performed with no change to the source file. 

1988 Conference Proceedings, TEX Users Group 209 



Lynne A. Price 

Bibliography 

[1] Briiggemann-Klein, A., P. Dolland, A. Heinz. How to Please Authors and 
Publishers: A Versatile Document Preparation System at Karlsruhe. Pp. 9-
31 in TFfX for Scientific Documentation, Proceedings of the Second European 
Conference, Jacques Desarmenien, ed. (Lecture Notes in Computer Science 
236). Berlin: Springer-Verlag. 1986. 

[2] Coombs, J. H., A. H. Renear, and S. J. DeRose. Markup Systems and the 
Future of Scholarly Text Processing. Communications of the ACM 30:933-
947. 1987. 

[3] International Organization for Standardization, Information Processing
Text and Office Systems-Standard Generalized Markup Language (SGML), 
ISO 8879-1986(E). 

[4) Johnson, S. C., and M. E. Lesk. Language Development Tools. Bell System 
Technical Journal 57:2155-2175. 1978. 

[5] Le van, H., and E. Terreni. A Language to Describe Formatting Directives 
for SGML Documents. Pp. 98-119 in TFfX for Scientific Documentation, 
Proceedings of the Second European Conference, Jacques Desarmenien, ed. 
(Lecture Notes in Computer Science 236). Berlin: Springer-Verlag. 1986. 

[6) Price, L.A. SGML and '!EX· TUGBoat 8(2):221-225. 1987. 

[7] Price, L.A. A Parser Generator for SGML. Pp. 118-123 in PROTEXT IV: 
Proceedings of the Fourth International Conference on Text Processing Sys
tems, J. J. H. Miller, ed. Dublin: Boole Press. 1987. 

[8] Smith, C. DAPHNE (Document Application Processing in a Heterogeneous 
Network Environment): An Implementation Based on the Standard Gener
alized Markup Language (SGML). SGML Users Group Bulletin 1(2):75-82. 
1986. 

[9] Smith, C. A General Interface Solution for SGML Formatting Applications. 
SGML Users Group Bulletin 2(2):87-89. 1987. 

210 1988 Conference Proceedings, TEX Users Group 



DVI Previewers 

KEN YAP 

Department of Computer Science 
University of Rochester 
Rochester, NY 14627 
ken@cs.rochester .edu 

ABSTRACT 

DVI previewers provide a convenient and valuable link in the 
authoring process that saves time and costs. While the turnaround 
time of medium resolution printers is measured in minutes, that of 
a previewer is measured in seconds. In return for speed, several 
trade-offs have to be made. The resolution is sufficient to verify 
page layout, page breaks, and the placement of large objects, but 
not to easily observe finer details such as spacing corrections. There 
is the problem of obtaining previewing fonts at the desired resolu
tion. Embedded graphics that use page description languages such 
PostScript present another problem. 

Three previewers, dvitool, :x:dvi and texx, are used as case 
studies. These exhibit a variety of approaches to the problems men
tioned as well as different styles of user interface. Some speculation 
on future prospects for DVI previewers is indulged in. 

The Authoring Cycle 

The traditional authoring cycle on a glass teletype interface to 'JEX is edit/ 
format/print. Although 'lEX is better than other formatters at catching syntactic 
errors in a document, verifying page layout, page breaks, and the placement of 
entities like equations and paragraphs requires hard copy. Unless one is fortunate 
to have a printer adjacent to one's terminal, a trip to the printer room is required, 
perhaps even a wait for one's print job to reach the head of the queue. This 
imposes many of the characteristics of the old-fashioned batch job environment 
on work, even if 'lEX is run interactively. The turnaround time and printing costs 
make this approach even less palatable for tasks like debugging 'lEX macros. 

The widespread availability of graphics displays has changed this. These 
machines have screens that are addressable by pixels instead of by characters. 
A common resolution is 80 dots per inch ( dpi). With such screens it is possible 
to display a rough representation of the printed page. The authoring cycle then 
becomes edit/format/preview, and print is, one hopes, the final stage executed 
only once. 

1988 Conference Proceedings, 'lEX Users Group 211 



Ken Yap 

Principles of Operation 

A DVI previewer is a program that interprets the information in the DVI file. 
It takes the glyph and positioning information in a DVI file and combines this 
with font files to obtain raster images that to be displayed on the screen. A DVI 
previewer has many similarities to an output driver but, of course, previewers 
are intended to run interactively. Fortunately, the DVI format was designed to 
allow random pages to be located rapidly. Commands to display a specific page 
are easy to implement. 

Displaying DVI output on a bitmap display is conceptually simple. When the 
program encounters an output command, it just takes the raster of the character 
in the current font and transfers it to the screen at the current location. Rules 
have to be drawn with line drawing commands. Positioning commands simply 
update the current position on the screen. When an end-of-page command is 
encountered, the previewer displays the current page and awaits a user command. 
Messy little details such as maintaining the DVI stack, font bookkeeping and 
caching, obeying the MAXDRIFT rule to guarantee that the error does not 
exceed one pixel, and interactive control are the concern of the previewer author. 

Returning to a previous page or repainting the page is a common operation 
and many previewers transfer the characters both to the screen and to an off
screen memory bitmap in unison so that redisplaying the page is fast. Some 
previewers even attempt to rasterize the next page while the user is looking at 
the current one. 

Background 

The three previewers in this case study come from various sources. Dvi tool 
is a Sun View program from the VorTEX tools developed at the University of 
California at Berkeley, xdvi and texx are contributed software from the MIT 
X Windowing system tape. All three previewers run on UNIX. Dvitool is 
distributed with a set of previewer fonts, while the other two previewers use 
fonts intended for downloading to laser printers. All three previewers display on 
bitmapped screens. 

Fonts 

There are two principal means of obtaining bitmap fonts for previewers. The 
first is to generate previewing fonts at the screen resolution with METAFONT. At 
low resolutions, METAFONT simply has no opportunity to work well. Rounding 
error ([3] Chapter 24) takes its toll. As expected, fonts with less high visual 
frequencies, like cmtt and cmss, survive better. Hand-tuning with a font editor 
is needed1 to get a good appearance. Release 1.0 of dvitool provided tuned 
fonts. In later releases, this was abandoned because of the sheer number of fonts 
to be treated. 

1 Nay, probably mandatory for commercial products. 

212 1988 Conference Proceedings, TEX Users Group 



DVI Previewers 

The second method is to sub-sample the printer fonts; xdvi and texx use 
this approach. The basic method is to reduce each n x n block of pixels to 
a single pixel. The algorithm is usually simple thresholding, that is, if more 
than a certain fraction of bits in the block are 1, the result is 1. This method 
has the advantage that any font available to the printer is also available to 
the previewer, economizing on disk storage. Sub-sampling takes no notice of 
character outlines and often produces shapes that have broken outlines and that 
are recognizable only in the context of other letters. Sub-sampling is a CPU
intensive operation because of the bit operations involved. It needs to be done 
only once for each distinct font however. Anomalies may appear in the final 
image. A user once complained that xdvi previewer was losing some 1\TEX lines. 
A little investigation showed that the lines were thin enough and straddled pixel 
blocks in just the right way to suffer elimination. Another disadvantage is that 
the zoom factors are limited to those provided by integer divisors of the printer 
resolution. 2 

If zoom is provided using dedicated previewing fonts, fonts have to be kept at 
several magnifications. The disk storage devoted to previewing fonts may rival 
that for printer fonts, even though the individual font files are smaller. 

If the sub-sampling method is used to generate fonts, the previewer can show 
the user the appearance of the output page by turning off sampling. In effect 
this provides the user with a magnifying glass. Texx is one previewer with this 
feature. The rasterization process is even slower, but this feature has proved 
useful for debugging minute spacing corrections in mathematical formulae. 

When a previewer cannot find a font at the right size or resolution, it can 
substitute the same font in a lower magstep or lower resolution, on the principle 
that it is more useful to display something close than nothing at all. Some 
previewers allow user-specified substitutions. This is good, for example, for 
looking at that odd DVI file that arrived without 'lEX source and uses obsolete 
am fonts. 

Non-'JEX fonts such as the Adobe PostScript fonts are a problem. Recent 
output drivers allow native printer fonts to be intermixed with Computer Modern 
fonts. These fonts are usually printer resident and proprietary, which means 
that bitmap versions are generally not available at low resolution. Perhaps the 
problem will be solved when type foundries release low-resolution versions of 
printer fonts for previewing purposes. 

Vector Displays 

Vector displays are output devices that have enjoyed more popularity in the past. 
Unlike bitmap displays, the screen is not considered as a matrix of dots which 
can be addressed on a per-dot basis, but as a screen upon which lines are drawn. 

2 Fonts in steps of 'JEX's magsteps can provide zoom too, but there is no guarantee that a 
given font is available at a given magstep. 

1988 Conference Proceedings, TgX Users Group 213 



Ken Yap 

Typically, the driving program sends the display a list of commands specifying 
the start and end points of lines. These vector displays are to pen plotters what 
bitmap displays are to bitmap printers. 

Previewers exist for vector displays. It is a bad idea to try to simulate a 
bitmap display on a vector display because the communication channel is too slow 
to send thousands of dots. It is more sensible to draw the best approximation to 
the character with strokes. 'lEX fonts are normally bitmap fonts so other fonts 
have to be substituted. The Hershey fonts, which were originally developed for 
plotters, are a popular choice because of their easy availability (practically free). 
One has only to assemble fonts that resemble Computer Modern. Even so, many 
mathematical symbols and foreign ligatures are missing. The characters plotted 
are the best Hershey approximations to Computer Modern so it is pointless to 
pay heed to anything other than gross positioning problems on the screen. 

Changing the magnification on vector displays is easy when vector fonts like 
Hershey are used-only the scale factor between the stroke dimensions and the 
display needs to be changed. However, the relatively thick lines drawn by vector 
displays impose a limit on the fineness of details that can be discerned. 

Previewer Limitations 

Low resolution is the bane of previewers. A 10 points the character a in Computer 
Modern Roman is just under 0.07 inches wide. At 80 dpi this means just 6 
horizontal pixels are available to represent the character. The drastic drop in 
quality can best be appreciated by looking at bitmaps of the letter a at 300 dpi 
and 80 dpi. 

• •••••• 06> 000 
$0<!>0 ••• 
<ilt>O® 0&0 

•• • •• .... ••• •••••••• ••••• • •• 00€10 • .,. 
@fj(;>Q) ••• 
eee eee 

•••• ••• 0 
•••• ••• • •••• ••• • ••• •••• • 0ee> e eee e •••••• • •• 

Figure 1: Bitmap of the letter a at 300 dpi 

Fine details of letters like the tails are simply lost and only in the context of 
other letters does the human eye perceive the low resolution version as an a. 

One way of artificially raising the effective resolution is to abandon the idea 
of displaying pages at true size. For example, the display resolution can be set 
to 120 dpi (120 dots per document inch, not screen inch) or greater, which helps 
improve display quality. Pages then display greater than life-size and a full page 

214 1988 Conference Proceedings, 'lEX Users Group 



•• •• •• • • • • •••• 
Figure 2: Bitmap of the letter a at 80 dpi 

DVI Previewers 

cannot fit on the screen anymore. Commands have to be provided to scroll the 
page. These are necessary in any case for small screens, and to display oversize 
pages, for example, those generated for large conference proceeding mats. 

Grey Scale Fonts 

The curse of low resolution may be partly alleviated with grey scale or color 
monitors, for those lucky enough to have one. If the size of a pixel is small 
enough, brightness and size can be traded off. Warnock [5] found grey scale 
fonts readable in small point sizes at which black and white fonts were illegible. 
256 grey levels can be generated by a block of 8 x 8 pixels and thus would appear 
to improve the effective resolution by a factor of 8 over a black and white display. 
However it is not clear that a linear relationship between brightness and apparent 
resolution holds for human perception. In any case, only a factor of 4 is needed 
to raise the effective resolution to that of a 300 dpi printer. A previewerrecently 
posted to Usenet, dvipage, uses grey scale fonts. These fonts are generated on 
the fly by filtering printer fonts. 

Previewers in Use 

How do users typically use previewers? As previously noted, fine details are 
invisible on the screen. Fortunately, previewers are mostly used to verify the 
composition and placement .of large entities, such as equations, paragraphs and 
figures. Before the advent of graphical editors like :!'ig, previewers were invalu
able for debugging U.TEX pictures. The placement of floating figures is also easily 
observed with a previewer. The difference between ordinary and bold text often 
cannot be seen. However, italic text is visible as such. 

Only a small set of previewer operations are essential. Most users only require 
scrolling, forward and backward paging, and the ability to jump to a specific 
page. It is desirable to provide searching by both physical and logical page 
('IE;X's \countO and \count 1). After that come the frills. Zooming is useful, as 

1988 Conference Proceedings, TEX Users Group 215 



Ken Yap 

is the means to trim blank margins to maximize use of the screen area. Texx 
has, as mentioned before, a two-level zoom, which suffices for most needs. String 
search is handy but is very difficult to implement correctly for all circumstances. 

Previewers are slow to start up and one can amortize the overhead of reading 
fonts and other work if one instance of the previewer is kept active, instead of 
invoking a fresh copy after every change to the document. It is useful to be able 
to change to a different DVI file while in the previewer or, at least, to reread the 
current DVI file: Dvitool can be combined with 'lEX in a format/preview loop. 
Users at this site (University of Rochester) often keep a dvitool window active, 
ready to use at a moment's notice. Texx has a command to reread the DVI file. 
This is used to display the results of the latest rerun of 'lEX on a document. 

Dvi tool allows customizable key bindings, ala Emacs. Obviously the author 
is a fan of Emacs. An informal survey of users at this site showed that hardly 
anyone used private bindings. The development effort would have been better 
spent on making the tool conform to some windowing interface style (pull-down 
menus, scrollbars, and similar things), for which standards are emerging. 

Extensions 

TEX was designed primarily for typesetting text. Often, users need more than 
what UTEX pictures or P[CIEX can provide. (DVI files generated by these meth
ods require no non-standard fonts.) The \special feature of TEX is used for this 
pictures. In one method, tpic specials are used to specify geometric entities, 
e.g., lines and circles. Obviously, the previewer must be capable of interpreting 
these specials or blank pictures appear on the screen. 

