
Exploring Primo:
A developer's perspective

A quick tour about Primo development

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

What is Primo (simplified)

- Cloud-based authoring, submission, and proofing tool with

collaborative editing.

- Target audience: Authors who need to publish papers with a

publisher.

- Author-centric: Empowers authors to control their publishing

process.

- Authors can see and tweak the output, minimizing the difference

between the submitted and published versions.

2

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction (cont.)

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

What is Primo (simplified)

- XML-based workflows:

- Required by publishers.

- Often disliked by authors.

- Made simple by Primo.

- High-quality PDF output with math

- Difficult for XML-based workflows.

- Easy with Primo using TeX backend.

3

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

It sounds good. But what is it really?

- Like Google Docs, but for academic publishing.

- Input: XML-based datasets (XML + figures, etc.).

- Editing: WYSIWYG and structural (via menu/form/dialog) editing.

- Output: XML, PDF (by TeX).

- Makes communication between authors and publishers efficient.

4

Introduction (cont.)

5

 Structural editing tools Editor Proofing tools

6

 Editor PDF

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

Overview of runtime parties

7

Runtime overview

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

- Users connect to Primo server from Internet

- RWS servers connect to Primo server from internal network

- RWS servers keep asking Primo server for “work”

- “Work” means resource-demanding tasks:

- PDF compilation (using XeTeX)

- MathML alt. image creation (using XeTeX)

- XML validation (using a validation tool)

- RWS servers can be easily added to scale

8

Runtime overview (cont.)

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

- Language: Scala 2, Scala.js (transpiles Scala to JavaScript)

- IDE: IntelliJ IDEA

- VCS: Git

- Build tool: sbt

- Libraries (Java, Scala):

- DB: SQLite

- HTTP: Undertow

- DOM: scalajs-dom

- SFTP: apache Mina sshd/sftp server

- Text index: Lucene

9

Technology

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

- Front-end:

- VDL: our own framework for developing UI components

- CSS: written in Scala, translate to pre-css then to css via Tailwind

CSS

- Fonts: STIX (body text), Source Sans VF3 (UI), Courier Prime (fixed

width)

- Icons: RemixIcons plus self-made icons using Inkscape

10

Technology (cont.)

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

- Scala source code: ~3000 files, ~6MB total

- Git commits: ~6000 commits currently

- Almost everything is written in Scala

11

Codebase size

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

- Primo codes consist of many modules

- Most modules have 3 submodules:

- js: codes for Scala.js only

- jvm: codes for JVM only

- shared: codes for both

- Scala.js translates codes in shared and js to JavaScript, so codes

in shared can be used for both JS and JVM

12

Modules

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

Some important modules

- admin: administration UI

- demo: demo & test of UI components

- drive: file management UI, similar to Google Drive

- editor: editor UI

- gallery: gallery of UI components

- logon: UI for login/signup

13

Modules (cont.)

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

Example: the admin module will have this file structure

admin/

 js/src/main/scala/io/trivic/primo/admin

 // code compiled to JS and run on client

 jvm/src/main/scala/io/trivic/primo/admin

 // code that run on server

 shared/src/main/scala/io/trivic/primo/admin

 // code that run on both client and server

14

Modules (cont.)

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

- Document = Tree of nodes with unique IDs

- Nodes can reference each other, so it’s actually a graph

- But core structure is basically a tree

15

Document model - Structure

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

- Node with multiple dynamic sub-nodes (NodeWithSubNodes)

- Node with a single dynamic sub-node (NodeWithSubNode)

- Node with fixed, pre-created child nodes (NodeWithChildren)

- Special node holding a text-string (TextPart)

16

Document model - Node types

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

- Nodes have attributes called facets

- Facet value can only be set/removed

- No sub-structure of facet value

- Facet types can be non-primitive but lack sub-structure

17

Document model - Facets (Attributes)

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

- Node types: Derived from base types (called traits in Scala)

- Nodes follow a specific DTD, derived from a DTD used by a large

publisher.

- This DTD is very complete and covers everything that we need

- Initially we tried to create a generic set of nodes to match any

DTDs

- Found it infeasible due to specific and extensive functionality

required

18

Document model - Node hierarchy

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

- Porting to another DTD needs specific nodes, view classes, and

functionalities.

- Core collaborative editing remains unaffected

19

Document model - Node hierarchy (cont.)

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

- The document model supports observation

- Observer can be registered for direct sub-node changes

(insertions, deletions), for facet changes; The observer is specific

(we know what changed)

- "Deep-change" observation also possible, for any change below a

node no matter how deep; The observer is generic (something

changed)

- Observers connect the model to UI view classes

- UI updates with model changes

20

Document model - Observation and Binding

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

- Changes made to document are represented as operations

(Insert, Delete, Move, SetFacet)

- Operations are sent to/from server asynchronously

- Clients keep fetching operations from server even when no edits

take place

21

Collaboration – Operations

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

Operations in Scala code (simplified):

case class Insert(targetId, offset, cargo)

case class Delete(sourceId, range, cargo)

case class Move(sourceId, range, targetId, offset, cargo)

case class SetFacet(nodeId, facet, change)

22

Collaboration – Operations

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

23

Collaboration – Operations

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

24

Collaboration – Operations

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

- When multiple users edit the same document simultaneously,

there might be conflicting changes that must be resolved

- When a client A fetches the operations (done by other clients,

e.g. client B), it must apply those ops to the document model

- At this time, there might be some new operations made on

client A that have been already applied to document model (on

client A) and updated the document view

25

Collaboration (cont.)

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

- so we have incoming changes from the server (already

accepted), and we have our own changes, some of them just

sent/recv to/from the server, and some of them not yet sent to

the server, but all those are applied to the document model, and

reflected in the view (view was updated via observers)

- there are different ways to solve this problem; ours is to use a

technique called TriLayer(s)

26

Collaboration (cont.)

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

27

Collaboration – TriLayer

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

- Document model tree is internally "triplicated"

- TriLayer: Enumeration of 3 layers

- L0: Main layer, UI observes and updates the document view

- L1: Server layer, holds latest server version of the document

- L2: Temporary layer, used for new changes on the client

28

Collaboration – TriLayer (cont.)

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

How TriLayer works (simplified):

- Changes fetched from the server are applied to layer L1

- Layer L1 is transferred to layer L2

- New changes on client (not sent to server yet) are rebased

against the latest server changes, then applied to layer L2

- Finally, layer L2 is transferred to the main layer L0, and the

document view is updated (via observers)

29

Collaboration – Rebase changes

Trivic s.r.o. TUG 2024, Prague

Exploring Primo: A developer's perspective

/ 30

Introduction

Runtime overview

Technology

Codebase size

Modules

Document model

Collaboration

Questions & Answers

30

Questions & Answers