The other major approach is to include specials that command the output 
driver to interpolate printer-specific code in some page description language3 

(PDL) like PostScript. This approach is often used for including digital halftone 
pictures such as the output of screen dumps. Although TEX has been persuaded 
to print halftone pictures[4], these pictures can overflow TEX capacities and 
standards do not yet exist for encoding and software, so the use of printer-specific 
specials is common. 

Such specials are a problem for previewers. Even assuming the marketplace 
standardizes on one PDL-an unlikely possibility, previewing such documents 
requires implementing a general PDL interpreter in the previewer; a daunting 
task. 

Unlike text, graphical objects are less amenable to automatic placement and 
are therefore more likely to require previewing even though they are more difficult 
to handle than text in previewers. 

3 A page description language defines the set of typesetting conunands understood by the 
printer. 

216 1988 Conference Proceedings, TEX Users Group 



DVI Previewers 

Teletype Previewers 

We should also note in passing another, cruder variety of previewer intended for 
use on glass teletypes. An example is a recent proposal in TUGboat[2]. Here at 
this site, we have had good service from dvitty. It is useful for glass teletypes, 
dial-up connections, and when one is too impatient to start up a bitmap pre
viewer. In the output from this previewer words run together, font changes go 
unnoticed, and ligatures and math symbols are illegible. This previewer allows 
one to note the position of page breaks and floats, and that is about all. 

The Future 

The resolution of displays will improve. Already 120 dpi and higher resolution 
displays are supplied as standard with some workstations. The human vision 
system has a maximum resolution of about 60 cycles per visual degree. This 
translates to about 600 lines per inch at normal viewing distance[!], so screens 
do not have to improve indefinitely. Some day the resolution of screens will equal 
that of the printed page and there will be no need to make adjustments for the 
different output resolution. 

DVI previewers for bitmap displays are often constructed on top of a graph
ical library or some windowing system, such as QuickDraw, Sun View or X. It is 
likely that a user interface standard will emerge for previewers using the same 
windowing system, thus reducing the learning load for users. 

'lEX has placed computer typesetting on a firm mathematical basis. It is a 
prime candidate for the formatting sub-system in publishing systems. Previewers 
are an anomaly introduced by the discrepancy between the speed and quality of 
screens and printers. As the quality of screens approaches that of printed copy, 
previewers will become widely integrated into publishing systems. There will be 
interactive tools that allow not only viewing the output of a run but also allow 
editing objects for the next run. The format/view cycle will be shortened by 
WYSIWYG tools that handle smaller pieces of input. The publishing system of 
the future will allow an author to combine page, text, drawings and half-tone 
or color photographs on the page from a variety of sources. It is conceivable 
that publishing stations, analogous to workstations, equipped with prodigious 
formatting power, font, and image resources, will become standard off-the-shelf 
items in vendors' catalogues. 

Acknow legements 

Thanks are due to the authors of the three primary examples of previewers 
studied in this paper. Dvitool (Jeff McCarrell, UCB), xdvi (Eric Cooper 
and many others), and texx (Dirk Grunwald, University of Illinois) all run 
on UNIX. Many thanks also to the authors of other previewers for sending 
the author useful documentation. The programs and authors (or informants) 
are: DVIVIEW (Peter Scott, JPL), dvibit (Nelson Beebe, University of Utah), 

1988 Conference Proceedings, TEX Users Group 217 



Ken Yap 

DVIDIS (Jerry Leichter, Yale University), DVIPerq (Paul Milazzo, Rice Univer
sity), CDVI (Wayne Sullivan), DVI3279 (Dr. Georg Bayer, Rechenzentrum der 
Technischen Universitat Braunschweig), DVI82 (Maika Cymbalista, Weizmann 
Institute of Science), DVItoVDU (Andrew Trevorrow), TXMAPPER (M.L. Luvisetto 
and E. Ugolini, CNAF). 

I am grateful to M. Srinivas for his editorial comments on this paper. I lay 
claim to any residual errors. 

Bibliography 

[1] Bigelow, C. Proceedings of the Typography Interest Group, ACM CHI'85. 
SIGCHI Bulletin, 17(1):9-15, July 1985. 

[2] Brown, M. An ASCII Previewer for 'JEX. TUGboat, 9(1):34-36, April1988. 

[3] Knuth, D. E. The METAFONTbook. Addison-Wesley, 1986. 

[4] Knuth, D. E. Fonts for Digital Halftones. TUGboat, 8(2):135-160, July 1987. 

[5] Warnock, J. E. The Display of Characters Using Gray Level Sample Arrays. 
Computer Graphics, 14(3):302-307, July 1980. 

218 1988 Conference Proceedings, TEX Users Group 



PreTEX: Tools for Typesetting Technical Books 

ROBERT L, KRUSE 

Department of Mathematics and Computing Science 
Saint Mary's University 
Halifax, Nova Scotia 
B3H 3C3 
Bitnet: krusea!stmarys 

ABSTRACT 

Pre'IEX is a new system for simplifying the typesetting of technical 
books with 'lEX· It consists of a preprocessor for TEX (written in 
Pascal), a large package of macros, and auxiliary programs for pro
ducing an index and other supplements, and for performing other 
tasks. The preprocessor supplies much of the detailed markup re
quired for good results with plain TEX and greatly simplifies the 
typesetting of computer programs. The macro package allows an 
author to use only logical markup in the text itself. At the same 
time, it provides the book designer with flexibility in the placement 
of elements, choice of dimensions, color use (when appropriate), 
and selection of type fonts. The indexing software produces page 
ranges automatically and edits the index to three levels of entries 
and subentries. 

Introduction 

This paper introduces a 'lEX preprocessor, macro package, and auxiliary pro
grams, collectively called the Pre'JEX system. I developed the initial version 
of Pre'fEX for my own use in writing and typesetting several technical books 
(computer science textbooks) during the past few years, but now it has grown in 
power and generality to a point where it may prove useful to other authors and 
to publishers of technical books. The system is, in fact, rather large, consisting 
of more than 3000 lines of Pascal in the preprocessor, more than 500 macros, 
together with several smaller computer programs for special purposes such as 
constructing an index or extracting specialized material such as solutions to ex
ercises or private documentation that is included with the text but is intended 
to be published either separately or only in special versions of the document. 

At present, Pre'fEX is implemented on the IBM PC and compatibles and 
on the VAX/VMS system. Since the programs are written in standard Pascal 
(except for input and output) and the macros in plain 'JEX, the Pre'JEX system 

1988 Conference Proceedings, 1E;X Users Group 219 



Robert L. Kruse 

can be quickly ported to most computers supporting both a Pascal compiler and 

'lEX· 

1 Goals 

1.1 Author's perspective 

The writing, typesetting, and production of a technical book are long and fraught 
with problems, but the process can be simplified by the separation of concerns, 
that is, by concentrating on one aspect of the process at a time. During the 
writing of a book, the author should 'not need to think at all about the typeset
ting process. This means that the markup in the manuscript should be strictly 
logical, specifying what each element is but never how or where it should appear 
in the final format. Certainly the author should never need to be concerned 
with the minutia! of typesetting, details like italic corrections, various kinds of 
dashes or quotation marks, the insertion of backslashes before common mathe
matical symbols, or special commands needed to set keywords or comments from 
a computer program in different fonts. 

The first goal of the Pre'JEX system is to relieve the author of as many of 
these concerns as possible. The preprocessor does so by automatically inserting 
much of the markup required by 'lEX to achieve its high standard of typesetting. 
It also translates many common symbols into the equivalent control sequences 
demanded by 'lEX· The macro package then complements this work by providing 
a large number of logical markup commands, chosen to describe all the elements 
appearing in most technical books. 

At this first stage of its use, PreJEX is geared toward the technical writer, 
with names of commands chosen to be meaningful for an author, a straight
forward syntax easier to learn than plain 'JEX, and with the verbal style for 
mathematics that mathematicians who use 'lEX appreciate, but with a simpli
fied syntax. 

1.2 Designer's perspective 

The second stage in book production is design. Good design requires choosing 
a visual presentation that enhances the content of the book and commends it 
to its intended audience. To achieve these goals the design artist needs a great 
deal of flexibility and the ability to specify all the dimensions, the choice of type 
fonts, and the use of color in a language similar to that which book designers tra
ditionally use. Pre'fEX therefore provides not only a selection of predetermined 
styles (from which the author and designer can make an initial choice) but files 
(with documentation) defining all the type fonts and dimension parameters used 
in the style. The design artist can therefore begin with a sample style and by 
changing the choice of fonts, the use of color (if any), and the values of various 
dimensions can alter the style as desired. 

220 1988 Conference Proceedings, TEX Users Group 



Pre'IEX: Tools for Typesetting Technical Books 

For the more complicated elements, such as chapter openers and section 
heads, the macros specify the design by putting together simpler building blocks. 
The artist more experienced with Pre'IEX can create new styles by putting these 
building blocks together in different combinations, as well as by changing the 
dimensions and type fonts. 

With a screen previewer, the artist can experiment with many variations of 
the design easily and without the substantial work of producing mock-ups by 
hand. 

1.3 Programmer's perspective 

For any software system to continue to prove useful, it must be extensible to meet 
new requirements. The system should be as open and flexible as possible. The 
Pre'IEX macros have therefore been designed to be modular, well documented, 
partitioned into files for easy access, and available for the TEX macro programmer 
to change as needed. 

In everything it does, Pre'JEX remains consistent with the features of plain 
'f:EX., so that almost anything written in conformity with the rules of plain 'lEX 
will be processed in exactly the same way, and so Pre'JEX can be extended by 
writing new macros as desired. Anything that can be accomplished with plain 
'lEX can also be accomplished under Pre'JEX with no additional difficulty. 

1.4 Further objectives 

During the production process, the author and production editor need various 
extracts from the text, so Pre'IEX provides utility programs that produce element 
lists, art lists, and the table of contents automatically. Another utility extracts 
computer program listings from the text so that they can be tested. Further 
software takes 'lEX's output of index entries (inserted by the author into the 
original text), sorts them, determines page ranges, edits them into main entries, 
subentries, and sub-subentries, and typesets the index in one, two, or three 
columns as desired, all automatically. 

Solutions to problem sets, specialized documentation, commands to extract 
material for transparency masters, or other such supplementary material, can be 
embedded in the text files but will not be typeset with the text unless desired. 
Instead, this material can be automatically extracted (along with appropriate 
elements from the book text itself) and organized as a separate document. Hence 
the production of a textbook and its solutions manual or other supplements can 
proceed at the same time, and with any revision to the textbook its supplements 
can be brought up to date very quickly. 

At present, sample Pre'J:EX styles have been made for both Computer Modern 
and PosTSCRIPT fonts (and combinations thereof). For a PosTSCRIPT output 

1988 Conference Proceedings, 'lEX Users Group 221 



Robert L. Kruse 

device, PreTEX provides macros and PosTSCRIPT procedures for producing two
color separation and halftone screens. 

2 Preprocessor Environments 

Much of the work of Pre'IEX is done by its preprocessor, which is written in 
Pascal. Tasks that can be done easily by 'fEX are passed through the preprocessor 
without change and processed by 'lEX macros. The preprocessor handles those 
tasks that are more easily performed by a computer program operating directly 
on strings of characters. Commands to the preprocessor are either legitimate 
'lEX control sequences (which are then also sent through for further processing 
by 'lEX) or are constructions that would be illegal in plain 'lEX (such as using a 
circumflex or underscore outside of mathematics). In this way, the preprocessor 
maintains complete compatibility with plain 'JEX. 

At any time, the preprocessor treats its input in accordance with one of 
several environments, in each of which the input is processed differently, and 
the same symbols may have quite different meanings. A hyphen between two 
digits, for example, becomes a minus sign (-) in a program (or in mathematics, 
of course), but becomes an en-dash(-) in text. Between two letters a hyphen in 
text remains, but becomes an em-dash(-) if it is surrounded by blanks. 

At present, the environments implemented in Pre'IEX are text (the default, 
outer environment), mathematics, computer programs in various languages (Pas
cal, Modula-2, C, FORTRAN, Prolog, Smalltalk, and several others), algorithms, 
verbatim, and caps/small caps. 

2.1 Text environment 

The text environment differs only in small ways from that provided by plain 'lEX, 
but in ways that simplify the input for the author who is not already conversant 
with 'lEX· Straight double quote marks (")are translated into opening or closing 
double quotes according to simple rules that almost always produce the correct 
results. If the rules fail, then the standard 'fEX constructions remain available. 
Hyphens, single quotes, and dots change meaning according to the context. Font 
changes in text can be made with only two or three keystrokes. Pre'fEX keeps 
track of which fonts are oblique; it inserts an italic correction when the current 
font changes from oblique to straight and the following character is not one of a 
comma, period, or slash. 

All kinds of elements in the text are automatically numbered. These include 
sections and subsections at various levels, theorems, figures, tables, footnotes, 
apd list entries. There are several kinds of automatic list constructions, in
cluding arabic numerals, upper- and lowercase roman numerals, and upper- and 
lowercase letters. 

222 1988 Conference Proceedings, 'lEX Users Group 



Pre'Il.<::X: Tools for Typesetting Technical Books 

2.2 Mathematics environment 

In the mathematics environment, similarly, the syntax is simplified. Most com
mon mathematical terms can be written without an initial backslash, and certain 
combinations of special symbols are translated into the equivalent 'IEX control 
sequences. vVhen the user types three dots ( ... ), for example, Pre'fEX substi
tutes either \cdots or \ldots according as the context requires. 

2.3 Program. environments 

It is in the environments for typesetting computer programs that the Pre'fEX 
preprocessor achieves its major results. When programs are set in a variable
width font, the spacing around various symbols should be adjusted to reflect the 
symbol's use as a binary operator, a unary operator, a delimiter, or whatever. 
Pre'fEX therefore recognizes enough of the syntax of each programming language 
to determine how to interpret each symbol. Sometimes this interpretation varies 
with the context. 

Even more importantly, many of the symbols used for special purposes in 
'lEX are used for quite different purposes in computer programs. Curly braces, 
for example, normally delimit groups in T.EX and do not appear in the output. 
In C, however, they are important for connecting several statements together 
as one block, and in Pascal they mark the beginning and end of a comment. 
Hence they must appear in the typeset version. One approach, of course, would 
be to change the \catcode of the special symbols used in programs. But doing 
so would make it difficult to insert 'lEX commands into a program. Macros for 
both index entries and marginal notes, for example, take parameters normally 
delimited by curly braces. Hence Pre'IE;X. does not (often) change category codes 
but instead recognizes whether material in braces is a parameter to one of the 
'lEX macros in its lexicon or consists of program statements to be processed 
further. 

Pre'fEX, moreover, enters its text environment when it processes the param
eter of a macro in its lexicon, a comment in a computer program, or a \vbox 
or \hbox in mathematics, so that these constructions can contain font changes, 
special Pre'f:EX text features, mathematics, or even another program segment as 
the user wishes. 

2.4 Verbatim. environment 

The verbatim environment comes closer to reproducing its input exactly than 
plain T:EX can with only its \obeylines and \obeyspaces macros. In the PreTEX 
verbatim environment all symbols are shown exactly as they appear in the input 
file except for the one command that ends the environment and a 'lEX control 
sequence preceded by the special command \obey, which will then be obeyed. 

1988 Conference Proceedings, 'lEX Users Group 223 



Robert L. Kruse 

2.5 Caps/small caps environment 

A few words should be said about the caps/small caps environment, since most 
'lEX users think of using capitals and small capitals only as a font change. Doing 
so limits the use of capitals and small capitals to typefaces where such a font is 
provided, and this may be a limited number (only ten point roman and typewriter 
in the standard Computer Modern family, none in the PosTSCRIPT family). 
Instead, the user should be able to use capitals and small capitals in any typeface. 
Pre'IEX provides this ability in its caps/small caps environment by translating 
lowercase letters to capital letters taken from an appropriately smaller size of 
the same typeface. In conjunction with PosTSCRIPT, Pre'IEX allows the use of 
small capitals with any typeface at any size. 

3 Macros 

A more detailed description of the macro package in Pre'IEX may be published in 
another forum, but let me mention here only the basic philosophy of organization 
of the macro package. This philosophy is to present the macros on three levels. 

The first level is that of the author who is concerned only with the logical 
description of the elements in the manuscript. On this level the macros should be 
simple and easy to describe, but sufficiently rich to characterize all the features 
that ordinarily appear in technical books. 

On the second level come the macros concerned with book design. Here a 
much larger set of control sequences become available, but with basic construc
tions made up of building blocks that can be put together in many different 
ways with minimal interaction or side effects on each other. The user with only 
a basic understanding of '!EX groups, boxes, glue, and the like should be able to 
understand and reassemble the macros that appear on this level. 

Finally comes the technical level on which the precise definitions of all the 
various structures are given. It is only on this level where the more sophisticated 
constructions in 'lEX (such as conditionals, recursion, token lists, \expandafter, 
\futurelet, or \aftergroup) make their appearance. Very few users should 
ever have to look at the macros on this level. They should, nevertheless, remain 
accessible and be well documented so that the experienced macro programmer 
can make modifications as necessary. 

4 Index Processing 

The final important phase of Pre'!EX is construction of the index for a book. 
Again, presentation of the details must be deferred, but a general outline follows. 

As 'lEX proceeds, it constructs files of index entries extracted from the text. 
These files are then sorted alphabetically by a postprocessor that first edits the 
entries by translating 'lEX control sequences into appropriate strings of charac
ters if they generate alphabetic output and suppressing other control sequences. 

224 1988 Conference Proceedings, 1E;X Users Group 



Pre'IEX: Tools for Typesetting Technical Books 

The output from this phase is designed to be easily read by a person, so the 
author can correct errors or inconsistencies in the complete index at this time. 

Next comes a second automatic process that notes the beginning and end of 
each page range, collects similar entries, and constructs the page ranges. This 
processor deletes duplicate entries and amalgamates overlapping page ranges. It 
includes facilities for attaching brief notes to the page numbers as appropriate. 
This processor also edits the entries by finding common initial segments in the 
text of successive entries and thereby arranges them into main entries, subentries, 
and sub-subentries. Its output file is now in a form that can be easily processed 
by '!EX, and so the index is finally typeset. The special macros for typesetting 
the index can produce the index in one, two, or three columns as desired. These 
macros use the 'lEX \mark feature to repeat the text of a main entry if the list of 
its subentries continues past the end of a column. This repetition of main entries 
(and of subentries in the case of a continuing list of sub-subentries) can appear 
at the top of each column (when appropriate), at the top of the first column of 
the page only, or at the top of the first column of only even-numbered pages, as 
desired. 

Conclusions 

Many authors, impressed with the excellent quality of typesetting that 'lEX 
produces, are nonetheless intimidated by its complexity and with the substantial 
effort required both to learn 'lEX and to write macros sufficiently robust and 
flexible to handle the problems of typesetting a technical book. The Pre'IEX 
system provides all the tools that such authors need to produce the highest 
quality results without learning the intricacies of 'lEX or doing any programming 
of 'lEX macros. The language and command structure of Pre'IEX are easy for a 
technical writer to learn and sufficient to describe all the elements appearing in 
most technical books. 

For the book design artist, Pre'IEX provides a good range of sample de
signs and a great deal of flexibility in modifying and adapting these designs. 
These modifications are produced by changing dimensions, type fonts, and basic 
building blocks described in terms similar to those traditionally used by design 
artists and typesetters in presenting the specifications for a book design. With 
no change at all to the manuscript itself, a book may be typeset in a wide range 
of styles, with one- or two-color printing, with or without material appearing in 
a margin, and so on. 

For the 'lEX macro programmer, finally, Pre'IEX provides a solid basis for 
further development, with macros that are arranged and documented in a mod
ular form. The entire system is designed to be compatible with plain '!EX, so it 
can be extended and modified as desired with no loss of the flexibility and power 
provided by the features included in plain 'lEX· 

1988 Conference Proceedings, 'lEX Users Group 225 



Robert L. Kruse 

Availability and Acknowledgements 

At present, Pre'fEX is being tested in the production of several textbooks and 
their supplements, with different designs and with both one- and two-color print
ing. Extensive documentation is also being prepared. It is hoped that this testing 
and documentation will be completed during the summer of 1989, and Pre'IEX 
should then become available for more general distribution. 

My students Steven A. Matheson and J. David Brown have assisted me in 
many ways in the development of Pre'IEX. They have helped with programming 
in Pascal and in 'fBX, with testing, and with applying Pre'IEX to various docu
ments. I am grateful for their contributions. 

226 1988 Conference Proceedings, 'lEX Users Group 



Cap'IEX: Industrial Strength lEX 

MIKE SCHMIDT 

Honeywell Bull Ltd. 
1101 Prince of Wales Drive 
Suite 255 
Ottawa, Ontario 
K2C 3W7 
Schmidtm@cmr001. bitnet 

ABSTRACT 

Contrary to the usual 'lEX-based systems, Cap'IEX uses 'lEX's 
strengths to build a markup language that defines document struc
ture, rather than document format. Structure~oriented documents 
are much more suited to the "pour into a mold" approach required 
by the technical publishing industry. Cap'IEX is the core of Hon
eywell Bull's CAP (Computer Aided Publication) package. This 
system is designed for large-scale use, and includes such things 
as controlled updating, spelling and style checking, and document 
databases. While other 'lEX-based systems concentrate on per
sonalized formatting for printing on paper, Cap'IEX concentrates 
on the structural elements of documents, so that the same source 
document can be used in many different ways, among them de
mand printing, on-line browsing, and interactive help. Cap'IEX is 
an excellent system for producing "standard" documents, no matter 
what the "standard" (nor how many standards there may be!). 

Background 

Back in the late 70s, when Honeywell Bull's CP-6 operating system was being 
developed, the early stages of software engineering were making themselves felt 
as the design team opted for machine-resident documentation, which would be 
delivered both as site-printable manuals and help databases. Internal technical 
information and error messages were kept directly in the source files, to be ex
tracted by a process only vaguely similar to Don Knuth's WEB system. A very 
tight version and change control system was also put in place, for both the code 
and the documentation. 

At that time, the only text formatter available to the CP-6 design team was a 
re-hosted version of Multics Compose, which, to some degree, was the precursor 
of the nroff/troff class of formatters. It did not, however, handle such things as 
multiple fonts, or, in general, anything not suited to a line printer. 

1988 Conference Proceedings, 1E;X Users Group 227 



Mike Schmidt 

Starting with TEXT (the CP-6 name for this formatter), and building around 
it for the next 8 to 10 years, the CAP package slowly took shape. All CP-6 man
uals have since been published with CAP. They are available in three forms: as 
published manuals, as print files for line printers, and as help databases. By 
the mid-eighties, the package had acquired a variety of tools: spelling checkers, 
style analyzers, forbidden/restricted word dictionaries, the beginnings of docu
ment databases, and a menu shell to make it all easy to use. Honeywell Bull 
began to consider that this package, which had been very effective internally, 
might become a marketable product. When inexpensive laser printers appeared, 
quality improved dramatically, but it was obvious that the TEXT formatter was 
no longer sophisticated enough to make CAP marketable. 

At this point, the author, having used 'JEX at another site, became involved 
in the project, helping to select 'lEX as the new formatter, and to reconstruct 
the CAP system around it. 'lEX was finally chosen, even though some flavor 
of nroff/troff would have been much closer to the TEXT formatter in use at 
that time. However, 'IE;X is much more flexible and powerful, and was already 
available on CP-6. 

Introduction 

Cap'JEX is a 'lEX macro package implementing the formatting function for the 
CAP system. It is directed at the technical publishing done by large software 
houses, engineering firms, government departments, manufacturing firms, etc. In 
these environments the technical writers don't make many formatting decisions, 
leaving that to a layout designer. The documents need merged text and graphics, 
and must be deliverable in several ways. Finally, the documents are revised often, 
and several writers may be involved in a single document. 

The goal of CAP is to provide a high degree of automation in the technical 
publishing environment. We required a robust system, where expert document 
designers make many of the layout decisions. Technical writers should be able 
to concentrate mostly on the accuracy of their material. 

Cap 'lEX was designed to provide all the facilities of '!EX, especially the type
set quality of the output, but within an environment with minimal markup in 
the document sources. Final layout is determined by style definitions, and doc
uments can be moved from one style to another easily. This makes documents 
easy to update, and very consistent. It also makes them easier to use with version 
control systems. 

Basic 'lEX directly handles such things as accented characters, grouping, and 
math mode. Cap1.'f;X is built on plain 'JEX, and tries to maintain as much com
patibility with it as possible. However, the writers, unless they are typesetting 
math, don't need to be aware of plain 'lEX at all. 

Because of Honeywell Bull's international ownership, CapT:EX directly sup
ports technical publishing in most European languages. Cap'IEX makes use of 

228 1988 Conference Proceedings, TEX. Users Group 



Cap'IE;X: Industrial Strength 'IE;X 

a completely standard 'IE;X, specifically so other versions of 'IE;X can be used, 
assuming they are compatible with plain 'JEX. Michael Ferguson's Multilingual 
'IE;X, for example, can be used to handle the hyphenation when more than one 
language is needed. In Canada, many government documents are published in 
dual columns, French and English side by side. While Cap'IE;X doesn't support 
paragraph aligned columns in its initial release, future releases probably will. 

1. Document Structure 

Probably the most unusual aspect of Cap'IE;X, when compared to other 'lEX 
macro packages, is its writer/document designer division. The document de
signer has significantly more control over the layout than is usual in other 'lEX
based packages, such as U.TEX. Cap'IE;X's writer markup language, Document 
Structuring Language (DSL), is primarily used to identify the different structural 
elements of the document: the title, chapter, multi-level sections, lists, figures, 
tables, graphics. Such markup then also serves to logically break up the docu
ment for use in a larger database, and for building help trees. Style definitions 
associated with each type of structure determine the final document layout. 

Formatting controls are still needed, of course, if only to handle any excep
tions to the pre-defined formats. Cap'IE;X therefore supplies the regular gamut 
of controls to manipulate fonts, spacing, page and line breaking, unformatted 
and verbatim modes, and various forms of alignment. However, writers rarely 
need to use such commands, since style definitions automatically determine the 
layout. 

2. Style Definitions-The Designer's View 

There are two levels of style information: 

1. The document style, which defines all the constructs available for the entire 
document. 

2. Subordinate styles, for each major structural element, such as chapters, lists, 
tables, figures, etc, all of which have their own styles. 

This approach to style information permits easy sharing of elements such as 
table styles among different document formats. Complete document styles can 
then be built by simply pulling the right pieces from some library of pre-defined 
structural elements. Subordinate styles can be built either in isolation, or in 
conjunction with a document style. 

From the style designer's point of view, Cap'IE;X uses a simple syntax of 
the "fill in the blanks" variety, which lends itself well to forms-driven interfaces, 
although there is, as yet, no such interface. A wide variety of styles can be 
created quite easily, even without any real knowledge of 'JEX. Contrary to such 
systems as U.TEX or AMS-'JEX, where document styles require a solid grasp of 
'JEX, Cap'JEX only requires a basic understanding in most cases. 

1988 Conference Proceedings, TEX Users Group 229 



Mike Schmidt 

2.1 Document styles 

Document style files are really no more than a collection of lesser style informa
tion: 

® Device class-this defines the device class, and automatically chooses fonts 
suitable to the device. This allows Cap'JEX to automatically support differ
ent devices, each with their own fonts. This is especially important when 
preparing line printer output. This is also convenient for CAP's menu man
ager, because a specific device driver can be selected based on the device 
class. 

e Media class-this defines the paper stock, the orientation, basic margins, 
and such items as two- or one-sidedness. New media classes could easily be 
defined for such things as slides, etc. 

ED Finally, the collection of style definitions for chapters, tables, and other ele
ments. All the formatting rules and parameters not defined by the device or 
media classes must be found in the subordinate styles. 

2.2 Subordinate styles 

The basic set of formatting rules comes from the chapter styles. Various chapter 
styles can be used to handle prefaces, chapters, appendices, the table of contents, 
index, glossary, and bibliography. Each chapter is treated as a group; changes in 
layout are local to the chapter. Chapter styles control such things as headings 
and footings, page numbering, basic layout, section headings, etc. 

The chapter style mechanism is a very convenient way of switching formats 
going from front matter to the main sections to closing matter (appendices, 
bibliographies, an index, etc). Some form of "null" chapter style determines the 
formatting for smaller documents, where specific chaptering is not called for, 
such as memos or short reports. 

Table styles determine all aspects of tables, from captions, table of contents 
entries, to the preamble 'lEX uses to build the table. Cap'IEX can handle two 
kinds of tables: large, multi-page tables with running headers (titles) and/or 
footers, and small tables, limited to a single page, which can float forward. Figure 
styles handle the equivalent functions, and also support large and small forms, 
while graphs always fit on a single page. Floats usually migrate no further than 
the top of the next available page, always maintaining their original sequence. In 
multi-column documents, tables, figures, and graphs may float within a column, 
or may be column-independent, occupying the entire page width. 

List styles define various kinds of environments, usually itemized or enumer
ated lists, or other special purpose environments. Where chapter styles can only 
be used sequentially, one chapter replacing the preceeding one, list styles can be 
nested to any level. 

230 1988 Conference Proceedings, TEX Users Group 



Cap'JEX: Industrial Strength 'lEX 

Finally, there are also equation, footnote, index entry, bibliography and glos
sary styles. Index entry styles, for example, can be used to emphasize certain 
kinds of entries. Database software can then easily identify the different classes 
of entries. 

All of this places the major burden on the document designer, who must 
identify and define all these subordinate styles. Cap'JEX's aim is to reduce the 
writer's load to the bare minimum, while sacrificing none of 'JEX's power and 
flexibility. The designer is left with nearly all the layout decisions. Cap'JEX 
tries to make the designer's task easier by providing a simple, consistent set of 
commands, and a library of macros for such things as counter manipulation, 
syntax analysis, and list management. As a last resort, though, the designer has 
the full power of 'lEX at his/her disposal. 

3. DSL-The Writer's View 

Production systems all have one basic need-to be robust, to recover from errors 
automatically, wherever possible. DSL, the set of writer's controls, tries to detect 
and recover from the most common errors. 

It detects syntax errors wherever possible, issues messages, and takes some 
form of corrective action. When a chapter is called out, any currently open 
structures, such as tables, or lists, are closed with warning messages. Controls 
disallowed in certain environments are redefined, so their accidental use only 
provokes a warning. By isolating errors, and continuing on, Cap'JEX reduces the 
number of iterations required, and hopefully the writer can identify the problems 
quickly. 

Automation is the main goal: writers simply add material to a document, 
then turn the crank, and out comes a new revision. The material they add 
is usually document-style independent, because the technical writers work to a 
great degree independently of the final layout. 

Besides having less markup to handle than other systems, writers also need 
less training-not in technical writing, of course, but in learning the markup 
language. Many of the little coding tricks that writers ne.ed with other systems 
can be forgotten. That's not to say that the markup will always be at a structure 
level; there are always exceptions. 

4. Graphics Support 

Cap'JEX and the CAP device drivers use a special representation for graphics 
data, and support both raster and vector graphics. Import utilities convert 
a variety of external representations, from mainframe and workstation-based 
CAD systems, to drawing programs for microcomputers such as MacPaint or 
PC-DRAW. Graphics are automatically scaled and positioned to fit their allotted 
area, but always maintain their natural aspect ratio. Graphics can also be used as 

1988 Conference Proceedings, 'lEX Users Group 231 



Mike Schmidt 

overlays, reproducing pre-printed forms or adding a complex letterhead. Cap'!EX 
permits graphics in headers and footers, so drawn logos can also be used. It's 
much better to define logos with METAFONT, but that isn't always easy. 

In most cases, graphics information is stored in its original format, only 
converted at the last possible moment. This permits editing in the original 
form, without any information loss that may result from the import process. 

5. Unusual Features 

There is no need to dwell on such features as are common to all or most similar 
packages. All the typical features are provided. However, Cap'!EX has a few 
unusual features which deserve to be mentioned. 

5.1 Font controls 

Font controls deserve special mention, even if they aren't unusual, since they 
are a very important part of the infrastructure. Cap'!EX uses a size/typestyle 
mechanism very similar to that used in :U.TEX. Cap'!EX expects all typestyles 
to be defined at all sizes, so it becomes easy to maintain the typestyle when 
moving a section head to a table of contents, for example, where the size may be 
different. Struts and other parameters dependent on font size follow suit. Math 
fonts can also be linked to the current size. 

5.2 Spacing and dimensions 

Besides providing the regular units for spacing, such as printer's points or picas, 
inches, or millimeters, two additional units of size are used: 

• Two values called "average character width" and "average line height" are 
also used. These values are relative to the design size of the basic font, so 
will grow or shrink with the choice of fonts. For proportionally spaced fonts, 
"average character width" is a purely arbitrary dimension, and is usually 
made equivalent to \em. It is defined as a \skip parameter, but is not 
required to have any stretch or shrink. The "average line height" is usually 
set to \baselineskip. These devices are only partially a holdover from older, 
character-oriented systems. In fact, they provide a very convenient shortcut 
for writers, and are very easy to visualize. 

• Percentage values may also be used in some areas. Graph sizes may be 
specified in percentages of logical page width and height, table cell widths 
also. Logical page width and height depend on columns, and whether a graph 
or table style specifies that the object is to be placed within the column 
structure, or to occupy the full page width. It is much easier to determine 
that a graph should occupy 75% of the page width than it is to figure out how 
many points, inches, or whatever, that portion represents. If the document 
designer changes the media for output, the graphs will still occupy the same 

232 1988 Conference Proceedings, 'lEX Users Group 



Cap'JEX: Industrial Strength TEX 

po:rtion of a page as before. This works out well only because graphs are 
auto-scaled to fit. 

5,3 Counters 

The counters used to count pages, chapters, figures, etc, are all provided with 
default formats. These formats are attached to the counter, and used to guar
antee that wherever a counter is printed, it will appear in the same format. For 
example, were the figure counter format defined as \romannumeral, everywhere 
that figure counter was printed, in the body of the text, in references, in the 
index, etc., the figure counter would always appear as a roman numeral. 

5.4 Multi-column layout 

Cap'JEX's multi-column layout produces balanced columns on partial pages, let
ting the format switch from single to multi-column anywhere on the page. Mul
tiple columns can apply independently to floats, such that footnotes and figures, 
tables, or graphs can be within or without the column structure. Different chap
ter styles can implement different column structures, so the index can be double 
column when the text is single column. Multiple columns also apply in internal 
vertical mode, i.e., within figures, or captions, for example. Thus, the text in a 
figure may be double column, while normally it's single column. 

5.5 Index entries 

Based on the index style, index entries can be automatically permuted, i.e., a 
second index entry is created, with term and sub-term exchanging roles. This 
effectively cross-indexes all such entries. Section headings (but not chapter head
ings) are also automatically added to the index, so even without explicit index 
entries, a simple index is created. 

5.6 ASCII output 

There are two forms of output that need to be ASCII compatible: line printer and 
possibly screen output, and output destined for help databases. In the interests 
of readable ASCII copies, Cap'JEX doesn't try to maintain the same pagination 
for laser or typeset copies as it does for ASCII. ASCII output has its own table 
of contents, index entries, etc. TEX is overkill for this kind of thing, where any 
of the simpler formatters could do a credible job. However, being able to print a 
document in either form (ASCII or typeset) without changing the source in any 
way can be very useful. 

Internally, Cap'IEX understands the basic requirements of ASCII output. 
Mapping all the fonts to a single ASCII font is only the first step; Cap'IEX also 
rounds all spacing and margin values to multiples of character sizes. Dimensions 
for graphs and tables are also rounded, as are column widths. In a sense, Cap'IEX 

1988 Conference Proceedings, 'lEX Users Group 233 



Mike Schmidt 

lays out the document in ASCII format, so the bulk of the work is in Cap'JEX, 
not in the device drivers. 

5. 7 HELP database construction 

An entirely different, independent structure is required to build HELP databases, 
whose organization is quite different from that of a technical document. Cap'JEX 
provides the necessary tools to define a shadow structure, superimposed over the 
normal document, removing some text entirely, reordering the rest. Even this is 
style based, making HELP database construction a fluid and adaptable process. 

5.8 Subsets 

Often technical manuals are printed with only slight variants: a compiler may be 
available for several operating systems, and the manual may be slightly different 
for each system. Cap'JEX supports multiple distinct subsets, thus providing for 
manuals (and HELP databases) that vary in more than one way. The compiler 
manual may have variants for different operating systems, another set of variants 
for different computers, and another for interfaces to other languages. This is 
a very important feature, because it permits writers to maintain a single source 
document that can be customized at any time simply by selecting the appropriate 
subsets. 

5.9 Change Bars 

Cap'JEX supports change bars both for deleted and changed material. 

5.10 plain 'lEX import 

Although Cap'JEX tries to remain compatible with plain.'JEX, inevitably some 
problems will occur. In particular, Cap'JEX changes the \catcodes of some 
characters. To make it easy to import 'lEX source files, or macros, Cap'JEX pro
vides controls to specifically read them. This adds a final level of customization, 
giving layout designers complete access to 'JEX. 

Conclusion 

This has been a brief look at Cap'JEX, designed to provide a high level of au
tomation for technical documents, while still maintaining typeset quality. I have 
tried to describe here only those areas of Cap'JEX that help to make it robust 
enough for use in large-scale production environments. Many features were sim
ply mentioned in passing, or not at all, because they are not really different from 
similar packages. 

234 1988 Conference Proceedings, 'lEX Users Group 



FA_STgX: A PC Text Editor and Front-End for TgX 

PAUL M. MULLER 

231 Easy Street #3 
Mountain View 
CAUSA 94043 

ABSTRACT 

FA,ST:EX is a PC text editor and full-function front-end to T£X. 
The FA,ST:EX editor is quickly learned and yet remains power
ful in expert text processing through employment of a transpar
ent AI user-interface. A system of macros has been integrated 
into JlT£X (David Fuchs' 2.0(3) to form FT:EX, the typesetting 
and simultaneous screen-preview system. The ArborText printer 
driver DVILASER is employed for output to any laser printer. 

The FA,ST£X system facilitates 'lEX output of ordinary text with
out the user needing to learn this arguably most difficult aspect 
of 'lEX· Display mathematics is created according to 'lEX stan
dards in a special mode of the editor. New users of TEX thereby 
avoid the difficult details of ordinary text typesetting in 'lEX 
and concentrate on the mathematics. It differs from La'J:EX and 
AMST:EX in providing clean screen proofreading (print format 
markers and macros are hidden) and flexible (often fully auto
matic) handling of general text presentation in the manner of a 
high-quality word processor, while retaining full 'lEX compatibil
ity and mathematics capabilities. It is a full-function front-end 
and integrated system, as distinct from a special-format add-on. 

The FA,STEX system has been comprehensively tested1 by a user's 
group of twenty technical personnel at the Ford Aerospace Corpo
ration and Jet Propulsion Laboratory in their day-to-day work. 
It afforded them a rapid and time-cost-effective entry into high 
quality general and technical typesetting by both technical and 
non-technical personnel, achieving the very low learning overhead 
demanded in today's world by aware employers and professionals. 

1 This document was created, edited, and typeset by the FA,ST:EX system, 
output to the Imagen Innovator laser printer at 300dpi using em fonts. Other 
than the logos, every print format marker was hidden and in the FLIPGUIDE. 

1988 Conference Proceedings, TEX Users Group 235 



Paul M. Muller 

Introduction 

Most 'lEX users experience very substantial learning times when coming to 
the system. This is generally regarded as the key disadvantage (or price) of 
'JEX. Its immense advantage and raison d'etre is the ability to typeset virtually 
any technical expression regardless of complexity or notation. The F.A"TEX sys
tem mitigates this "disadvantage" of 'JEX: the high learning and mastery time. 

It has also been the author's experience, shared by many, that by far the most 
difficult aspect of 'lEX for a newcomer is the complexity involved in typesetting 
ordinary text. The T]i;Xbook's introductory sample on page 24 is an example 
(Knuth 1984). Yet the mathematical aspects have proven for many to be rel
atively straightforward, with an entirely reasonable and efficient user-interface 
and acceptable learning time (Chapters 16-19). I have heard T:EXperts say to 
newcomers, "The easy part is hard, and the hard part is easy." 

Of course, there are immensely successful existing enhancement systems for 
attacking that problem such as LaTEX and AMS'JEX. So what are the differ
ences in approach here? 

Consider the page 24 example, or a typical enhancement system's text, on
screen at a PC or terminal. Another key problem emerges at once: the text 
is unreadable or at least, unproofreadable. The print format markers intrude 
everywhere. When we use 'lEX or its enhancements, we lose the valuable as
set of on-screen readability one normally takes for granted in a text processor. 

When screen editing, F_A'3TEX hides (or shows on command) most print for
mat markers, including general access to 'lEX macros when necessary. Yet, the 
system maintains compatibility with 'lEX and plain ASCII file structures (there 
are no special add-on records or files). F_A'3T:EX can edit your FORTRAN pro
gram, or include it in a 'lEX document (using a general \verbatim mode), etc. 

The F.A"T:EX system also supports fully generalized page formatting, and is 
not limited to special "named" layouts as with the other enhanced systems. 
It provides automatic font selection, line spacing, and conveniently "toggled" 
rather than delimited e.g., \bf{this is bold} special handling. The user in
terface was designed to operate and "feel" like a text processor, rather than a 
programming language. 

The F.A"TEX price is that you must learn yet another editor. This is for many 
a fate worse than death! The system uses AI techniques to minimize this cost. 
It is a "what you think is what you get" editor of innovative design, and with a 
unique user interface. No, we don't plug wires into the back of your head (at least 
not yet). It is commanded by a simple "natural" language which you mix right 
into text as you type or edit it; a little language which you can learn in twenty 
minutes to attain mastery. This bold claim has been successfully field-tested 
and demonstrated. 

236 1988 Conference Proceedings, 'lEX Users Group 



The editor provides both instant user-defined and permanent function keys 
for those operations where this is preferred, as well as a powerful macro capability 
which recognizes English text units such as words and paragraphs. A customized 
installation file for the Borland Lightning spelling checker is provided to support 
that program for those requiring this function. F_AS'IE;X is an integrated system 
which can and does support a wide variety of applications and user styles. There 
is little or no need for referenc'e to thick manuals. 

The learning time for the print formatting is extra, of course, but can be 
adequately covered in the rest of the first hour's time; then come techniques of 
typesetting and 'lEX mathematics. Our goal has been to limit the learning-to
mastery time for the editor and text processing functions to a small fraction 
of the total learning time in order to attain a reasonable command of technical 
typesetting overall. F_AS'IE;X is sufficiently simple and memorable to be efficiently 
usable casually, or occasionally. Yet it provides sophisticated support for the 
demands of expert users. The field trials in our view have demonstrated and 
achieved these goals. 

The basic user's manual is also unusual, consisting of only 40 very small 
pages, arranged like an electronic typewriter's flip-guide. Two facing sample 
pages are provided in the Appendix, and the guide is fully indexed. The whole 
system, including all essential 'lEX and general text format markers, fits within 
this modest compass. It is therefore practically accessible to technical secretaries 
and others for general and technical work. The FLIPGUIDE is supplemented 
by a Reference Manual and a set of appendices. 

Memory requirements for the editor are about 120K; for 'lEX with the macro 
systems, about 460K which allows 64K for the largest page of text in a 640K PC 
AT). 

History of Development 

I have been a consultant in microcomputer systems application software since 
1971, and entered full time practice in 1977. In the spring of 1986, while consult
ing on a long-term contract at the CalTech Jet Propulsion Laboratory (JPL), 
I was introduced to 'lEX for the first time. My personal study of competing 
systems concluded that it was the only completely general approach to technical 
typesetting by the professional. 

Part of any technical professional's key to success is efficiency and quality of 
work. This goes double for consultants, who also must produce written reports 
on their own without the support of in-house production groups. Quality of 
presentation counts, and the facility to produce top quality results rapidly is a 
strong professional and competitive advantage. 

1988 Conference Proceedings, 'lEX Users Group 237 



Paul M. Muller 

I read the T_EXbook through twice, and must admit that I found it simulta
neously fascinating, and generally opaque. The capabilities were clearly there to 
attack any problem whatsoever, from highly technical mathematics display, to 
(if resources permitted) the development of any or all features and facilities of a 
first class desk-top publishing system. As the man said, however, power comes 
at a price (and technical risk). 

My background in software design and develop)Tient left me with a tantalizing 
conundrum. Here was an amazing system, obviously conceived, designed (and 
I later learned) executed by a. genius working mostly alone. Yet, my discreet 
inquiries to '~EXpert colleagues, "Over here where the Lord Chancellor can't hear 
us," (W.S. Gilbert 1885) revealed that the average learning time to reasonable 
mastery was six man-months. The value of the system to just one technical 
division in JPL is so great that it funds and maintains a near full-time '~EXpert 
consultant to provide training, technical liaison, and macro development for its 
staff. 

Another key difficulty for someone approaching 'lEX seriously was the loss 
of reasonable screen readability. I had designed and developed a PC text editing 
and processing system of novel design which seemed ideally suited to "front 
end" for 'lEX· It had the capability to provide a clean screen, with all or most 
of the print format markers discreetly hidden behind the text characters. It was 
controlled and operated by a compiled syntax table which permitted fast and 
cheap alteration of the user interface without reprogramming. It also provided 
all of the basic, and most of the advanced features and facilities of a normal text 
processor. All of this operated within a normal ASCII file structure, and was 
therefore capable of being read by a 'IE;X macro system. 

A preliminary design structure for an integrated editor and typesetting sys
tem was prepared. It utilized the editor as the front end, 'lEX with a suitable 
front end macro set as the print (typeset) output formatter, followed by a suit
able driver for laser printers. 

I made contact with Addison Wesley, who put me on to David Fuchs, the 
cognizaht programmer of ll'IEX version 1.5A which they were then marketing. 
The plans were discussed among us all, and there was a consensus that this was 
worth pursuing. David Fuchs agreed to make two key changes to fi'IEX so that 
this approach could be supported: 

& Unrestricted paragraph length, ICRI to ICRI 

., Access to ASCII 128-255 as active characters 

The first was necessary because floating text paragraphs, where ICRI means 
"end of the paragraph" and not "end of the line" is a fundamental characteristic 
of text processing, in feel, style, and substance. The second provided the ability 

238 1988 Conference Proceedings, 'lEX Users Group 



to use the editor's QKEY system for rapid keying of PC foreign and special 
screen characters. David incorporated these capabilities in his ,uJEX version 
2.0(3. It was intended that this system would be the next version published by 
Addison Wesley. 

My preliminary design had estimated that six man-months of my time would 
be required to achieve level one: the creation of an FJEX macro set which 
provided all the relevant text processing capabilities of F_AST:EX while maintaining 
lEX compatibility for mathematics typesetting. Between May and November of 
1986 this was achieved by working evenings and weekends. The F_ASTEX system 
was placed in (3 test by myself and one senior colleague at JPL. 

We determined to conduct a test of the user interface quality and accessibility. 
The first target user had never before used a microcomputer. He had what 
he described as "desperate need" for a quick turnaround, high-volume, desk
top technical typesetting system. It had to go into effective operation with a 
minimum of learning time. Six man-months was out of the question; he could 
afford about a week. As a compensating factor, this gentleman is world class, 
from start to finish. 

I provided the system on a Monday morning, with a one hour introductory, 
at-the-keyboard hands-on tutorial. We had agreed that he would then be left 
alone for the rest of the week. His goal was to outline, write, input, edit, proof, 
and produce a significant technical memorandum in that time using the system, 
beginning from scratch. The only written support document available was the 
first version of the FLIPGUIDE; see the Appendix for a sample page. He had 
need of six short consultations with me during the week in areas not adequately 
covered by the existing documentation. The task was completed and published 
as a JPL Engineering Memorandum on Friday. We judged the trial a success, 
albeit then a statistical sample of only one user and document. He has continued 
to use the system daily down to the present time in all of his technical work, and 
was the first member of what is now a 20+ strong user's group. 

There were three basic things he had to learn. First, the editor. This is 
comfortably done in an hour to essential mastery (there have been a number 
of successful trials on this). Second, text processing. He had no experience in 
direct text processing on a microcomputer, and there are many fundamentals and 
important niggles involved in those skills. This had to be extended to typesetting 
at least to the degree covered in the documentation. Third, he needed to extract 
the necessary 'lEX display math formats from Chapters 16-19 of the TE;Xbook. 

This illustrates the three key elements in the design approach. The editor 
is easily learned, and must be, because everybody hates a new editor. This is 
essential to providing the clean screen handling which I feel is key. We then 
take advantage of the fact that many people already have text processing skills 
and experience of relevance and value. This largely avoids what is for many, 
the hard part of JEX. Finally, we make good use of 'lEX where it shines best, 

1988 Conference Proceedings, 'lEX Users Group 239 



Paul M. Muller 

in mathematics, which F_AS'fEX accesses transparently. It is a combination and 
integration of three factors: 

e A quickly learned yet competent clean screen editor 

o Existing text-processing skills and environment 

e The mathematics of 'lEX (Chapters 16-19) 

My consultancy then shifted to a long-term contract at the Ford Aerospace 
Corporation. The first task was to participate in a rapid design and documen
tation effort with very tight deadlines. The system worked well for me in that 
environment, and caught on in the company among related technical personnel. 
The development continued, bringing successively more features into the conve
nient user interface represented by F_ASTEX. Version 1.00 was frozen and released 
in May of 1988 to the user's group. This milestone was two years in the mak
ing, and represented the group's belief that the system had achieved a level of 
completeness and reliability comparable to commercial version release software. 

We believe that this is an efficient, capable, and effective approach to prac
tical technical typesetting for practicing professionals. It possesses reasonable 
learning-times, high memorability, applicability, and 'lEX compatibility. 

Technical Developments 

There are a number of technical developments embodied in the system which 
may be of interest. It is the purpose of this section to discuss each in the con text 
of the overall systems integration. 

The EAST:EX editor was written in the C language for transportabilty and its 
unique combination of macro and micro code levels. It has operated successfully 
on every close PC compatible, and nearly all less compatible computers, from 
the Sanyo 550, and Olivetti M21 (ITT 6300), to the latest DOS 80386 systems. 
The editor uses only normal DOS screen calls, and functions in all color and 
monochrome environments. The editor's structure is shown in Figure 1. 

The Syntax Table is an ordinary text file prepared under the rules of an 
AI language called SXPP. It is a top-down parsing system with returns. Its 
function is to provide the logical instructions linking user input and program 
subroutine calls. An unlimited number of "states" or modes can be supported 
transparently to the user. It is relatively easy to design, create, and modify a 
very complex user interface, and it can be done by changing only the syntax 
table's text, recompiling it with the SXPP compiler (into C), compiling the C 
into relocatable object code, andre-linking the program executable. No changes 
to any program C code are necessary unless one wishes to introduce an entirely 

240 1988 Conference Proceedings, T:EX Users Group 



FAS'JEX Editor Structure 

® SYNTAX TABLE [Logical Instructions for Program Operation] 

!ll PARSER [Operates Program from Compiled Syntax Table] 

G USER INTERFACE [Created by Above to Process User input] 

e SUBROUTINE LIBRARY [Actions Executed by Parser's Calls] 

e SCREEN OUTPUT [Scans Text Memory to Support Dynamic Screen] 

* FILE 1/0 and FASPRINT Output 

Figure 1 

new executable feature via a new subroutine (which would then have to be 
programmed). A sample is provided in Figure 2. 

Syntax Table 

varname :(subroutine) I* Invokes Subroutine *I 

gx : "~g" (goag) I* Go in current direction *I 

g1 :<"+D" (geed) I* Part o:f syntax for possible go *I 

Figure 2 

The Parser is the almost trivial "main" program. It executes the compiled 
syntax table based upon processing of user keyboard input. The brain of the 
AI system is the logic contained in the syntax table itself. The functionality is 
contained in the Subroutine Library. 

The Screen Output routine is very sophisticated, as in any effective text 
processing program. It is built on a multiple-level, prioritized, logical interrupt 
scheme which guarantees that the most important operations are done first. It 
may not be generally recognized that screen updating based upon user keJboard 
inputs is a very difficult task. One might assume that 10 keystrokes per second 
would be trivial. It is manifestly not. The text in memory must be shuffled 
about, "gassified" and "degassed", examined for a great distance above and 
below the cursor, with color and display characteristics determined in real time 
on the basis of complex algorithms and instantaneous user input. 

1988 Conference Proceedings, 'lEX Users Group 241 



Paul M. Muller 

The problem is made worse for FAS'JEX because it was determined from the 
beginning to maintain ASCII file compatibility. FASTEX is, therefore, a memory 
editor, that is, the whole of text must fit in memory (about 400K bytes available 
in a 640K PC). The screen handler must examine a large body of text in memory 
with all of its print format markers before the screen layout can be computed. An 
attempt has been made to obtain the highest practical level of display readability 
(and what you see is what you get) within the limitations of a non-graphics 
(character-oriented DOS compatible) protocol. 

Screen Features 

e Print format markers are hidden behind text characters 
Their character shows in a colored box 
Appear on screen-bottom when cursor is upon them 
"Show" screen display mode to reveal all 

.e jCRj and jTAB I unambiguously shown when cursor on them 

8 Screen scroll is automatic, vertical and wide horizontal 
There are no "scroll" keys or commands necessary 
Four-line context top/bottom on PgUp PgDn keys 
Approximate wrap-warning in large font sizes 

• Type styles show in various colors (or b jw) enhancements 

Ill Indentation, hanging indents, tabs, and wide columns display 

• Numerical data display: 
Current font's typesize 
Current typestyle(s) (in addition to the color highlight) 
Estimated words above cursor 
Remaining text space 
File under edit and operational information 

Figure 3 

The screen handler shows on-screen all the text features listed in Figure 3. 
As Pooh would say, "it takes a lot of pencil to do ... that " (Milne 1926). 
Without this ASCII file compatibility, however, it would have been impractical 
to create an interface to 'lEX· Likewise, support for an unrestricted number of 
print format markers was essential. 

File I/0 is entirely standard. The only niggle is that line feeds must be re
moved on input, and restored on output. This was necessary so as to maintain 

242 1988 Conference Proceedings, 'I):;;X Users Group 



a 1:1 relationship between characters in memory and characters typed and pro
cessed. It is possible to take "quick prints" of any text units, such as paragraphs, 
to an attached dot or daisy printer (or a laser emulation of same) directly from 
the editor, while editing. This is a generalization of the screen dump commonly 
provided by text processing editors. It is also possible to produce a loosely for
matted, rough-draft text-processor style printed output on an attached common 
printer. 

The normal print output mode is to leave the editor and invoke 'lEX i.e., 
FTEX and perform a typeset to *.dvi with simultaneous screen preview. This is 
then delivered to the laser printer via a suitable driver program. 

Font support and development were significant. A reasonably convenient 
system should make font invocation transparent to the user. He or she wants 
to simply name a type size, face, and/or style. This needs to be conveniently 
changeable at any time. The normal protocols followed by quality text processors 
were adopted. 

This was not easy in 'lEX for several reasons. 'lEX expects one to define each 
font, size, style, super/subscript sizes, and face individually: The existing add
ons e.g., La'IEX provide macros such as "\big" and "\Bigger" and so on, but 
it was still necessary to think about font details. Furthermore, 'lEX is inherently 
an explicit language system; one is encouraged or required to write constructs 
such as {\bf This is Bol~ rather than the more natural "toggled" user interface 
for such functions e.g., l.!!JThis is Boldl:m where l:m is the bold key or format 
marker. Similar remarks apply to centering and many other functions. 

Any text processor-cum-typesetter really must provide all of this font struc
ture transparently. F.At"'IEX therefore had to adopt a '!EX-compatible scheme to 
access most of the nominally available fonts and styles. The maximum range of 
sizes is 5-42pt, that is, 5pt base, to 17pt at \magstep5. These must be linked 
to super/subscript sizes. 

Typefaces in Roman and Sans Serif are commonly provided, and both are 
essential to a basic environment. The math fonts must automatically follow 
along with the adopted text size. Likewise the type styles. 

Type styles e.g., this italic, are used fluidly in most text processing appli
cations. Worse, a common printer is able to combine styles at little or no cost 
in equipment or complexity. No problem with bold, expanded, double-strike, 
underlined, italic on the lowly Epson FX80! 

Professor Knuth notes for starters, that one needs a special font family to 
do proper underlining. The minimum reasonable standard set of font styles 
was determined to be italic, bold, slanted, and typewriter. The minimum 
sensible number of combinations was deemed to be any two; we therefore support 
all pairs: bold italic, bold slanted, BOLD TYPEWRITER SET As CAPS SMALL 

CAPS, ital.ic typewriter, slanted typewriter, and last but not least, the 

1988 Conference Proceedings, 'lEX Users Group 243 



Paul M. Muller 

"funny italic" font, as SLanteCL /taltc, to round out the scene and make most of 
the standard 'lEX distribution fonts available to direct calling. 

It is left as an exercise for the reader to estimate the number of font files in 
the F.AS'JEX system. The base faces Roman and Sans Serif together with bold 
expanded, italic and slanted are supported at all magsteps between 5 and 42 
points; 5, 6, 7, 8, 9, 10, 11, 12, 14, 17, 20, 24, 30, 36 and 42. The math faces 
and combined styles are supported for the set 5-24pt. All of these except the 
combination styles are supported for super/subscript sizes related to base size. 
The screen previewer provides a full set of all fonts between magstep -2 (de
magnifications) and +5 magnifications. The laser output is supported between 
magstep 0 and 5. The disk load overall is just under lOMb, with well over 1000 
files in the system. It required over two weeks of PCAT computer time to gen
erate the font files which were not part of the normal 'lEX distribution package 
using METAFONT! 

The ease with which they can be invoked belies the complexity and depth 
of the programming. To specify a font size: -f 12-f for 12 point; for a face 
change to Sans Serif: -f \setsanseri:f-f; and for a style: -u for "underline" 
which typesets as slanted or -f B-f for boldface. The system also supports both 
normal bold, and expanded bold, at user selection or change, so we can print in 
Both styles Both. The control key -t is used to delimit all FONTs, FORMATs, and 
FILENAMEs in the system, which are named as briefly and memorably as possible. 

In addition to this, up to five fonts can be user-defined for convenient invoca
tion by the unused font numbers 0-4 as above, including super/subscript sizes. 
In this way one can pick up a little Dunhill for example, and cover virtually all 
the remaining standard T£X fonts, or a reasonable number of proprietary fonts 
which might be acquired. For the really adventurous, or if all this is not enough, 
the general and unlimited 'lEX formats can be used. 

FA_STEX reserves only the truly "free" characters {, }, \ and I. The last is 
the F.AST£X mode "comment" character. This leaves the remaining 'lEX reserved 
keys as ordinary text, which is convenient for the user: -, #, $, %, ', &, _. To 
use 'lEX standards, one invokes \dotax mode e.g., for math display. Most T£X 
formats (except display math) can be used in the F_AST£X mode, so the user 
rarely needs to think about it unless something really deep in TEX. is required. 
There is a convenient and fully complete \verbatim mode covering all ASCII 
characters between 32 and 25510. It is easily turned off (the classical dilemma) 
by any -f format (-f being ASCII 6). 

Super and subscripts, accents, and most special characters including all non
graphics PC screen characters, typeset in all modes under the same convenient 
structures. These include QKEYS which type in as qe for example which yields 
e on screen and in text. There are 128 of these covering the non-graphic PC 
screen characters, plus the basic "quarter-box" graphics set. The super and 
subscripts will wrap and justify in text modes exactly as one expects in a text 

244 1988 Conference Proceedings, 'lEX Users Group 



processing environment (again, no problem for our Epson, but a real challenge in 
typesetting with 'JEX). Gendered quote marks are automatic, and in typewriter 
type, the genderless ' and " are substituted. 

Referencing to the bibliography herein has been by (Author date). However, 
reference numbers can be called for by unique user-chosen "context-names" de
fined by their citation e.g., \TEXbook at the first occurrence using the automat
ically numbered reference scheme in F_AS'JEX. Then to reference Knuth, I might 
have keyed (between superscript toggles) "\TEXbook". One can cite the num
ber in any format, style, or font; e.g. as [\TEXbook) --+ [3). End notes are also 
separately supported, as are ordinary references, bibliography, table of contents, 
forward and backward page and section referencing, as well as context-named 
footnotes. When you are prepared to pay the price in macro programming, 'lEX 
is absolutely wonderful, and uniquely powerful, with almost infinite potential. 

There are many other examples of the general policy to establish automatic 
features wherever practical, and to give the normal user what is expected as the 
default, reserving special handling to special requirements. 

Nat ural Language Editing 

It is the author's opinion that the user-computer interface is often the weak link 
in software, and that solving this problem justifies careful thought, planning, 
design, and sensible innovation. 

Frequent reference to thick manuals is very unappetizing. An intuitive, nat
ural language approach is preferable, supported by on-line context-sensitive as
sistance. F_AS'IEX carries this to what we feel is near the cutting-edge of the 
state-of-the-art. The user of such a system becomes deeply involved in a new 
style of software. It is therefore necessary also to support the more familiar e.g., 
function-key style of editing and working, as has been done. 

What is the typical software's user-interface? Each command, task, format, 
and operational mode is given a name and/or menu location. Pull down, push 
across, mouse or arrow keys notwithstanding, this is to my mind a pain in the 
brain. Either I cannot remember the name, or I get lost in the menus. But we 
will let this pass for now. 

What about program capabilities? How do I find out (especially in the 
beginning) precisely or even crudely what the program can do? Tutorials can 
begin to answer this need, and there are many very professionally engineered 
systems out there which give one a reasonable shot. Nevertheless, the 300-page 
manual with 500+ concepts is typical, even for a text processing editor. I find it 
tedious to read a 300-page manual, and digest it, before the functionality can be 
appreciated. Can it do this or that? Answering such a question usually forces 

1988 Conference Proceedings, 'lEX Users Group 245 



Paul M. Muller 

one to the manual, with perhaps a 50/50 chance of finding it even via the rare 
excellent index. 

Is there an alternative? It is suggested here that there is. Consider the 
creation of a "what you think is what you get" text editor. I don't mean WYSI
WYG display; I mean just what it says. You are in the middle of an editing 
session, and you want to go 3 paragraphs; exactly 3 paragraphs, and be at the 
beginning of the third one below you. Arrow keys will do the job, to be sure, 
inefficiently. So will a "go paragraph" function key (and you can install such 
easily in FASTEX if you wish while editing). 

Well, if" Go 3 Paragraphs" is what I think, then I will key "Ag 3 P" (jCtrii g, 
3P, case insensitive), and the editor dutifully "goes three paragraphs." Same for 
sentences, words, and chapters. I merely translate my thought into the natural 
language of the editor, and it flows out the fingers onto the keyboard, at full 
typing speed, mixed right in with text, transparently. The program simply does 
it, on key, on command, on thought. 

Text processing is all about language. There are five, or maybe seven different 
meanings for the hyphen key; several kinds of spaces; and so on. The simplest 
things become complex. That is because our language is so subtle and powerful. 
We took at least ten years to learn it well. We are linguistic creatures; we think 
and analyze linguistically. A language-based, user-computer interface is entirely 
sensible and practical. It additionally offers many indirect benefits by analogy 
with, and derived from, our linguistic abilities and experience. 

Here, now, is the complete "language'~ of the F_AS'fEX editor, with nothing 
left out. There are five verbs (actions): GO, EXAMINE, DELETE, PUT into, and 
SEARCH for, respectively the control keys, -g, -e, -d, -p, -s. If you count 
program controls, there are three: -t to terminate an action; -o for the MENU 
of options; and I ESC I for you know what. 

There are seven basic nouns (names for things): WORD, SENTENCE, PARAGRAPH, 
CHAPTER, DOCUMENT, BAG, ALPHABAG, respectively the case-insensitive W, S, P, 

C, D, B, A. In addition, there are six special nouns: -f ... -f to "enclose" or 
delimit FONTs, FORMATs, and FILENAMEs; -r ... -r to delimit replacement text; L 

for a single character (Letter) of text; 0 to name an output device; - -d the 
"previous" deletion; and { } to enclose the text of an editor's macro (we call it 
a UTILITY). 

There are two adverbs: "+" meaning "forward" or "to the end of"; and "-" 
meaning "backward" or "to the beginning of". One adjective completes the 
syntax: e.g., 3, an integer number. 

Finally there are two order rules. One PUTs into the destination object 
from the source object. Second, numbers come before the object modified. 
That's all, folks. Except for perhaps some of the special nouns, which fit natu
rally into the scheme later, you have already learned the editor! 

246 1988 Conference Proceedings, TEX Users Group 



In the traditional editor, you wish to search for something; so what happens? 
You hit an access key for the menu (it pulls down flashy menus amid pretty 
colors); but it's the wrong one, so you hit another key or two to get the right 
one. Then you mouse or key-select the SEARCH option. You are then prompted for 
the search text (!CRI and some other characters or format markers are probably 
not allowed). Then you release the search text (with our old friend ICRilike 
as not) and the program finds it. Oh, sorry, wrong one; you want the next one 
down, or the third or fourth preceding; back to. the menu, and like as not, key in 
the search text again, under the SEARCH BACKWARD menu option. 

Well, perhaps this is all just a bit too pessimistic. It must be admitted that 
some programs make it a bit easier. 

Can you guess how to search for, say, "find me" in F.A"'IEX without being 
told? Stop here and try to intuit it; use the natural language approach. Think 
"search" for "find me", and let it flow to the fingers. Don't peek now; really, try 
to do it "naturally" without condescension to the "program" or programmer. 
Just let it flow. I'm going to tell you now, so stop peeking! Have a go! 

You think "search" and it's obviously ~s, then "find me", so ~s find me ... is 
flowing down towards the fingers, but you stop with a jerk after the "me"; what 
next? You're all finished, and the computer doesn't know it, stupid thing! Well, 
until we can plug wires into the back of our heads, you're going to have to key 
something else that means "I'm done, dummy." After a pause, the novice cor
rectly keys "~ s" completing the thought, and FA:" 'lEX dutifully goes off searching. 
If it fails, it leaves the cursor where it was, otherwise the cursor is cleanly on the 
found text, with no menus littering the screen; no fuss, no muss. 

The expert probably didn't even pause, and keyed "~sfind meiCRI" (and 
is still waiting) with the command line at screen-top staring back at him: 

~s find me <CR> _ 

without a care in the world. Perfect example of culture shock. I have watched this 
very thing happen many times while giving hands-on training or user response 
evaluations (there's material for a paper in that too, I'm thinking). 

Of course, "find me" is in "quotes" both on paper here, and in your head; 
and ~sis the "search" quotation mark. So it's ~s find me~s (no ICR!). Then, of 
course, it's the wrong one; probably next along. So you want the Same Search 
again, and the command line is empty. Don't key in the search text again; 
think: Same Search ~s ~s; then key it! To be fair, most users have to be asked 
the question "how do you make the Same Search over again" before they will 
guess ~s ~s. 

To complete our task as originally posed, "Go Backwards Same Searching", 
will probably require us to look in the FLIPGUIDE, or have a consultation with 
the AI-based HELP system IF21. We can find out how to do this by typing the 

1988 Conference Proceedings, 'lEX Users Group 247 



Paul M. Muller 

question in plain English: "How do I do the same search backwards?" whereupon 
the answer is provided: "-g- -s -s." In our experience with users, you will never 
have to ask again; it will flow naturally into the fingers next time with little pause 
for thought, and after the tenth time, it will come naturally without thinking 
about it consciously. It is a fact that when I use F_AS'!EX, it is now entirely 
automatic, and indeed has become for me my best computer friend, my "what I 
think is what I get" editor. Next best thing to wires in the back of my head. 

It might be concluded from the simplicity of the foregoing that, "Yes, it's 
easy to learn, but it isn't powerful; how can it be with so few commands?" 
Sophisticated and exhaustive user experience has shown the contrary. The lan
guage itself is simple, but the fact that all meaningful "sentences" (and even 
whole paragraphs in Go-able utilities - g { ... } ) will work, means that thousands 
of distinct practical and useful editing constructs can be created and will be 
supported without complaint by the program. The user's group has joint expe
rience of more than a score of editors, and F_ASTEX stands up as well as the best 
to heavy demands from the expert. This can only be fully appreciated in use. 

Thank you, dear reader, for bearing with me through such an Odyssey. I trust 
you not to think me unprofessional for taking a perhaps rather light approach 
to what is a serious subject, worthy of careful study and development. There it 
is, then, a taste of natural language program interfacing. The vast majority of 
our developmental (/3) users and guinea pigs have enjoyed learning the F_AS'IEX 
editor; even those experts who became frustrated by the complete absence of 
command delimiters like ICRI which they have used ubiquitously for ten or 
twenty years. It is not only possible, but normal, for a new user to learn and 
master this editor in less than an hour at the keyboard. Many have learned it 
by reading the FLIPGUIDE's first 20 pages (about 10 minutes) and then hitting 
the keyboard with a real task. 

User-Computer Interface 

The clean screen approach to how we relate what is keyed in to the display, 
and typeset output, is the other key raison d'etre for the system. It is useful to 
provide some examples of the basic structures and philosophy. 

In general, there has been an effort to make the screen look as clean as 
possible, and as much like the typeset output as practical within the limitations 
of a non-graphics, character oriented, DOS-compatible screen handler. Wherever 
possible, two keystrokes only are used for Greek, special, and foreign (accented) 
characters. Particular emphasis is laid upon displaying screen characters which 
are the same as typeset, or remind one easily of what is represented. This was 
done to make proofreading as reliable and easy on the eyes and brain as possible. 
Fatigue in handling complex computer input and display is a key factor for many 

248 1988 Conference Proceedings, 1E;X Users Group 



users, and we have confidence that this has been reduced to a near optimum and 
minimum by the combination of techniques employed. 

The most basic screen functionality is the "hidden format." The F.A,STEX 
editor hides any character sequence between -:r ... -:f. behind the character upon 
which the cursor rested when it was entered. For example, if the cursor is 
standing under the w in Bord as here, and if one keys for example, -f 12 -f 
in order to set 12 point type, then on the screen, the w is displayed in the 
"enhancement color" or "fuzzy box" to show that a print format is lurking 
behind it. Any number may be placed behind a single character (we tested the 
program with thousands). If after typing in the font change format, the +-key 
is struck, the cursor remains under w but is now "on" the format, and it shows 
on the screen at the lower right in a special reserved area. The -d key will now 
delete it, for example, just as the IDELI key would have deleted it just after it 
was typed (even though invisible from that cursor location). 

All this seems much more awkward when explained than it is in practice. 
One quickly learns to notice the little (blue) boxes (in my color selection) which 
indicate the presence of a format, and then easily move the cursor upon it when 
necessary to delete or manipulate it etc. A quick trip to the Menu of options -o 
(one of its few regular uses) followed by S will change the screen to Show Mode, 
when all print format markers are revealed as they would appear in a normal 
editor with no hidden marker capability i.e., like a normal 'lEX screen display. 
A quick -o H or -oW will restore Hide or Wide screen mode; there is no need to 
stop on the menu. In practice, one almost never uses the show mode, though it 
is occasionally useful if a format has gotten lost or forgotten. 

We will conclude this section, and the document's descriptive text, with some 
examples of keystroke input, versus screen display, versus typeset text. This is 
presented as Table 1 in a 3-column format. The first column is keyboard input. 
The middle column is screen display, shown in typewriter type; the boxes around 
characters show the screen's enhanced color or fuzzy box highlighting of format 
markers lying behind it. The screen display is fixed width, of course, whereas 
the boxes shown here are somewhat wider than the character space. The third 
column shows the typeset output corresponding to the input. 

Incidentally, tables typeset in columns are quite clean in this system. One 
can mix and match lines with any number of equally spaced columns, and can 
introduce or change unequal width columns at any time. To obtain the three
column form of Table 1 below, it was only necessary to specify: -f TAB=3-f 
beforehand, and -f TAB=-f afterwards. The tabline at screen top shows the 
I TAB I areas split into 3 columns (extra wide beyond 80 columns in wide screen 
mode to allow plenty of space for text), so that screen and typeset output can of
ten look very much alike. Each line is merely preceded by -a to effect alignment. 
If omitted, a normal line is typeset, etc. For unequal columns: 

1988 Conference Proceedings, 'lEX Users Group 249 



Paul M. Muller 

Keyboard Screen Typeset 

1) ITABI This is text. 1) This is text. 1) This is text. 

":fB"f Bold •tB·f It. @]old0It. Bold It. 

qb qe Qv "q# qB QKEYS (3 e I £ e QKEYS (3 e I £ e QKEYS 

A -b -b is "emspace" A Dis "emspace" A is "emspace" 

- # $ % - & - # $ % - & -

\$math-b e"f S":f-x":f S":f\$ \$math [I e E!x [SJ $ math e-x 

Text it e"fS-f-x"fS":f. Text it eE!xO Text it e-x. 

"f \greek·f D [[I 

"f \subst"f R [[I 

"f \hat"f qd @] 

Table 1: Keyboard vs Screen vs Typeset 

to create the unprinted sample column line, then the ·a to begin each aligned line. 
The user can modify the tablines installed in F_ASTEX to reflect frequently used 
(approximate) screen tabs for unequal width columns, or select simultaneously 
"f TAB=i"f which provides several wide tabs for general \samplecols work. This 
is an important example of screen handling intended to minimize the number of 
occasions when the screen must depart materially from the output. 

Plain tabs also work for both ordinary indentation and simple columns. Each 
tab measures from the position of the last, so one merely counts tabs (not screen 
position), and quick alignment is possible. The first example in Table 1 is the 
simplest case, where one is using item numbers. This emphasizes that ICR! and 
I TAB I (even though tabs are an abomination which, unfortunately, will always 
be with us) are treated as in a text processor. The first introduces vertical white 
space, and the second, horizontal. 

250 1988 Conference Proceedings, 'lEX Users Group 



Summary of Capabilities 

e Full function text editor with text processor style and feel 

@ Proofreadable clean screen edit; print format markers hidden or visible 

e Screen: automatic scrolling, PC special characters and font information show 

® Quick learning, memorable, yet has the full power an expert expects 

• Short yet complete FLIPGUIDE "electronic typewriter" style manual 

• Strict ASCII file structure; no conversion programs needed 

• Editor operated by compiled syntax table; user interface is via an AI parser 

Ell> Therefore no programming needed to change/update user and 'lEX interface 

e Relatively cheap to alter or expand the user interface and capabilities 

"' AI "natural-language" editing: "What you think is what you get" 

e AI on-line interactive help answers questions typed in plain English. 

• "Knows" text units: Letter, Word, Sentence, Paragraph, Chapter, Document 

• Supplied and Instant user FUNCTION keys while editing; powerful edit macros 

e Flexible, natural, multiple cut and paste; alphabetic sorting 

Ell> Undelete (editor's last 9 deletions) 

111 Convenient, clean screen display of many European accents and specials 

e Quick-type QKEY keyboard for all PC and many foreign characters 

111 Instant QKEY finder/reminder help screen; TEX symbol keyboard 

s Quad, em, en and thinspace quick-keys; neat screen display as fuzzy space 

e Screen column tab markers; very wide screen column and text display 

e Common printer text-processor style rough draft output (not typeset) 

FT.EX Typesetter: 

"' Screen preview of pages while typesetting; HP and Imagen laser outputs 

~~> 'lEX compatibility; all macros available 

e ICRI is "natural" Carriage Return and puts white space on the page 

o Also !TAB I is "natural" and sets "quickie" variable width columns 

e Easy fixed width, decimal, and unequal "sample" width column alignment 

111 Handles 92 base ASCII and 128 upper-ASCII characters (8 bits) 

• Typesets PC screen characters; verbatim typesets all 96 ASCII 

e Accent and special character "keyboards" OK in all 'lEX and F_AS'IEX modes 

"" Automatic leading/trailing "quote" marks from G key; widow elimination 

e Free text~ centering and/or~ flushing like this 

• Free text "toggled" Boldface, Italics, Slanted, and Typewriter 

1988 Conference Proceedings, 1EX Users Group 251 



Paul M. Muller 

e Also combination pairs: Bold Italic, Bold Slanted; SLantea ltaLtc 

~And Italic Typewriter, Slanted Typewriter, BOLD TYPEWRITER 

e Free text "toggled" Superscriptand Sub . it all wraps and · · with all scnptand JUstifies 
expected text processor feat tires h . . . d "al {3, etc sue as automatic typesiZ!ng an spec1 s u 

• Conditional hyphen; - breakfnobreak dash and minus shows on-screen 

~ Absolute page break; conditional page break (request "n" lines remaining) 

e Automatic Roman pages to 4999; automatic CH.PG style page numbering 

e Unlimited free selection of one-line, multi-line, and odd-even head/footers 

111 Justification on/off; hidden labels and messages to the FTEX typeset screen 

e Convenient quick-key hanging or block indents; show on-screen 

e Centered "poetry" style paragraphs; square paragraphs (see Abstract) 

e Quick-key typeface changes: Roman, Sans Serif, FIVE User dehned Fonts 

~~~ ORDINARY BOLD (cmb) and EXPANDED BOLD (cmbx) selectable 

" Automatic numbered footnotes, plain and context-named

e A4, A5 and Letter page sizes plus unrestricted user-defined page sizes

OJ Landscape and portrait orientations; text-overlay typewriter-like "esc" key

• Automatic/manual line spacing e.g., 1h, single, l1f2, double: (8, 12, 16, 20pt)

• User-defined margins; kern, raise, lower; Push-down text to page bottom

• Floating top, mid and page inserts (including basic plot/ graphics work)

• Automatic DOS date in 3 formats: 11-22-88; 22-11-88; November 22, 1988

<» $ & # A % - _ are text characters in FAS'IEX; only { } \ I are reserved

e Style sheets and 1£X macro definitions with 'lEX compatibility

• Continuous underline ___ from ___ ; any mode Underline and overline

out-left • Marginal notes and insertions as shown here out-right

• General \fill + + + + + + + + + + + with any !!-on-alphabetic character

111 Math text in F_ASTEX; FASTEX to/from 1EX toggle; 'lEX display math mode

9 Automatic table of contents; end-notes; bibliography

• Automatically numbered references by context-name

e A basic plot and graphics facility (example below)

e File merge; basic graphics; basic plotting

• Automatic direct and hidden indexing 4 2 p t
• Quick-key convenient changes of type sizes from five to

Under development:

'"' Page and section forward/backward references by context-name

e Multiple column pages typeset; lined tables

• Parsing all 'lEX macro names to prevent input errors (via editor's parser)

252 1988 Conference Proceedings, 'lEX Users Group

Bibliography

1 Knuth, Don. E. The 1£Xbook. Reading, Mass.: Addison-Wesley. 1984.
2 ·Gilbert, W.S., and Sir Arthur Sullivan. The Mikado. London: Macmillan.

1928.

3 Muller, Paul. FASTEX FLIPGUIDE. Privately published. 1986-88.

4 Milne, A.A. Whinnie the Pooh. London: Methuen. 1970.

Acknowledgements and Notes
Hardware Requirements: FASTEX editor- PC 256K with 2 floppy drives.

FTEX and DVILASER- 640K, lOMb hard disk space, EGA or Hercules.

Thanks to: Mr. Peter Scott, Mr. David Fuchs, Mr. Kent Russell, and the
FASTEX Users Group for constructive criticism, bug finding, suggestions for
improvement, help in understanding TEX, and many professional courtesies.

An Example Plot

Noise Distribution

To T1 T2

To=Tobs
Tt···n=Trej

Signal+ Noise
Distributions

• : : 0 0 ••

Signal ---+

1988 Conference Proceedings, 'IE;X Users Group 253

Paul M. Muller

Appendix

Sample Pages From FAS'!EX FLIPGUIDE

SCREEN EDIT MODES Page 17

• The SCREEN can display in SHOW, HIDE, & WIDE, modes. Select them from -o
OPTIONS MENU. You may set INSTALL to begin with whichever you wish.

• SHOW mode "shows" on-screen text with the PRINT FORMATS exactly as keyed in
i.e., unhidden; wraps line-ends to suit the screen. Look only; don't edit!

• HIDE mode hides PRINT FORMATS and limits line wrap to lesser of (1) screen
width1 ; or (2) approximate 'J'.EXSET line break as warning in wide1 fonts.

e A PRINT FORMAT "hiding" means letter following is shown in "examine" color.
Move CURSOR to it +---+ or -s; see it screen lower-right; -d it, type in front, etc.

• WIDE mode: "infinite" width wide-format for COLUMN work e.g., -a ALIGN in
'l};XSET. jALTjF8jjALTjF9 select tablines for Hide/Wide using {58}/{59}.

o 1If a screen line "wraps" short, you are in a wide font size. If off screen-right, you are
in WIDE mode. Horizontal scroll is automatic, just move CURSOR there.

FA_S1]VC FUNCTION KEYS Page 18

• F_AS'IE;X comes with some FUNCTION keys (left) and ALT keys (right) pre-set:

[fi] Go Top of Document: -g-Du jALTj-

jF2j HELP from Menu: -o? [m
~ Go Word Left: -g+W-2Wu ~
~ Go Word Right: -gwu [Qj
[flJ Delete Word Left [QJ

"en" DASH non-breaking (p. 38).
-f \inbox-f { (put in text & close}).

-f \fill-f ["fill" character next).
-f \greek-f

-f \oline-f{

("greek" character next).
(put in text & close}).

[!!] Delete Word Right [gJ QKEY keyboard from HELP screen.

I!IJ Delete to start of~ (LINE) @J -f\ref"'"f{ [put in text & close}).
[F8J Delete to end of, (LINE) ~ -f \subst-f ("subst" character next).

~ First File Save: -p-f -f D. [QJ -f \uline-f{ [put in text & close}).

jFlOj Go End of Document: -g+Du (KJ -f \index-f{ (put in text & close}).

• See REYMAN for details. OK to replace with your own. jAFl-7j Spell-check and
reserved; jAF8-9j Hide/Wide screen tabs; jAFlOj Go Current Utility{ ... }.

254 1988 Conference Proceedings, 'I'EX Users Group

Participants, 1988 T}vX Users Group 1VIeeting

McGILL UNIVERSITY

110NTREAL, CANADA

AUGUST 21-24, 1988

Notes: 175 participants
* indicates exhibitor
t indicates presenter

Clifford Alper
T£..-"'C Users Group
Providence, Rhode Island

Bernadette V. Archuleta
Los Alamos National Laboratory
Los Alamos, New Mexico

Mary Armstrong
TE)C Users Group
Providence, Rhode Island

Ronna Bailey
NCAR
Boulder, Colorado

t Elizabeth Barnhart
TV Guide
Radnor, Pennsylvania

Michael Barr
McGill University
Montreal, Quebec, Canada

Karen T. Barry
lVIartin Marietta Energy Systems, Inc.
Oak Ridge, Tennessee

Robert P. Batzinger
United Bible Societies
Chiang l\Iai, Thailand

t Stephan von Bechtolsheim
Integrated Computer Software, Inc.
\Nest Lafayette, Indiana

Nelson H. F. Beebe
University of Utah
Salt Lake City, Utah

Barbara N. Beeton
American Mathematical Society
Providence, Rhode Island

Marc Blanchet
University Laval
Ste-Foy, Quebec, Canada

Chris Bohn
Personal TE)C, Inc.
Mill Valley, California

Cathy M. Booth
University of Exeter
Exeter, England

Virginia Ann Brower
Stanford Linear Accelerator Center
Stanford, California

Lonnie Brown
Shepard/McGraw-Hill, Inc.
Colorado Springs, Colorado

John Bruce
Digital Equipment Corporation
Nashua, New Hampshire

Justin Bur
University of Montreal
Montreal, Quebec, Canada

Mimi Burbank
Florida State University
Tallahassee, Florida

William P. Butler
'JE)"'C Users Group
Providence, Rhode Island

Alain J. Cadorette
TV Guide
Toronto, Ontario, Canada

* Lance Carnes
Personal TE)C, Inc.
Mill Valley, California

Chris J. Carruthers
University of Ottawa
Ottawa, Ontario, Canada

1988 Conference Proceedings, 1E;X Users Group 255

Participants, 1988 TEJ'\ Users Group Meeting

Frant;;ois Chahuneau
Berger-Lavrault
Neuilly, France

t S. Bart Childs
Texas A & M University
College Station, Texas

Esther C. Clerin
University of Ottawa
Ottawa, Ontario, Canada

David M. Cobb
Science Applications International Corp.
Oak Ridge, Tennessee

Arvin C. Conrad
Menil Foundation
Houston, Texas

Edgar Cooke
Software Research Associates, Inc.
Tokyo, Japan

Mary Coventry
University of vVashington
Seattle, Washington

Jackie Damrau
University of New .1\Iexico
Albuquerque, New l\Jexico

Dian DeSha
California Institute of Technology
Pasadena, California

Michael DeCorte
Clarkson University
Potsdam, New York

Andrew Dobrowolski
ArborText, Inc.
Ottavva, Ontario, Canada

Michael Doob
University of .Manitoba
vVinnipeg, Manitoba, Canada

Marcel Dupras
Universite Laval
Ste-Foy, Quebec, Canada

Allen R. Dyer
Computer Law Laboratory
Ellicott City, Maryland

Mark Edwards
University of Wisconsin, Madison
Madison, Wisconsin

Carl J. Egetter
Lockheed Aeronautical Systems
Burbank, California

t Shawn Farrell
McGill University
Montreal, Quebec, Canada

t Michael J. Ferguson
Universite du Quebec a Montreal
Verdun, Quebec, Canada

Frank Flynn
University of British Columbia
Vancouver, British Columbia, Canada

Barbara Forrest
Los Alamos National Laboratory
Los Alamos, New Mexico

Jim Fox
University of Washington
Seattle, Washington

Robert Fry
Smiths Industries
Grand Rapids, Michigan

* Frank C. Frye
Computer Composition Corporation
Madison Heights, Michigan

Rick Furuta
University of Maryland
College Park, Maryland

Sam Gassel
University of Chicago
Chicago, Illinois

Thaddeus Gerards
The Open University
Heerlen, Netherlands

Helen M. Gibson
Wellcome Institute for the

History of lVIedicine
London, England

Regina Girouard
American Mathematical Society
Providence, Rhode Island

256 1988 Conference Proceedings, 'lEX Users Group

t Jacques Goldberg
Technion liT
Haifa, Israel

Max Goldstein
New York University
New York, New York

Frederic Gooding Jr.
Vassar College
Poughkeepsie, New York

Raymond E. Goucher
TEX Users Group
Providence, Rhode Island

John S. Gourlay
ArborText, Inc.
Ann Arbor, Michigan

John R. Green
The Friary
St. Bonaventure, New York

Regina Gregory
NCAR
Boulder, Colorado

* Gayla Groom
Blue Sky Research
Portland, Oregon

Nancy K. Groschwitz
Talaris Systems, Inc.
San Diego, California

* Paul Grosso
ArborText, Inc.
Ann Arbor, Michigan

* Dean Guenther
Washington State University
Pullman, Washington

Jane M. Hahn
Mission Research Corporation
Santa Barbara, California

Richard Hainebach
Electrical Publishing

Management & Service
NA Banholt, Netherlands

·Hope Hamilton
NCAR
Boulder, Colorado

Participants, 1988 TEX Users Group Meeting

Marvin V. Harlow
Los Alamos National Laboratory
Los Alamos, New Mexico

t Robert Harris
l\licro Programs, Inc.
Syosset, New York

Laura Hawks
Northwest Computer Service
Lakeville, Connecticut

Doug Henderson
University of California, Berkeley
Berkeley, California

* Amy Hendrickson
TE)Cnology, Inc.
Brookline, l\Iassachusetts

David Hitchcock
Honeywell Bull
Los Angeles, California

Mildred H. Hoak
Los Alamos National Laboratory
Los Alamos, New Mexico

Alan Hoenig
City University of New York
Huntington, New York

Ezra Holston
Harcourt Brace Jovanovich
Cambridge, Massachusetts

Anita Z. Hoover
University of Delaware
Newark, Delaware

Don Hosek
Harvey Mudd College
Claremont, California

Nancy M. Hunt
Sandia National Laboratories
Livermore, California

Sam Hunting
Electric Book
Dorchester, Massachusetts

Patrick Ion
Mathematical Reviews
Ann Arbor, Michigan

1988 Conference Proceedings, JEX Users Group 257

Participants, 1988 TEX Users Group Meeting

Calvin W. Jackson
California Institute of Technology
Los Angeles, California

*Peter Jacobsen
l\licro Publishing Systems, Inc.
Vancouver, British Columbia, Canada

Charles L. James
University of California, San Diego
La Jolla, California

Jeanette M. Jenness
Lawrence Livermore National Laboratory
Livermore, California

Yvonne Johnson
Los Alamos National Laboratory
Los Alamos, New Mexico

Or all Joseph
Library of.Congress
Washington, District of Columbia

t Erik Jul
OCLC, Inc.
Dublin, Ohio

Helmut Jurgensen
University of V\'estern Ontario
London, Ontario, Canada

William Kaster
Personal T&cX, Inc.
1\Iill Valley, California

Jeffrey Katz
Montreal, Quebec, Canada

David Kellerman
Northlake Software
Portland, Oregon

Benjamin J. Kennedy
Xybion Corporation
Cedar Knolls, New Jersey

* Richard Kinch
Kinch Computer Company
Ithaca, New York

* Robert L. Kister
K- Talk Communications
Columbus, Ohio

t Kazuhiro Kitagawa
Keio University
Yokohama, Japan

Carol Klos
Stratus Computer, Inc.
Marlboro, l\Jassachusetts

David H. Kratzer
Los Alamos National Laboratory
Los Alamos, New Mexico

t Robert L. Kruse
Saint Mary's University
Halifax, Nova Scotia, Canada

Ryoichi Kurasawa
ASCII Corporation
Minato-ku Tokyo, Japan

John C. Lane
Technical Typesetting, Inc.
Baltimore, Maryland

Steven Lapham
Tribune TV Log
Glen Falls, New York

Daniel Latterner
Mathematical Reviews
Ann Arbor, Michigan

Paul K. Leeper
Texas A & M University
College Station, Texas

Pierre MacKay
University of VVashington
Seattle, \Vashington

t Laurie Mann
Stratus Computer, Inc.
Marlboro, Massachusetts

Don Marlette
American Institute of Physics
Woodbury, New York

Marian V. Martinez
Los Alamos National Laboratory
Los Alamos, New Mexico

Philip Martinicchio
TV Guide
Radnor, Pennsylvania

t Mary McCaskill
NASA Langley Research Center
Hampton, Virginia

258 1988 Conference Proceedings, 'JEX Users Group

Robert W. McGaffey
.1\Iartin 1\Iarietta Energy Systems, Inc.
Oak Ridge, Tennessee

Claudia MeN ellis
Library of Congress
Washington, District of Columbia

t James D. Mooney
West Virginia University
Morgantown, West Virginia

Mary-Jean Moore
California Computer Resources, Inc.
Oakland, California

t Paul M. Muller
Norman Paul Consultants
Palo Alto, California

Norman W. Naugle
Texas A & M University
College Station, Texas

t David Ness
TV Guide
Radnor, Pennsylvania

Trang Do an Nguyen.
Fermi National Accelerator Laboratory
Batavia, Illinois

Daniel D. Olson
ETP Services Co.
Portland, Oregon

t Berkeley Parks
University of Washington
Seattle, v\'ashington

David W. Parmenter
Digital Equipment Corporation
Nashua, New Hampshire

Clement Pellerin
McGill University
Montreal, Quebec, Canada

Richard Perline
CitiCorp
New York, New York

David Peterson
Massachusetts Institute of Technology
Cambridge, Massachusetts

Participants, 1988 T£.X Users Group Meeting

Noel C. Peterson
Library of Congress
Washington, District of Columbia

Craig R. Platt
University of lvianitoba
vVinnipeg, Manitoba, Canada

Wayne Podaima
National Research Council
Ottawa, Ontario, Canada

t Jean J. Pollari
Rockwell International
Cedar Rapids, Iowa

t Lynne Price
Hewlett-Packard Company
Palo Alto, California

Jon Thomas Radel
Stanford Telecommunications, Inc.
Leesburg, Virginia

Pat Rau
Northlake Software
Portland, Oregon

Thomas J. Reid
Texas A & M University
College Station, Texas

t James T. Renfrow
Jet Propulsion Laboratory
Pasadena, California

Nicola Richards
McGill University
l\Iontreal, Quebec, Canada

Don Riley
Sandia Nat ion a! Laboratories
Livermore, California

* David Rodgers
ArborText, Inc.
Ann Arbor, Michigan

Eugene S. Rodolphe
New York University
New York, New York

David F. Rogers
United States Naval Academy
Annapolis, l\Iaryland

1988 Conference Proceedings, 1EX Users Group 259

Participants, 1988 T&'C Users Group Meeting

t Kauko Saarinen
University of Jyvaskyla
J yvasky Ia, Finland

Shashi Sathaye
University of Kentucky
Lexington, Kentucky

Brian T. Schellenberger
SAS Institute
Cary, North Carolina

t Michael Schmidt
Honeywell Bull
Iberville, Quebec, Canada

Herbert Earl Schulz
College of DuPage
Naperville, Illinois

Larry Sharlow
Flagstaff, Arizona

Linda Sirney
NCAR
Boulder, Colorado

James Slagle
TV Guide
Radnor, Pennsylvania

* Barry Smith
Blue Sky Research
Portland, Oregon

Laurel Stegle
American Institute of Physics
·woodbury, New York

David K. Steiner
Rutgers University
Piscataway, New Jersey

Jan Stewart
NCAR
Boulder, Colorado

Thomas E. Strack
Technical Association of the Pulp and

Paper Industry
Atlanta, Georgia

Peggy Sutherland
American Physical Society
VVoodbury, New York

Steve Sydoriak
Los Alamos National Laboratory
Los Alamos, New l\Iexico

Cheryl Taub
American Institute of Physics
Woodbury, New York

William J. Taylor
Technical Typesetting, Inc.
Baltimore, Maryland

Christina Thiele
Carleton University
Ottawa, Ontario, Canada

Margaret Thomas
Talaris Systems, Inc.
San Diego, California

David W. Thompson
Lawrence Livermore National Laboratory
Livermore, California

Jeanne Torres
NCAR
Boulder, Colorado

Frederick M. Trietsch
TV Guide
Radnor, Pennsylvania

Laurent Valosek
Personal TEJ'C, Inc.
Mill Valley, California

Kent Wada
University of British Columbia
Vancouver, British Columbia, Canada

*Don Wagner
Micro Publishing Systems, Inc.
Vancouver, British Columbia, Canada

t Alex Warman
T&'Cworks Pty. Ltd.
Melbourne, Australia

Stacy Waters
University of Washington
Seattle, vVashington

Michael Weinstein
Random House, Inc.
Cambridge, l'dassachusetts

260 1988 Conference Proceedings, TEX Users Group

Samuel B. Whidden
American Mathematical Society
Providence, Rhode Island

Kendall Whitehouse
University of Pennsylvania
Philadelphia, Pennsylvania

J anene Winter
American Mathematical Society
Providence, Rhode Island

t Alan Wittbecker
T&'C Users Group
Providence, Rhode Island

William B. Woolf
Mathematical !leviews
Ann Arbor, hlichigan

Thomas H. Wright
Clarkson University
Potsdam, New York

Participants, 1988 T£.X Users Group l\Ieeting

t Ken Yap
University of Rochester
Rochester, New York

Deborah Young
Technical Association of the Pulp and

Paper Industry
Atlanta, Georgia

Ralph Youngen
American l\fathematical Society
Providence, Rhode Island

Andrew Yull
Addison- Wesley Publishing Ltd.
Don Mills, Ontario, Canada

Mona Zeftel
Addison- Wesley Publishing Company
Reading, Massachusetts

1988 Conference Proceedings, 'lEX Users Group 261

List of Exhibitors

ArborText Inc.
535 West William Street
Suite 300
Ann Arbor, Michigan
4810~ USA
313/996-3566

Blue Sky Research
534 SW Third Avenue
Portland, Oregon
97204 USA
800/622-8398
503/222-9571

Computer Composition Corp.
1401 West Girard Ave.
Madison Heights, Michigan
48071 USA
313/545-4330

Kinch Computer Company
501 South Meadow Street
Ithaca, New York
14850 USA
607/273-0222

K-Talk Communications
50 McMillen Avenue
Columbia, Ohio
43201 USA
614/294-3535

Micro Publishing Systems, Inc.
300-1120 Haruilton Street
Vancouver, British Columbia
Canada V6B 2S2
604/687-0354

Personal 'lEX
12 Madrona Valley
Mill Valley, California
94941 USA
415/388-8853

'.IEXnology, Inc.
57 Longwood A venue
Brookline, Massachusetts
02146 USA
617/738-8029

TF;XT1 Distribution
Computing Service Center
Washington State University
Pullman, Washington
99164-1220 USA
509/335-0411

262 1988 Conference Proceedings, 'lEX Users Group

Other TEX. Conference Proceedings

There are now a number of conference proceedings devoted to 'lEX; two are from
Europe, and two from North America. All are available through the 'lEX Users
Group, Providence, Rhode Island.

Proceedings of the First European Conference on TEX for Scientific Documen
tation. Dario Lucarella, ed. Reading, Mass.: Addison-Wesley. 1985. [16- 17
May 1985, Como, Italy.]

Proceedings of the Second European Conference on TEX for Scientific Documen
tation. Jacques Desarmenien, ed. Berlin: Springer-Verlag. 1986. [19- 21
June 1986, Strasbourg, France.]

Conference Proceedings, 8th Annual Meeting of the TEX Users Group. Dean
Guenther, ed. TJ!iXniques Number 5. 1987. [24- 26 August 1987, University
of Washington, Seattle, Washington.]

Conference Proceedings, 9th Annual Meeting of the TEX Users Group. Christina
Thiele, ed. TJ!iXniques Number 7. 1988. [22- 24 August 1988, McGill Uni
versity, Montreal, Canada.]

